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Abstract
A newmethodology termed Single Amino Acid Mutation based change in Binding free

Energy (SAAMBE) was developed to predict the changes of the binding free energy caused

by mutations. The method utilizes 3D structures of the corresponding protein-protein com-

plexes and takes advantage of both approaches: sequence- and structure-based methods.

The method has two components: a MM/PBSA-based component, and an additional set of

statistical terms delivered from statistical investigation of physico-chemical properties of

protein complexes. While the approach is rigid body approach and does not explicitly con-

sider plausible conformational changes caused by the binding, the effect of conformational

changes, including changes away from binding interface, on electrostatics are mimicked

with amino acid specific dielectric constants. This provides significant improvement of

SAAMBE predictions as indicated by better match against experimentally determined bind-

ing free energy changes over 1300 mutations in 43 proteins. The final benchmarking

resulted in a very good agreement with experimental data (correlation coefficient 0.624)

while the algorithm being fast enough to allow for large-scale calculations (the average time

is less than a minute per mutation).

Author Summary

Developing methods for accurate prediction of effects of amino acid substitutions on pro-
tein-protein affinity is important for both understanding disease-causing mechanism of
missense mutations and guiding protein engineering. For both purposes, there is a need
for accurate methods primarily based on first principle calculations, while being fast
enough to handle large number of cases. Here we report a new method, the Single Amino
Acid Mutation based change in Binding free Energy (SAAMBE) method. The core of the
SAAMBE method is a modified molecular mechanics Poisson-Boltzmann Surface Area
(MM/PBSA) method with residue specific dielectric constant. Adopting residue specific
dielectric constant allows for mimicking the effects of plausible conformational changes
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induced by the binding on the solvation energy without performing computationally
expensive explicit modeling. This makes the SAAMBE algorithm fast, while still capable of
capturing many of the explicit effects associated with the binding. The performance of the
SAAMBE protocol was tested against experimentally determined binding free energy
changes over 1300 mutations in 43 proteins and very good correlation coefficient was
obtained. Due to its computational efficiency, the SAAMBE method will be soon imple-
mented into webserver and made available to the computational community.

This is a PLOS Computational BiologyMethods paper.

Introduction
One of the most essential properties of all living organisms is the ability to conduct comprehen-
sive “communication” between its individual components. This includes signal transduction,
immune system operation, inhibition or activation of particular functions, assembly of macro-
molecular structures into molecular machines (such as ATPase), and much more. At the
molecular level such communications are carried out via macromolecular binding [1,2]. The
molecular recognition is affected by multiple factors such as concentration and compartmen-
talization of the macromolecules, their shapes, charge distribution, conformational flexibility,
physico-chemical properties of the interfaces and many others [3–11]. Any change of these
characteristics could alter the wild type protein binding and therefore might affect the function
of macromolecules. While some of abovementioned factors (macromolecular and salt concen-
trations, pH and temperature of the media, etc.) are results of the cellular function, other char-
acteristics (physico-chemical properties of interfaces, protein charge distribution, etc) are
largely determined by protein amino acid sequence and structure. Because of that, any alter-
ation of the protein primary structure (insertion, deletion or amino acid substitution) may
have an effect on macromolecular recognition. Having in mind that in vivo interactions occur
in the crowded cellular environment, mutations may not only impact binding affinity but also
could perturb protein interaction networks resulting in a loss or gain of interactions. Such
changes in binding and interactions are frequently implicated in diseases and understanding of
their molecular mechanisms is crucial for deciphering the origin of diseases. In particular, the
effect of mutations on binding free energy (binding affinity) is considered to be an important
component of the overall disease effect [12].

The effect of missense mutations on protein-protein complex formation can be experimen-
tally assessed by various techniques such as isothermal titration calorimetry [13], FRET [14],
surface plasmon resonance [15], and many others (see review [16]). However they are time-
consuming, expensive to carry out and cannot be applied on a large scale. Despite such limita-
tions, investigators have performed many mutagenesis experiments in the past to determine
the effects of point mutations on binding free energy. The results reported in the literature
were compiled into useful databases, the most prominent one being Skempi database [17].
Although most of these experiments were carried out on protein complexes that were either
easy to manipulate biochemically or were of particular interest for the molecular biology com-
munity at that time, still such databases can be considered representative for any other interac-
tions since the biophysical principles governing the binding should be universal. Therefore,
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these experimentally determined binding free energy changes caused by point mutations can
serve as an ultimate benchmark for computational methods aiming at in silico predictions.

Obviously, large-scale studies of the effects of mutations on protein-protein binding
require computational approaches. Roughly speaking, the existing computational methods
can be divided into two main categories: sequence-based and structure-based approaches.
The main advantage of sequence-based approaches is that they are fast, but the techniques
used for the predictions strongly depend on the training set of data [18] and may be over-fit-
ted [19]. On the other part of the spectrum are structure-based approaches, many of them
providing a qualitative estimate (beneficial/neutral/deleterious) of the changes in binding
affinity upon mutations [20]. Multiple approaches in this category utilize different scoring
schemes, solvent models (implicit/explicit models), number of representative structures used
in the analysis, Monte Carlo and molecular dynamics sampling methodologies, etc. (for some
examples see [21–29]). Among the structure-based approaches the most rigorous (theoreti-
cally exact) methods are the free energy perturbation (FEP) and thermodynamic integration
(IT) methods [30]. However, they require intensive calculations and cannot be applied for
large-scale modeling (see review [31]).

Among the structure-based methods, the Molecular Mechanical Poisson-Boltzmann
(Generalized Born) / Surface Accessible (MM/PB(GB)SA) approach [32–34] represents a rea-
sonable balance between computational time and details of the modeling. In this approach
the binding free energy is calculated as a linear combination of potential energies such as
molecular mechanics, polar and non-polar solvation energies. Similarly one can construct a
function made of linear combination of weighted terms, either statistically or empirically
delivered, to predict binding free energy and the change of it due to mutations [21,35].
Hybrid approaches do exist as well [24,25]. Some of these approaches emphasize on the
importance of taking into account structural ensembles in the modeling [25], others on the
role of water phase and solvation energy [24].

In this paper we introduce a new methodology termed Single Amino Acid Mutation based
change in Binding free Energy (SAAMBE), which takes advantage of both approaches:
sequence- and structure-based methods. It utilizes MM/PBSA approach along with an addi-
tional set of statistical terms delivered from statistical investigation of the physico-chemical
properties of protein complexes. The new method was tested against more than 1300 muta-
tions in 43 proteins and resulted in a very good agreement with experimental data (correlation
coefficient 0.624) while being fast enough to allow for large-scale calculations (the average time
is less than a minute per mutation).

Results and Discussion
Our goal is to create a fast and accurate method to predict the changes of binding free energy
of the protein-protein complex caused by single point mutations. The approach combines
MM/PBSA method with knowledge-based terms. The optimal parameters of the weights in lin-
ear formula were obtained via multiple linear regression analysis against experimental values
of ΔΔG in tDB. Below we describe the investigations done to test the sensitivity of the protocol
against various parameters, to obtain the optimized weight coefficients for the SAAMBE for-
mula and to benchmark the protocol against experimental data.

