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Abstract

Resection of brain tumors is followed by chemotherapy and radiation to ablate remaining 

malignant cell populations. Targeting these populations stands to reduce tumor recurrence and 

offer the promise of more complete therapy. Thus, improving access to the tumor, while leaving 

normal brain tissue unscathed, is a critical pursuit. A central challenge in this endeavor lies in the 

limited delivery of therapeutics to the tumor itself. The blood-brain barrier (BBB) is responsible 

for much of this difficulty but also provides an essential separation from systemic circulation. Due 

to the BBB’s physical and chemical constraints, many current therapies, from cytotoxic drugs to 

antibody-based proteins, cannot gain access to the tumor. This review describes the characteristics 

of the BBB and associated changes wrought by the presence of a tumor. Current strategies for 

enhancing the delivery of therapies across the BBB to the tumor will be discussed, with a 

distinction made between strategies that seek to disrupt the BBB and those that aim to circumvent 

it.
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Management of most primary brain tumors includes maximal safe resection or biopsy 

followed by radiation and chemotherapy to target the remaining and potentially invasive 

tumor cells. However, delivering effective adjuvant treatment to these residual cell 

populations without damaging physiological brain tissue is a major challenge. One critical 

obstacle to effective treatments is the blood-brain barrier (BBB). This dynamic structure 

protects the CNS from environmental toxins and mediates physiological responses, 

effectively isolating the brain from the systemic circulation. Although many of the 

constituent cells and molecules of the BBB manifest throughout the body, in the brain they 

are combined into a unique construction that severely restricts entry into the brain.
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Improved drug delivery stands to enhance existing treatments, mediate tumor recurrence, 

and provide an opportunity to therapeutically target tumors not amenable to resection. Thus, 

the motivation to enhance drug delivery is powerful and has led to the development of 

diverse methodologies to target and evade the BBB. In this review, we discuss normal BBB 

physiology and pathological changes wrought by tumors, and detail therapeutic methods to 

disrupt, modulate, and circumvent the BBB.

Blood-Brain Barrier and Tumor-Associated Changes

The BBB refers to both passive and active mechanisms used by the brain endothelium to 

regulate access to the brain. This barrier is modulated in the context of brain tumors, 

evidenced by the penetration of Gd through the BBB on MRI of patients with 

glioblastoma.98 Gadolinium enhancement increases as a function of WHO grade of 

astrocytoma, suggesting that BBB dysfunction is related to increasing histological grade in 

astrocytomas.66 Although BBB dysfunction is observed in many gliomas, the disruption is 

often heterogeneous and the vasculature remains grossly intact in brain regions where 

infiltrating cells are found, underscoring the need for tumor-specific methods to bypass the 

BBB.123 In this section we review the cellular structure of normal BBB and the impact of 

brain tumors on BBB coherence.

Endothelial Cells, Tight Junctions, and Extracellular Matrix

The BBB exists as a selective barrier formed by tight junctions between cerebral capillary 

endothelial cells, and is a critical regulator of brain homeostasis96 (Fig. 1). Endothelial cells 

in the cerebral vasculature share properties with peripheral endothelial cells but also have 

important differences. Small gaseous molecules such as O2 and CO2 can diffuse through the 

lipid membranes of the BBB, as can small lipophilic molecules. However, the BBB tightly 

controls homeostasis by exclusion of harmful xenobiotics. One unique feature of brain 

endothelial cells is the existence of specific transport systems that regulate the entry of 

compounds necessary for brain metabolism, and chief among these are ATP-binding 

cassette (ABC) transporters. 12,52 BBB endothelial cells also have a lower number of 

endocytic vesicles and increased number of tight junctions, limiting transcellular and 

paracellular flow. Additionally, a host of intra- and extracellular enzymes provide further 

resistance by metabolizing substances ranging from peptides to toxic compounds.34

Tight junctions—the links between capillary endothelial cells—in the brain are more 

complex than those found in peripheral tissues and serve to prevent paracellular diffusion. 