Optimizing the parameters of MM/PBSA-based component of SAAMBE
method

Optimization of NAMD protocol. We tested different parameters for the NAMD-based
simulation protocol in order to select the optimal values and modeling strategies.
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a. Structure relaxation. It is anticipated that the binding is associated with small or large con-
formational changes and these conformational changes may not be the same for the WT
and MT proteins. Typically these conformational changes are modeled by carrying out
molecular dynamics (MD) simulations with various lengths of simulation time and collect-
ing representative snapshots for further analysis. Following this approach we tested MM/
PBSA performance by subjecting the WT and MT complexes and separated monomers to
energy minimization (200, 500, 1000, 2000, 5000, 10000, 15000 and 40000 steps) followed
by MD simulations (10000, 15000 and 40000 steps, 2 ps per step) at room temperature.
However, the benchmarking against experimental data indicated that the MD simulations
protocol results in worse (compared with simulations without MD) correlation of SAAMBE
predicted change of the binding free energy with the experimental data. Because of that, MD
simulations are not included in the SAAMBE protocol.

b. Degree of structural refinement. While structural relaxation via MD simulations was shown
not to improve the correlation between SAAMBE calculated ΔΔG values and experimental
data, still structures must be energy minimized to obtain the MM/PBSA energy compo-
nents. The energy minimization (structural refinement) was done with the minimization
module of NAMD. We tested a broad spectrum of the number of equilibration steps to min-
imize the WT and MT complexes with implicit solvent model for all entries in the tDB. The
structures obtained with 5000-steps minimization resulted in the best correlation between
SAAMBE predicted and experimental values of the changes of the binding free energy. Min-
imizations with smaller number of steps (we tried 200, 500, 1000 and 2000) were shown to
be insufficient for the structural refinement, probably because of the large size of the most
of the complexes in the tDB. On the other hand, using a larger number of steps (we tried
10000, 15000, 40000) reduced the agreement of the calculated results with experimental
data as well.

c. Dielectric constant (ε) of the protein for the GB model in NAMD. The energy minimization
was done by modeling the water phase with GB model implemented in NAMD. It allows
protein dielectric constant to be selected. Among different dielectric constants (we tried 1, 2,
4, 8, 12) we selected ε = 1 since it was shown to result in best correlation between SAAMBE
predicted and experimental values of the changes of the binding free energy.

Thus, the SAAMBE protocol subjects the structures of WT and MT complexes to 5,000-step
energy minimization with GB implicit solvent. Dielectric constant is 1. The IE and VE energies
are delivered with these parameters from standard NAMD output. It should be mentioned that
we also tried structural relaxation and refinement on separated monomers, but the results were
worse. Because of that, the SAAMBE protocol keeps the structures of the monomers as they are
in their bound form.

Choosing dielectric constants for electrostatic energies (DelPhi). Since structural refine-
ment with NAMD was done in implicit solvent model with dielectric constant 1, it is expected
that the same value should be used to calculate the electrostatic components of the energy.
However, initial testing showed that the obtained correlation of SAAMBE predicted energy
changes and experiments is not impressive. This combined with our previous work on predict-
ing folding free energy changes [36], we decided to test the possibility that better correlation
can be obtained if amino acids with different physico-chemical properties are modeled with
different dielectric constants. Previous investigations indicated that charged and polar amino
acid should be assigned relatively large dielectric constant as compared with hydrophobic
groups [36]. However, the work was done for predicting folding free energy changes and the
results may not be directly transferrable to model the changes of the binding free energy. In
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SAAMBE protocol, we assume that there are three groups of residues with specific dielectric
constants ε1, ε2 and ε3 for charged, polar and other groups, respectively (see Method section).
We varied systematically the dielectric constant for charged groups from 5 to 15, for polar
from 3 to 13 and other residues from 3 to 13 with a step of 2. Then multiple linear regression
analysis was performed for SAAMBE formula containing EE, VE and SP components only.
This was done for computational efficiency only. Fig 1 shows contour maps of the correlation
coefficients for fixed ε1 of charged residues and varied ε2 of polar residues (on the x-axis) and
ε3 for other types of residues (on the y-axis). The grey color represents the area with the maxi-
mum correlation coefficient, while the black one—its minimum for given combination of
dielectric constants. From Fig 1 one can see that the area with maximum correlation coefficient
increases with the increase of dielectric constant of the charged residues, reach its maximum at
ε1 = 9 and then decreases. The correlation coefficient has the highest value when the ε2 for the
polar residues is 8 and ε3 for other types of residues is 7. Thus SAAMBE protocol uses dielectric
constants of 9, 8, and 7 for charged, polar and other amino acids, respectively, to calculate the
SP energy component. The EE component is calculated with the lowest dielectric constant, ε =
7, for the entire protein and protein complex.

Optimizing the parameters of knowledge-based component of SAAMBE
protocol
As described in the method section, several knowledge-based terms were tested to improve the
correlation between predicted and experimental ΔΔG. One of these terms was added in the
SAAMBE formula to mimic the effect of the change of conformational entropy caused by

Fig 1. The effect of dielectric constant variation for charged, polar and other residues in calculations of EE and SP on the correlation coefficient
between experimental and calculated values of the change in binding free energy for the tDB.Only EE, VE and SP components were taken into
account for the multiple linear regression analysis.

doi:10.1371/journal.pcbi.1004276.g001
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mutations (ΔΔS term). Others—because of our previous work as InterfaceMT term in Eqs (4 and
8) [24]. The third set of terms was introduced in SAMMBE formula due to extensive testing of
various physico-chemical characteristics as hydrophobicity (ΔΔHYDR), hydrogen bonds (ΔHB)
and normalized change of the interface area caused by mutations ( DDSASA

InterfaceMT). It is understood

that there is an overlap between some of these terms and the terms within MM/PBSA-based
method, and between themselves alone as well. Hydrogen bond change is partially accounted
for in MM/PBSA algorithm via the electrostatic energy term. The InterfaceMT and DDSASA

InterfaceMT are

also related. However, the overlap is not complete as shown by the provided p-values (Table 1).
The functional form of knowledge-based terms was optimized by trying various forms as
explained in the method section. Their optimized forms are the one shown in Eqs (8)–(12).

Statistical analysis of experimental data
The experimentally measured changes of the binding free energy caused by mutations vary
from zero to very large positive values (+8.803) and very small negative values (-3.786). It can
be anticipated that there may be some structural or sequence characteristics associated with the
magnitude of the binding free energy change. To test such a possibility, we first provide the dis-
tribution of the absolute changes of experimental binding free energy in sDB dataset (Fig 2). It
can be seen that the cases with absolute binding free energy change of less than 1kcal/mol
account for about 50% of the cases. Therefore we chose to split the whole database into two
sets with similar number of entries: one set with small effect (|ΔΔG|<1kcal/mol); and another
with large effect (|ΔΔG|�1kcal/mol).

The next step was to determine the probability of mutations to cause “small effect” or “large
effect” depending on two characteristics: amino acid type and location of the mutation site at
the interfacial regions. With regard to amino acid types, we will consider WT and MT

Table 1. The weights of energy terms in calculating binding free energy and parameters of linear function between experimental and predicted
ΔΔG.

tDB_small tDB_large tDB

weight p-value weight p-value weight p-value

Free 0.74345 2.61E-06 2.68491 0 1.81729 0

ΔΔEE 0.24695 1.83E-07 0.38921 0 0.39117 0

ΔΔVE 0.1405 8.99E-06 0.18347 6.66E-16 0.18732 0

ΔΔSP 0.26 2.77E-06 0.44347 2.22E-16 0.43118 0

ΔΔSN 0.00354 2.90E-02

ΔΔS 0.17197 9.80E-02 0.1848 9.72E-03 0.20841 2.00E-04

ΔΔHYDR 0.55761 2.10E-05 -0.6731 1.48E-10

Interface 1.67E-04 1.22E-02 6.37356E-04 3.04E-06 4.64209E-04 3.64E-10

ΔΔME 0.03538 1.57E-06 0.053 1.63E-05 0.06648 0

ΔHB 0.03585 9.24E-02
DDASA
Interface

7.75803 2.79E-03 9.82407 1.18E-05

Ncases 612 714 1326

Slope -2.3058E-5 -7.0929E-07

Y-int 1 1

Correlation 0.624 (0.716±2SD, 0.603CV) 0.575

For all weights p<0.1. Data in brackets is for tDB within 2SD, and the one based on 5-fold cross validation.

doi:10.1371/journal.pcbi.1004276.t001
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separately as explained below. With regard to interfacial location, we use the definitions pro-
vided in the Method section (COR, SUP, RIM, INT and SUR).

Furthermore we collect all available substitutions M of a given type X! any residue, where X
is a particular amino acid (for example, Ala, Arg, etc). Then we calculate the mean and variance
of experimental change of the binding free energy for these M cases. In addition, we introduce an
estimation of the probability (P) of mutation type X! any to cause large effect by:

PðX ! anyÞ ¼ Mlarge

M
ð1Þ

whereMlarge is the number of cases withinM subset for which the absolute change of the binding
free energy is larger than 1kcal/mol (large effect) (Fig 3, left panel). Similarly we perform the
same analysis for substitutions of (any! X) and define the corresponding probabilities P(any
! X) (Fig 3, right panel).

With respect to mutation site location, we select all available cases K for which the mutation
site in the WT is located at Y, where Y is either COR, SUP, RIM, INT or SUR. Then we define a
probability of mutations within K to cause large effect as:

PðY ;WTÞ ¼ Klarge

K
ð2Þ

where Klarge are the cases experimentally found to result in absolute binding free energy change
larger than 1kcal/mol (Fig 4, left panel). Since mutations involve amino acids with different
side chain length and MT and MT structures are subjected to energy minimization, it is quite
likely that mutation site location is different in MT compared with WT. For this reason, the
same analysis is done for the MT and the corresponding probabilities are defined as P(Y,MT)
(Fig 4, right panel).

Fig 3 indicates that there is a tendency for some types of substitutions to cause small, while
other to cause large effects on the binding free energy. It can be seen that most of substitutions

Fig 2. The distribution of the absolute values of the experimental ΔΔG in sDB.

doi:10.1371/journal.pcbi.1004276.g002
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for Tyr and Gly in WT (P> 0.7) cause a big change of binding free energy. Consistent with our
previous work [24], mutations to Pro and Gly also often (P> 0.7) cause large changes in bind-
ing free energy. These results are not surprising since Tyr is a bulky aromatic polar residue.
Two effects may be involved in stabilization of the WT structure by this amino acid: formation
of hydrogen bond with other charged/polar residues and noncovalent interactions with aro-
matic rings of other residues such as Trp and Phe, known as “stacking effect”. Two other resi-
dues, Pro and Gly, are considered to be special in terms of their physico-chemical
characteristics. Although both of them are most often found in a coil rather than in a sheet or
strand, they perform different structural roles. Namely, Gly makes the secondary structure
more flexible, while Pro tends to rigidify it. Pro is also a well-known secondary structure ele-
ment breaker—it forms a turn when being introduced in a helix or a strand.

The mutation site location also shows distinctive trend (Fig 4). There is almost linear correla-
tion between the mean of the absolute binding energy change and the probability (Eq (2)). Thus,
the probability of a mutation located at mutations site, both inWT and MT, to cause large
change of the binding free energy gradually increases: SUR! INT! RIM! SUP! COR.

These observation and the corresponding probabilities can be used to guide SAAMBE pre-
dictions. However, before proceeding further with these possibilities, we should analyze the
results presented in Figs 3 and 4. Essentially, four “flags” were identified with four associated
probabilities: residue type in WT and P(X! any), residue type in the MT and P(any! X),
mutation site in WT and P(Y,WT) and in MT and P(Y,MT). Therefore, a consensus scheme
must be developed in order to incorporate these quantities into the SAAMBE algorithm. Fur-
ther refinement of the classification scheme was done by altering the associated ΔΔGi for cases
for which there is no agreement between the four “flags”. For example, if a given mutation Q
! P in “k” case in sDB with experimentally determined |ΔΔGk| = 10kcal/mol and the mutation

Fig 3. Distribution of residue types (being asWT, left panel; being as MT, right panel) by "small/large effect" regions of experimentally obtained
change in binding free energy in sDB.On the x-axis: the probability of the particular type of residue substitution (WT on left panel, MT—on the right one) to
result in a large change in binding free energy. On the y-axis: the averaged absolute value of experimental ΔΔG provided with standard error of mean at an
error bar and the total number of cases across whole sDB. The actual data is presented in black color, while the orange one is based on the weighted
distribution of |ΔΔG| (see text for details).

doi:10.1371/journal.pcbi.1004276.g003
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sites are in COR in WT and in SUP in MT. From Figs 3 and 4 the corresponding probabilities
of causing strong effect are: P(Q! any) = 0.2, P(any! P) = 0.86, P(COR,WT) = 0.68 and P
(SUP,MT) = 0.56. Based on these probabilities, one expects that any mutation from Q will
have little chance to cause strong effect (P(Q! any) = 0.2), but the specific case of Q! P was
experimentally found to result in a large change (|ΔΔGk| = 10kcal/mol). It can be speculated
that this large effect is not caused by the WT residue type, Q residue, but because of the mutant
residue P and the location of mutation site. Because of that we will alter the corresponding
|ΔΔGk| with respect to each of the 4th flags by applying the following formula:

jDDGaltered
k jðforPisetÞ ¼

2

3
�
X4

j¼1;i<>j

Pj � jDDGkj; jDDGkj < 1

2

3
�
X4

j¼1;i<>j

ð1� PjÞ � jDDGkj; jDDGkj � 1

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð3Þ

where Pj stands for: P1 = P(Q! any), P2 = P(any! P), P3 = P(COR,WT), and P4 = P(SUP,
MT). These alterations are done for each entry in sDB and for each set of flags. In the entry “k”,
original |ΔΔGk| is larger than 1kcal/mol and therefore in the particular case considered above
the second row formula is applied. If the original experimental binding free energy change is
smaller than 1kcal/mol, the first row formula is applied. To further quantify the applied alter-
ations, we would like to point out that in the extreme case when all three probabilities are 0.5
(i.e. the initial statistical analysis of sDB shows that the type of mutation has equal chance to
cause large and small effect), applying Eq (17) will result in no alteration (no change).