Two critical components of these tight junctions are occludins and claudins. Occludins are 

60- to 65-kD proteins involved in tight junction regulation that are capable of binding zona 

occludens protein 1 (ZO-1).129 Claudin-3, claudin-5, and potentially claudin-12 contribute 

to the BBB’s restriction of small ions;125 other key components include ZO-1, ZO-2, ZO-3, 

cingulin, and 7H6 (Fig. 2).

Wolburg et al. found that a key component of BBB tight junctions, claudin-3, is lost in 

glioblastoma.126 This finding implicated claudin-3 as an effector in the leakiness of 

glioblastoma vessels. There is further evidence implicating claudin-1 loss in tumor 

microvessels, as well as downregulation of claudin-5 and occludin in hyperplastic 
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vasculature. These perturbations result in a phenotypic change in BBB function due to leaky 

tight junctions and hyperpermeable endothelial cells.70

The extracellular matrix (ECM) is also modulated by tumors. Rascher et al. demonstrated 

that agrin, an important component of the BBB basal lamina, is absent if claudin-1, 

claudin-5, and occludin are downregulated.95 The authors also noted that loss of agrin 

correlated with upregulation of tenascin, an ECM molecule not normally expressed in brain 

vessels. Although the specific mechanisms underlying alterations in tight-junction and ECM 

components remain unclear, these correlative studies suggest some phenotypic relationship.

Astrocytes

The neurovascular unit is formed by endothelial cells surrounded by basal lamina and 

astrocytic endfeet. BBB maintenance is orchestrated by astrocytes, which serve as a cellular 

link to neurons. From studies of astroglial-endothelial co-culture, a number of receptors, 

transporters, and ligands have been identified that are involved in the bidirectional induction 

involved in BBB maintenance.2

Aquaporin-4 (AQP4) is an aquaporin water channel that is believed to have an important 

role in glioblastoma-related edema. Astrocytes express AQP4 and Warth et al. found that 

AQP4 redistribution is correlated with loss of agrin in cerebral capillary basal laminae in 

human glioblastoma. The authors reported that the distribution of AQP4 shifted from the 

glial membrane in contact with mesenchymal space to cover the entire surface of glioma 

cells.118 In normal astrocytes, AQP4 is arranged as orthogonal arrays of particles, but this 

array arrangement is lost in glioblastoma. The functional consequence of this loss of 

astrocyte polarization is yet unknown, but the strong evidence for the role of astrocytes in 

glioblastoma makes this an important topic for further investigation.

A recent study by Watkins et al. used a mouse model to demonstrate that glioma cells 

displace astrocytic endfeet from their position alongside endothelial cells. This is a 

significant breach of the BBB that disrupts communication between the astrocytes and 

vasculature. Glioma cells were able to co-opt regulation of vascular tone. The authors 

demonstrated that single glioma cells were sufficient to produce local BBB opening.119 A 

study by Ndoum et al. demonstrated disruption of the astrocyte–endothelial cell association 

in intratumoral vessels in the enhancing regions of high-grade gliomas. Moreover, the 

authors found that low-grade gliomas, as well as the nonenhancing regions of high-grade 

gliomas, displayed intact astrocyte–endothelial cell relationships, as would be observed in 

unperturbed BBB.82

Pericytes

Cerebral pericytes are an additional component of the BBB that occupy the perivascular 

space. In triculture experiments with endothelial cells and astrocytes, capillary-like 

structures are realized. Endothelial cells that form these structures in the presence of 

pericytes demonstrate resistance to apoptosis, supporting a stabilizing function of pericytes 

in angiogenesis.95 Further studies recapitulated the pericyte role in vascular tone, stability, 

repair, and angiogenesis,64 as well as in modulation of astrocyte function.110
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Abnormal pericyte distribution has been observed in established tumors.78 Given that brain 

pericytes can support BBB function through transforming growth factor-β production, a role 

may exist for pericyte loss in glioma-related BBB dysfunction.31 A more general role for 

pericytes in tumor vessel formation was highlighted by the discovery that glioblastoma stem 

cells can differentiate into pericytes during angiogenesis.25

P-Glycoprotein

A major player in maintaining the integrity and polarity of the BBB is through an efflux 

pump known as P-glycoprotein (P-gp). This 170-kD transmembrane protein belongs to the 

ABC transporter family and is encoded by the ABCB1 (or MDR1) gene.6 On the BBB, P-gp 

is localized on the apical membrane that facilitates transport in a unidirectional 

manner.38,112 The expression pattern of P-gp suggests that its normal physiological role is to 

protect the body from xenobiotic compounds by effluxing cytotoxic molecules into luminal 

spaces for elimination. A characteristic feature of P-gp is broad substrate specificity. A 

partial list of substrates in relation to CNS tumors is summarized in Table 1.

In addition to the normal physiological role of P-gp, overexpression of P-gp is a feature 

common to many multidrug-resistant tumors.55,85 P-gp expression was demonstrated in 

glioma, and expression levels were correlated with multidrug resistance and tumor 

grade.44,68,74 In relation to the BBB, P-gp activity is disrupted at the necrotic core of 

glioblastoma but preserved at the tumor border.28 This is clinically significant for 

glioblastoma following resection, because residual border cells with an intact barrier and 

potential P-gp overexpression limit drug uptake and often relapse into larger and more 

aggressive tumors.26

Therapeutic Implications

Early efforts to increase drug delivery to the brain have focused on disruption of key cellular 

components. However, disruptive efforts have become more refined and are joined by 

efforts to circumvent and modulate the BBB. In this section we detail current efforts in each 

of these therapeutic strategies.

BBB Disruption

Osmotic Disruption—The concept of hyperosmolar BBB disruption was first reported by 

Rapoport et al. in 1972.93 Following delivery of the hyperosmotic agent, water leaves 

endothelial cells, resulting in shrinkage and tight-junction dysfunction, leading to increased 

permeability of the BBB allowing for a therapeutic window of several hours.94 A variety of 

substances have been used as osmotic disruptors of the BBB, but mannitol has been most 

commonly used for this purpose.1,13,17,92 Studies suggest that this method increases the 

concentrations of various chemotherapeutic agents in the brain up to 90-fold.124 

Furthermore, in a 1991 study of 30 patients with primary CNS lymphoma, BBB disruption 

via mannitol and cyclophosphamide before irradiation improved mean survival from 17.8 

months to 44.5 months compared with controls receiving radiotherapy alone.83

There exists some debate regarding the effectiveness of this method due to conflicting 

reports about its differential effect on BBB permeability. Studies in multiple animal models 
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reported that hypertonic solutions did not selectively disrupt the BBB local to the 

tumor.42,80,130 The increase in BBB permeability in a nonselective manner is problematic 

and raised concerns of systemic toxicity throughout the CNS.58 Nonetheless, recent studies 

support the method’s safety and efficacy in humans.19,32 More work is needed to better 

understand the potential therapeutic value of this strategy.

MRI-Guided Focused Ultrasound—The feasibility of focused ultrasound (FUS) to 

disrupt the BBB was first demonstrated more than 10 years ago.48 Subsequent studies have 

confirmed FUS as a valuable method to introduce focal and transient BBB disruption. 46,47 

This technique has several advantages over other approaches because it is readily repeatable, 

noninvasive, and able to disrupt the BBB in a targeted way. Studies suggest that FUS may 

increase cerebrovascular permeability by producing shear stress in cells or by activation of 

signaling pathways involved in the regulation of permeability. 41,51,115,116 The disruption of 

tight junction proteins by FUS may also contribute to this method’s mechanism of 

action.104–106

The technique can be used in conjunction with intravenously administered microbubbles to 

lower the ultrasound energy required to induce BBB disruption.48 Nonhuman primate 

studies have shown that microbubble-enhanced FUS can successfully induce local BBB 

opening with minimal side effects.73,75,114 The safety of FUS therapy is promising as it is 

not associated with significant tissue damage.10,49,76 The use of MRI with FUS allows for 

the targeting and evaluation of BBB opening,48 and several groups have developed methods 

that aim to monitor acoustic emissions from microbubbles in real time.7,53,57

Although this approach is in the preclinical phase, it is of high clinical relevance as various 

FDA-approved chemotherapy drugs such as doxorubicin, carmustine, trastuzumab, and 

temozolomide have been successfully introduced across the BBB through this 

approach.8,71,77,122 Focused ultrasound has also been combined with nanoparticle platforms 

to enhance diagnostic and treatment capabilities. In the study by Diaz et al., gold 

nanoparticles were safely introduced to the tumor periphery with MRI-guided FUS in a 

mouse brain tumor model, augmenting surface-enhanced Raman scattering capability. 