The resulting set of |ΔΔGaltered| is termed altered dataset and subsequently was used to recal-
culate the probabilities P (Table 2 for residue types and Table 3 for the mutation location). The
results are shown in Figs 3 and 4 as well. These probabilities and classifications will be used to

Fig 4. Distribution of mutated residue location (WT, left panel; MT, right panel) by "small/large effect" regions of experimentally obtained change
in binding free energy in sDB.On the x-axis: the probability of theWT (left panel) and MT (right panel) residues being in the given location cause large
change in binding free energy. On the y-axis: the averaged absolute value of experimental ΔΔG provided with standard error of mean at an error bar and the
total number of cases across whole sDB. The actual data is presented in black color, while the orange one is based on the weighted distribution of |ΔΔG|.

doi:10.1371/journal.pcbi.1004276.g004

Predicting Binding Free Energy Change Caused by Point Mutations

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004276 July 6, 2015 9 / 23



improve the performance of SAAMBE method. Given a particular mutation (for example, Q
! P) and its location at the interface (for example COR in WT and SUP in MT) we calculate
the probability of the mutation to cause large effect as:

P ¼ PðP ! anyÞ þ Pðany ! AÞ þ PðCOR; WTÞ þ PðSUP; MTÞ
4

ð4Þ

Thus, if P� 0.5 the mutation is classified as a mutation expected to cause large change of
the binding free energy. Otherwise, the mutation is expected to cause a small change. Thus, the
final refinement of SAAMBE method is to take advantage of estimated probabilities. For each
entry in the tDB we calculated the average probability P and split the database into tDB_small
(P< 0.5) and tDB_large (P� 0.5). For each of subsets we calculated the change in binding free
energy (Eq (12)) and obtained the optimal coefficients of each energy terms in SAAMBE by
multiple linear regression analysis. This resulted in two sets of SAAMBE coefficients (Table 1).
For comparison we also provide the optimized weights and the correlation coefficient for the
total tDB as well (Table 1). Comparing the weight coefficients in Table 1, one can see that there
are some energy terms that are important for both subsets (such as EE, VE, SP, IE, entropy and
Interface). Most of the mutations in the sDB_small are non-interfacial (for more than 30% of
this subset the WT residue is located in the INT or SUR) and solvent exposed (~50% in RIM).
Based on the magnitude of the weight coefficients, one can speculate that the changes of the
binding free energy might be caused by the slight reorganization of the whole protein-protein
complex that is reflected in the DDSASA

Interface
component energy term as well as the change in nonpolar

component of salvation energy (SN). On the other hand most of the mutations in the
sDB_large are located at the interface (95% are in COR, 5% in SUP area). In addition to other

Table 2. The probability of residues type to cause small/large effect while being in WT/MT positions based on weighted absolute value of the
experimental change in binding free energy.

WT_Ncases P(X!any)_small P(X!any)_large MT_Ncases P(any!X)_small P(any!X)_large

A 88 0.58 0.42 923 0.64 0.36

C 7 0.86 0.14 45 0.58 0.42

D 112 0.49 0.51 68 0.49 0.51

E 194 0.53 0.47 68 0.47 0.53

F 44 0.61 0.39 88 0.64 0.36

G 96 0.27 0.73 59 0.31 0.69

H 40 0.53 0.48 46 0.57 0.43

I 52 0.58 0.42 52 0.44 0.56

K 201 0.65 0.35 80 0.43 0.58

L 133 0.34 0.66 63 0.43 0.57

M 25 0.76 0.24 50 0.52 0.48

N 158 0.68 0.32 56 0.50 0.50

P 99 0.70 0.30 42 0.19 0.81

Q 57 0.81 0.19 70 0.54 0.46

R 177 0.63 0.37 68 0.40 0.60

S 91 0.80 0.20 62 0.44 0.56

T 162 0.44 0.56 42 0.43 0.57

V 52 0.58 0.42 58 0.47 0.53

W 54 0.43 0.57 54 0.46 0.54

Y 199 0.30 0.70 47 0.51 0.49

doi:10.1371/journal.pcbi.1004276.t002
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energy terms, for the cases of sDB_large, the change in hydrogen bonds network and the
change in hydrophobicity also play significant roles. Thus, adding such features into the
SAAMBE protocol, namely having different weight coefficients in the SAAMBE formula for
mutations expected to cause small/large effect on the binding free energy change, increases the
correlation coefficient from 0.575 to 0.624 (see Table 1 and Fig 5).

Algorithm performance
To evaluate the performance of the SAAMBE method we analyzed six ROC parameters. The
results obtained by the SAAMBE algorithm were compared with those calculated by FoldX and
BeAtMuSiC methods for the same tDB. According to the Table 4 the number of true positive
predictions is twice as high for the SAAMBE as for the other two algorithms. The total number
of false predictions is much smaller for SAAMBE. This indicates that SAAMBE outperforms
FoldX and BeAtMuSiC by all six ROC parameters using tDB as a benchmark. In terms of num-
bers, SAAMBE benchmarking results in: sensitivity, or true positive rate, (0.87); NVP, or nega-
tive predictive value, (0.84); method accuracy (0.9); and MCC (0.84). This proves that
SAAMBE can predict with high accuracy not only the direction of the change in binding free
energy, but also its magnitude.

Table 3. The probability of residues location to cause small/large effect while being in WT/MT positions based on weighted absolute value of the
experimental change in binding free energy.

WT_Ncases P(Y,WT)_small P(Y,WT)_large MT_Ncases P(Y,MT)_small P(Y,MT)_large

COR 1013 0.34 0.66 875 0.34 0.66

INT 121 0.77 0.23 200 0.71 0.29

RIM 509 0.70 0.30 520 0.62 0.38

SUP 150 0.49 0.51 156 0.44 0.56

SUR 248 0.92 0.08 290 0.90 0.10

doi:10.1371/journal.pcbi.1004276.t003

Fig 5. Correlation between experimental and calculated with SAAMBE approach data of change in
binding free energy due to single pointmutations for tDB (grey dots) and the onewithin ±2SD (black dots).

doi:10.1371/journal.pcbi.1004276.g005
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Mutations involving special cases
SAAMBE method was developed and optimized to predict the change of binding free energy
for a broad range of mutation types. In this subsection we would like to address the question of
how SAAMBE protocol can handle special cases: a) when the bulky residue is substituted with
the small one; b) when the MT residue is Ala, which is typically used for protein “hot-spot” pre-
diction; and c) the ability to accurately predict the effect of mutations being in a particular loca-
tion. We will also compare our results with those delivered from FoldX and BeAtMuSic
methodologies (see Table 5).

“Large-to-small” residue substitution. For this analysis we consider large WT residues to
be R, F, W and Y and the set of small residues in MT comprised of A, G and S [24]. This results
in 173 cases in the tDB. SAAMBE shows the highest correlation coefficient (0.49) (Table 5). It
is interesting to note that although BeAtMuSiC method results in the same correlation coeffi-
cient as FoldX, the linear fits (slope and y-intercept) are very similar to those of SAAMBE.

Table 4. ROC parameters.

SAAMBE FoldX BeAtMuSiC

tn 239 292 235

fn 47 133 141

tp 320 192 175

fp 5 11 7

sensitivity 0.872 0.591 0.554

specificity 0.980 0.964 0.971

precision 0.985 0.946 0.962

NVP 0.836 0.687 0.625

accuracy 0.915 0.771 0.735

MCC 0.836 0.592 0.555

doi:10.1371/journal.pcbi.1004276.t004

Table 5. Performance of SAAMBE, FoldX and BeAtMuSiC in predicting of "large-to-small" and ALA-scanningmutation as well as the mutation in
specific location.

SAAMBE FoldX BeAtMuSiC

Large-to-Small (173) R 0.489 0.402 0.412

RMSD 1.429 1.500 1.492

y-Intercept 0.328 0.878 0.343

Slope 0.692 0.528 0.632

ALA-scanning (577) R 0.488 0.376 0.356

RMSD 1.295 1.374 1.386

y-Intercept 0.268 0.722 0.405

Slope 0.695 0.532 0.587

COR,SUP (807) R 0.461 0.273 0.305

RMSD 1.733 1.879 1.860

y-Intercept 0.351 1.580 1.197

Slope 0.813 0.223 0.544

RIM,SUR,INT (518) R 0.478 0.159 0.282

RMSD 1.009 1.134 1.103

y-Intercept -0.024 0.493 0.194

Slope 1.023 0.329 0.735

doi:10.1371/journal.pcbi.1004276.t005
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Ala substitutions. Alanine is a small hydrophobic residue that is typically used to identify
“hot-spots” of proteins and protein-protein interactions. Thus one may speculate that if a resi-
due is mutated to Ala and causes large change in binding free energy, the WT residue plays
important role in the binding process. For the 577 cases in the tDB involving the mutations to
Ala, SAAMBE again results in the best correlation coefficient (0.49) comparing to FoldX (0.38)
and BeAtMuSiC (0.36). Location of the mutation site.

For this type of analysis we considered two sets of locations where mutation can occur. The
first location set is made of COR and SUP areas and represents the most buried part of the
interface. As seen from Fig 4 mutations located in these two regions are expected to cause large
change in the binding free energy. The second location set is made of SUR, INT and RIM
regions. These regions are much more accessible from the water phase as compared with the
COR and SUP and it is expected that mutations occurring in the second region will cause small
changes of the binding free energy (Fig 4). The results of the benchmarking are shown in
Table 5. It can be seen that SAAMBE algorithm outperforms FoldX or BeAtMuSiC.

Time of calculations
One of the main considerations in developing SAAMBE algorithm was the requirement of the
predictions to be made in reasonable time. We tested the time of the algorithm execution for
all entries in sDB. The average time was 0.21953 min for one mutation calculation
(SE = 0.00316min) when employing 16 nodes for WT- and MT-complexes minimization and
single node for the rest of calculation on Clemson University Palmetto Supercomputer (http://
citi.clemson.edu/palmetto/). We also analyzed the effect of particular parameters such as the
number of residues in the complex and the largest dimension for the WT-complex on the time
of calculations. It was found that the shape of the protein has no impact on the time of calcula-
tions. However the total number of residues in the complex affects the total calculation time
(Fig 6). One can see that the dependence of time of algorithm execution vs the total number of
residues in the WT-complex can be described with polynomial (second power) function
(R = 0.99, 81 points). The free coefficient is 5.59E-2 min, the linear and quadratic weights are
-5.13E-5 min and 1.18E-6 min respectively.

Conclusions
In this work we described a development of a method, the SAAMBE method, to predict the
binding free energy changes caused by single mutations. In developing the method, we were
particularly interested in using structural information in conjunction with other types of infor-
mation. This was motivated by the goal to deliver not only correct predictions of the energy
changes, but also to be able to offer an explanation of the reason for the effect. Thus, the algo-
rithm has structure-related components, such as hydrogen bonds, interface area, and interface
area change. In addition, the MM/PBSA-based components indicate the importance of the
direct interactions to the predicted energy changes. Thus, for any predictions, one can qualita-
tively describe what the major driving effects are. Furthermore, these energy changes can be
compared with experimentally observed quantities or with observation delivered from more
rigorous methods as FEP or IT.

The essential component of this investigation and development was the treatment of the
plausible conformational and ionization changes induced by the binding. It is well understood
that the binding introduces conformational and ionization changes, in some cases very small
(almost rigid body binding like lock and key), in other cases large conformational changes
(induced fit mechanism) [37–40]. Some of these changes occur far away from the binding inter-
face and typically involve surface groups [37–40]. However, modeling such conformational
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changes is not trivial, especially if one aims at relatively fast predictions. Our attempts to model
the plausible conformational changes induced by the binding via relatively short MD simula-
tions were unsuccessful. Perhaps longer MD simulations complemented with enhanced sam-
pling techniques are needed, but this is computationally too costly for large-scale predictions.

Instead of explicit modeling of conformational and ionization changes induced by the bind-
ing, we extend our previous approach to model them in electrostatic calculations via amino
acid specific dielectric constant [36]. The motivation is based on the understanding that
charged residues have the largest effect on electrostatic potential via their charges and ability to
adopt different rotamers in response to the electrostatic field or to change their ionization
states. Therefore, charged residues should be modeled with a large dielectric constant. Simi-
larly, polar residues are the second in the list, since they have strong dipole moment and can
participate in various hydrogen bonds. The rest of the amino acids, mostly hydrophobic resi-
dues, do not have many polar atoms and are typically buried in protein interior (and therefore
packed and not able to sample different rotamers) and should be modeled with low dielectric
constant [36] (for more details see Figs A and B in S1 Text). Indeed, the development reported
in this work confirmed the applicability of such an approach and significantly improved the
performance of SAAMBE method. Using DelPhi capability to assign different dielectric con-
stants for different amino acids, we demonstrated that charged, polar and other residues should
be modeled with dielectric constants 9, 8, and 7, respectively. This proves to be very effective
and computationally inexpensive approach to mimic conformational flexibility in the frame-
work of continuum electrostatics.

The SAAMBE method is a formula made of linear combination of terms: energy, empirical
or statistical terms. The quantities or the physical phenomena described by some of them par-
tially overlap, which can be considered as double-counting. However, the statistical analysis (p-
values in Table 1) indicates that their values are acceptable (for more details see Tables A-D in

Fig 6. The dependence of the mean time of the algorithm execution from the total number of residues
in theWT-complex.

doi:10.1371/journal.pcbi.1004276.g006
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S1 Text). Thus, while there is partial overlap for some terms, because of the simplifications
made in modeling these phenomena, different terms capture different components of the pro-
cess and thus they are almost independent.

The weight coefficients in the SAAMBE method were optimized against experimentally
determined binding free energy changes of the tDB set. Therefore, the prediction accuracy
depends on the training dataset and cases to be tested. It is anticipated that if the newly identi-
fied cases to be predicted by SAAMBE protocol do not deviate much from the cases in sDB/
tDB, the predictions will be quite accurate. However, it is quite possible as well, that a new case
is very different from the cases in sDB/tDB and then the prediction may not be accurate. We
plan to continue enriching sDB/tDB and re-adjust the weight coefficients (if needed) of
SAAMBE method and taking advantage of the computational cost to implement SAAMBE
into a webserver.

Methods

Construction of data sets
We compiled a dataset, containing experimentally measured values of changes in binding free
energy of protein-protein complexes due to single amino acid substitutions, by combining
three sets of data mentioned in the following references: [25], [23] (Ala scanning database),
and Skempi database [17]. To avoid the redundancy, all entries in the initially combined data
set were screened to identify identical cases and only one representative was retained in the
dataset. Then the dataset was further purged with respect to the experimental value of the bind-
ing free energy change. Thus, when several experimental values were available for the same
mutation in the same protein-protein complex, and the experimental data variation was
smaller than 1.5 kcal/mol (the threshold was empirically selected), the entries were fused and
the averaged value for the change of the binding free energy was used. If the variation was
larger than 1.5kcal/mol, the entry was deleted. Furthermore, mutations located in structurally
disordered protein segments (missing coordinates in the PDB file) were removed from the
dataset as well.

As a result, the final compiled dataset was comprised of 81 different proteins with the total
of 2041 single point mutations. This dataset will be used for the statistical analysis of experi-
mental data and will be referred to as sDB hereafter. However, to construct a dataset for training
and testing, we further pruned the entries to remove all structures having heteroatoms (crystal-
lographic water molecules were not considered heteroatoms). The motivation was that while
some compounds listed in the heteroatoms section of PDB file may be biologically important,
the vast majority of them are crystallographic artifacts (as ions for example). Thus, the resulting
pruned database (tDB) consists of 1326 single point mutations from 43 proteins. Both datasets
are available for download from (compbio.clemson.edu/databases/sDB,tDB.xlsx).

Location of mutated residues
We assigned the location of mutated residues in the protein-protein complex based on five cat-
egories (COR, SUP, RIM, INT and SUR) as previously described [41] by computing the relative
solvent accessible surface area (SASA) (the ratio between SASA of a residue in protein and in
water (rSASA); rSASA = 1 corresponding to totally exposed residue in the protein) of the resi-
due in the monomeric (rSASAm) and complex (rSASAc) states, as well as their mutual differ-
ence (ΔrSASA = rSASAm − rSASAc). Thus residues are considered to be at the interface if they
are in COR, SUP and RIM regions; and are away from the interface if they are in SUR and INT
regions. RIM and SUR locations indicate that the residue is exposed to the water solvent when
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the complex is formed. The parameters of each location types are provided in Table 6. The sol-
vent accessible surface area of a residue was calculated with NACCESS software [42].

Simulation protocol
The initial crystal structures of the protein-protein complexes were obtained from the Protein
Data Bank (PDB) [43]. Biological units were retrieved and only chains that belonged to the
binding partners were retained for further calculations. Since the initial crystal structures
might have regions with missing coordinates, we used the profixmodule from Jackal package
to rebuild these regions [44]. It was done using default parameters and selecting “heavy atoms
model” option. At the next step we applied the scapmodule from the same Jackal package to
substitute wild-type residue with the mutant to generate the mutant (MT)-complex. To elimi-
nate inconsistency that might be associated with applying scap software we also substituted
wild-type residue with the same residue using scap to generate the wild-type (WT)-complex.
To run scap we applied the following parameters: (a) CHARMM22 force field parameters, (b)
large side-chain Jackal rotamer library was selected for the side-chain refinement, and (c) pre-
dictions were made applying the scap option utilizing 3 initial structures. Once the WT and
MT structures were generated, the missing hydrogen atoms were added to the structures with
VMD software (version 1.9.1, topology file from CHARMM27 force field) [45]. Both WT- and
MT-complexes were subjected for independent structural refinement by NAMD (version 2.9,
CHARMM27 force field parameters) [46]. For the minimization procedure we used General-
ized Born implicit solvent model (GBIS), implemented in NAMD. The dielectric constant of
the implicit solvent was set to be 80, and 1 for the protein (various protein dielectric constants
were tested—see Result section). We used quick N-steps (optimum value for N was found to be
5000, see Result section) conjugate gradient algorithm implemented in NAMD to obtain the
relaxed configuration with optimized geometric and steric clashes. The energy-minimized
structures of WT and MT complexes were used to calculate all energy components for both the
complex (bound molecules) and monomers (unbound molecules). Typically such an approach
is refereed as to rigid body approach.

Binding energy calculations
The binding free energy was calculated based on modified MM/PBSA method combined with
knowledge-based energy terms. The individual energy terms are combined via weighted linear
function, typically referred as to linear interaction energy (LIE) formula or scoring function.
Here we chose to term the method as Single Amino Acid Mutation based change in Binding
free Energy (SAAMBE) method. It has two major components: (a) energy components calcu-
lated with MM/PBSA technique and (b) knowledge-based terms delivered from statistical anal-
ysis of entries in sDB. In developing the SAAMBE protocol, we first define the terms (E) that

Table 6. Parameters of the residues location types in the protein-protein complex.

Location Interface Solvent exposure rSASAm rSASAc ΔrSASA

COR Yes No > 25% < 25% > 0

SUP Yes No < 25% < 25% > 0

RIM Yes Yes any > 25% > 0

INT No No any < 25% = 0

SUR No Yes any > 25% = 0

doi:10.1371/journal.pcbi.1004276.t006
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will be used in SAAMBE protocol as follows:

DDE ¼ ðEMT

AB
� EMT

A
� EMT

B
Þ � ðEWT

AB
� EWT

A
� EWT

B
Þ ð5Þ

where “AB” stands for the protein complex and “A” and “B” notations correspond to the
unbound monomers. The superscripts WT and MT refer to wild type and mutant, respectively.
Thus, Eq (5) provides the difference of the contribution (ΔΔE) of a particular energy term E to
the change of the binding free energy caused by a mutation. It should be reiterated that
unbound monomer structures were taken from the complex, thus no structural changes are
considered to be caused by the binding. In addition, it should be clarified that these terms (E)
could be potential energies as in case of MM/PBSA delivered terms, or could be an estimation
of the entropy change associated with the binding, or could be a term delivered from statistical
analysis, for example. Thus their absolute values and dimensionalities vary drastically, but
these differences are absorbed by the weight coefficients in the SAAMBE formula. Since weight
coefficients in SAAMBE formula are optimized to result in best match against experimentally
determined binding free energy changes, the quantity delivered by SAAMBE formula is termed
binding free energy change as well (ΔΔG). Below we describe separately the MM/PBSA and the
knowledge-based developments of SAAMBE method.

The MM/PBSA-based component of the SAAMBEmethod
The MM/PBSA-based component of the SAAME method is a linear combination of five
weighted energy terms:

DDGMM=PBSA ¼ w0 þ w1 � DIE þ w2 � DDEE þ w3 � DDVE þ w4 � DDSP þ w5 � DDSN ð6Þ

Where ΔIE is the change of the total internal energy of complexes. Other energy terms are:
ΔΔEE is the change of Coulomb energy, ΔΔVE is the change of van der Waals (vdW) energy,
ΔΔSP and ΔΔSN are the changes of polar and nonpolar components of solvation energy calcu-
lated with Eq (5). wi are the weight coefficients which will be optimized against experimental
data in tDB. Below we describe the details of calculations of each energy term in Eq (6).

ΔIE component was calculated as the energy difference of all internal energy terms (bonded
potential, angle potential, and torsion potentials) of the WT and MT complexes. Strictly speak-
ing, the change of the internal energy should be calculated with Eq (5), but since the bound and
unbound structures in SAAME protocol are the same, using Eq (5) will result in zero change of
the internal energy. Because of that ΔIE is taken as the difference of the internal energy of com-
plexes only. Obviously this is inconsistent with MM/PBSA methodology and is uninformative
thermodynamic quantity, but was accepted since the benchmarking against experimental data
showed that adding such energy term in Eq (6) improves the quality of the predictions (see
Results section). The internal energy was calculated with NAMD.

ΔΔVE were calculated with the NAMD program using the WT and MT complexes and sep-
arated monomers to deliver the terms described in Eq (5). It was done by taking the structures
on the monomers from already energy-minimized structure of the corresponding complex.
Then, each complex, WT and MT, and each separate monomer, WT and MT, were subjected
to one step minimization with NAMD to obtain the corresponding vdW energies.

ΔΔEE and ΔΔSP energies were calculated with DelPhi software [47] with the following
parameters: linear Poisson-Boltzmann solver, scale 1 grids/Å, perfil 70% and external dielectric
constant 80. The choice of the value of internal dielectric constant requires explanation. As it
was mentioned above, SAAMBE protocol is rigid body protocol, i.e. the structures of bound
and unbound monomers are identical. However, binding is expected to induce small or large
structural changes, which are not taken into account in the model explicitly. In the past, we
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demonstrated that the effects of structural changes on the electrostatic energy can be mimicked
by appropriate dielectric constant by assigning specific dielectric constant values to different
protein regions [48]. Although our previous analysis was done for folding free energy changes
caused by mutations [48], the same principle should be valid for protein binding free energy
modeling. Thus, in the development of SAAMBE protocol, the protein interior was considered
to be inhomogeneous and inhomogeneity was modeled via three different dielectric constants
(ε1, ε2 and ε3). Thus all charge groups (Asp, Glu, Lys, Arg and His) were modeled withε1, all
polar groups (Ser, Thr, Asn, Gln and Tyr) with ε2 and the rest of amino acids with ε3. The val-
ues of these residue-specific dielectric constants were systematically varied as discussed in the
Results section. DelPhi allows for such multi-dielectric modeling [49]. The polar component of
solvation energy was calculated via “corrected reaction field energy”module of DelPhi, for
both the complexes and separated monomers and then applying Eq (5) to obtain the difference
(ΔΔSP). The Coulombic energies were also calculated with DelPhi for the complexes and sepa-
rated monomers and the applying Eq (5) to deliver ΔΔEE. It should be mentioned that the cal-
culated ΔΔEE is not the standard ΔΔEE in MM/PBSA approaches. It is well-known that
electrostatic interactions between covalently bound atoms are already taken into consideration
via internal energy terms and should not be part of ΔΔEE (this is taken care in all MD pack-
ages). However, taking ΔΔEE from the NAMD output resulted in worse performance of
SAAMBE method (as judged by fitting the predictions against experimental data) and this was
the reason to accept such an inconsistency.

The nonpolar component of the solvation energy was calculated via linear formula with
respect to SASA of the protein and protein complexes (Eq (7)). The SASA was calculated with
NACCESS software [42] and the corresponding coefficients in Eq (7) were re-distributed in Eq
(6) as: α takes part in the weight w5 while β is absorbed in the free coefficient w0.

SN ¼ a � SASAþ b ð7Þ

The knowledge-based components of the SAAMBEmethod
The knowledge-based components were calculated according to the formula:

DDGKB ¼ w6 � DDSþ w7 � DDHYDRþ w8 � DHBþ w9 � InterfaceMT þ w10 �
DDSASA
InterfaceMT

ð8Þ

where five additional terms were taken into account: entropy (S), hydrophobicity (HYDR),
hydrogen bonds (HB), interface area of the MT-complex (InterfaceMT), and the change of the
interface area caused by the mutation normalized to the total interface of the MT-complex
( DDSASA
InterfaceMT).

The entropy of the residues in complex and in the corresponding monomers was estimated
based on an empirical formula developed in this work. It is based on the maximal number of
side chain rotamers (R) taken from Ref. [50]. The maximum number of rotamers for each resi-
due is provided in Table 7. However, we assume that the ability of given amino acid side chain
to sample its maximum number of rotamers will depend on its exposure to the surface, i.e.

Table 7. The maximum number of rotamers and hydrophobicity of the residues.

A C D E F G H I K L M N P Q R S T V W Y

R 1 3 18 54 18 1 36 9 81 9 27 36 2 108 81 3 3 3 36 18

H 0.2 -0.2 1.2 1.01 -1.1 0 0.57 -0.3 1 -0.6 -0.2 0.4 0.5 0.6 0.8 0.1 0.1 0.1 -1.9 -0.9

doi:10.1371/journal.pcbi.1004276.t007
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fully exposed residue with relative SASA (rSASA) equal to one will be able to access all rota-
mers, while completely buried one (rSASA = 0) will be completely rigid adopting a particular
rotamer. Having in mind that entropy is proportional to the logarithm of states (in our case
rotamers), the corresponding formula for this particular residue is:

S ¼ ln½rSASA � ðR� 1Þ þ 1� ð9Þ

Eq (9) is applied to the complexes and individual monomers and the Eq (5) is used to deliver
ΔΔS.

The term accounting for the hydrophobicity was modeled using Wimley-White (H) hydro-
phobicity scale [51] (see Table 7) (different hydrophobicity scales were tested, but were found
to perform worse in benchmarking of SAAMBE protocol against experimental data). The
empirical formula was developed in this work assuming the following: an amino acid contrib-
utes to the hydrophobicity depending on its rSASA. For example, a residue being exposed to
the water phase will have large contribution to HYRD while practically zero if buried inside the
protein. Having in mind that Hj indexes have opposite signs for hydrophobic and hydrophilic
amino acids, such a formulation qualitatively describes the physical basis of the hydrophobic
effect. The corresponding formula is:

HYDR ¼
XN
j¼1

Hj � rSASAj ð10Þ

As above, the formula is applied to the corresponding complexes and separate monomers and
then Eq (5) to deliver ΔΔHYDR.

The impact of the mutations on the formation of hydrogen bonds (HB) was taken into

account as well. We computed the number of HB for WT (
X

HBWT
A�A and

X
HBWT

B�B) and

MT (
X

HBMT
A�A and

X
HBMT

B�B) monomers and at the same time the number of hydrogen

bonds that were formed between monomers in the corresponding complex

(
X

HBMT
A�B and

X
HBWT

A�B). The first class represents the intra-monomer bonds, and the sec-

ond inter-monomer bonds. It is assumed that intra-monomerHB change resulting in moreHB
in the mutant, ΔHB> 0, will make MT monomers more stable than the WT, and thus might
decrease binding free energy. In contrast, ΔHB>0 of inter-monomer HB is expected to
increase binding affinity of the MT compared with WT. Because of such considerations, the
effect ofHB on the binding free energy change was calculated as:

DHB ¼ ð
X

HBMT
A�B �

X
HBMT

A�A �
X

HBMT
B�BÞ � ð

X
HBWT

A�B �
X

HBWT
A�A �

X
HBWT

B�BÞ ð11Þ

where the HB was counted as cases involving two atoms oxygen acceptor and hydrogen (except
the nonpolar Cα and Cβ hydrogen atoms, HA and HB) atoms located at distance shorter than
2.4 Å. Since the nitrogen acceptor is much weaker than oxygen, for simplicity it was not consid-
ered. Similarly the geometry of the hydrogen bond was not taken into consideration. Only
polar (S, T, N, Q, Y) and charge (R, H, K, D, E) amino acids were taken into account.

Our previous work [24] indicated that the surface area of the interface in the MT-complex
is an important factor in predicting binding free energy changes. Because of that, it is included
in this protocol as well and was calculated as the difference in SASA of complex and the sum of
each of its parts.

ΔΔSASA was calculated with Eq (5) as the difference in SASA of the complex and mono-
meric states of MT andWT.
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Combining MM/PBSA-based and knowledge-based terms, the final
SAAMBE formula is

DDG ¼ DDGMM=PBSA þ DDGKB ¼ w0 þ w1 � DIE þ w2 � DDEE þ w3 � DDVE þ w4 � DDSP þ w5 � DDSNþ

þw6 � DDSþ w7 � DDHYDRþ w8 � DHBþ w9 � InterfaceMT þ w10 �
DDSASA
InterfaceMT

ð12Þ

Receiver operating characteristics (ROC)
In order to quantify the performance of our algorithm and compare it with other methods we
evaluated the calculated and experimental values of change in binding free energy due to single
point mutation and assigned one of four flags for each entry in the tDB: true positive (tp), true
negative (tn), false positive (fp), or false negative (fn). The explanation of the assignment proce-
dure is provided in the Table 8.

The quality of the predictions was described by six parameters: accuracy, precision, sensitiv-
ity, specificity, negative predictive value (NPV) and Matthews correlation coefficient (MCC)
[52,53]:

accuracy ¼ tn þ tp
tnþ tpþ fnþ fp

ð13Þ

sensitivity ¼ tp
tpþ fn

ð14Þ

specificity ¼ tn
tnþ fp

ð15Þ

presicion ¼ tp
tpþ fp

ð16Þ

NPV ¼ tn
tnþ fn

ð17Þ

MCC ¼ tp � tn þ fp � fnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðtpþ fpÞ � ðtpþ fnÞ � ðtnþ fpÞ � ðtnþ fnÞp ð18Þ

Speed performance
One of the goals of SAAMBE development is to develop fast algorithm capable of large-scale
calculations. Thus, the execution time is an important component of the investigation. The exe-
cution time was monitored as a function of the number of amino acids in the corresponding
complex (sequence length) and as a function of the geometrical shape of the complex (moni-
tored via the largest dimension of WT complex).

Table 8. Four outcomes of calculation based on the ability of the algorithm to predict the ΔΔG.

true false

positive |ΔΔGcalc|�1.5 & |ΔΔGexp|�1.5 & sing(ΔΔGcalc) = sing(ΔΔGexp) |ΔΔGcalc|�1.5 & |ΔΔGexp|<0.5

negative |ΔΔGcalc|<0.5 & |ΔΔGexp|<0.5 |ΔΔGcalc|<0.5 & |ΔΔGexp|�1.5

doi:10.1371/journal.pcbi.1004276.t008
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Statistical analysis
To verify the agreement between experimental and predicted values of the change of binding
free energy due to single point mutation we calculated the Pearson correlation coefficient. In
the paper all reported correlation coefficients were significantly different from zero with p-
value smaller than 0.01.

We also performed five-fold cross validation test for the tDB. It was done by randomly par-
titioning the tDB into five subgroups of approximately equal size. Each combination of four
subgroups was used for training, while the fifth—for testing the model. Then correlation coeffi-
cients were averaged over different cross-validated sets.

Supporting Information
S1 Text. A—Distribution of the RMSD within charged (CRG: Arg, Asp, Glu, Hse, Lys,
blue); polar (PLR: Asn, Gln, Ser, Thr, Tyr, orange) and other (OTR, green) groups of resi-
dues. RMSD was estimated based on the deviation of the last heavy atom in a side chain of the
residue in the protein-protein complex and in unbound part. Both protein-protein complex
and its each partner were minimized for 5000 steps in NAMD. The inserted graph illustrates
the average RMSD of the residues within CRG, PLR and OTR groups for WT (dark grey) and
MT (light grey) structures. The analysis was performed for all entries in tDB (see manuscript
for details); B–The distribution of the change in RMSD of 1) CRG and PLR residues (orange)
and 2) CRG and OTR residues (green) for WT (solid line, open circles) and MT (dash-dot line
and solid circles) structures calculated for each case in tDB; Table A—The standardized
weights of significant energy terms in predicting the change in binding free energy due to single
amino acid substitution; Table B—Variance Inflation Factor calculated based on the Pearson’s
correlation coefficient; Table C—Variance Inflation Factor calculated based on the Spearman’s
correlation coefficient; Table D—Variance Inflation Factor calculated based on the Kendall’s
correlation coefficient.
(DOCX)
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