Furthermore, the authors demonstrated that nanoparticles coated with anti–epidermal growth 

factor receptor antibody or nonspecific human immunoglobulin-G had increased uptake in 

glioma cells.30

While FUS shows promise in animal models, a limitation is signal attenuation and distortion 

from the skull. A study in rabbits sought to measure BBB disruption by applying FUS 

directly to the brain surface through a device implanted in a skull bur hole.11 Further study 

is necessary to gauge the feasibility of this approach in humans.

Bradykinin Administration—Bradykinin administration has been shown to upregulate 

caveolin-1 and caveolin-2 at the BBB.72 The upregulation of these compounds serves to 

increase endothelial cell permeability, increasing the chance of appropriate drug delivery. 

The potential of bradykinin, and synthetic analogs, to disrupt the BBB has been widely 

explored.16,35,50,102 A central limitation is that the effect of the upregulation is exceedingly 

transient.72 One clinical trial showed minimal therapeutic benefit of using carboplatin with 
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lobradimil, a synthetic bradykinin analog, to treat brain tumors in a pediatric population.117 

A greater understanding of the cellular mechanisms at the BBB stands to improve the 

efficacy of administering bradykinin with chemotherapy drugs.

Radiation-Induced Disruption—The use of radiation therapy to induce DNA damage 

and subsequent cell death has become an important treatment modality for brain tumors. 

Recent innovations in radiation therapy have improved precision, tumor definition with 

imaging, and radiation delivery through beam shaping.24 In addition to its current utility, 

radiation therapy may play a role in selectively disrupting the BBB. Studies in both animals 

and humans have demonstrated that radiation therapy can induce focal BBB disruption with 

minimal effects on normal vasculature.23,67,86,89 These results suggest that BBB disruption 

may be an additional utility of radiation therapy.

BBB Circumvention

Convection-Enhanced Delivery—Convection-enhanced delivery (CED), first described 

by Bobo et al. in 1994, involves the use of surgically implanted catheters that enable 

continuous delivery of chemotherapy directly into the tumor through positive pressure 

microperfusion.18 Various antineoplastic agents, mostly immunotoxins, are under 

investigation for use through CED.59,62,84,100,107 Another approach involves 

chemotherapeutic delivery via CED of nanoparticles.14,128 Although these studies have 

demonstrated effectiveness in vivo, more work must be conducted to investigate the long-

term effects of potential accumulations of the nanoparticles in the brain. CED can be used 

following resection or to treat inoperable tumors.56 The major drawbacks of CED include 

operative risks and limited drug distribution due to backflow.91,101,111 Despite the promise 

of this novel approach in enhancing the delivery of therapeutics, its safety and efficacy has 

yet to be clearly determined, as several Phase III clinical trials have failed to meet clinical 

end points.63,87,90,99,120,121

Viral-Mediated Circumvention—Viral vectors to deliver therapeutic drugs have also 

been examined for glioblastoma treatment. The goal of these strategies is to specifically 

target tumor cells via cell surface receptors and use virus replication derivatives to combat 

cancer growth. The value of using viruses as vehicles is partly due to their small size, 

allowing for permeability across the BBB. Such methods also have promise in combating 

cancers that have acquired chemotherapy and drug resistance. In vivo studies with the 

measles virus demonstrated a cytopathic effect on glioma stem cells and prolonging survival 

in a mouse model.4 Viruses can be created with soluble peptide markers to monitor spread in 

vivo, and viral vectors may have synergistic activity when combined with conventional 

treatments, such as CED or radiation therapy.5,27,56 Adding an amphotropic retroviral 

replicating vector can similarly be used to target glioma cells. Toca 511, a retroviral 

replicating vector, has been shown to safely deliver a cytosine deaminase gene and improve 

survival for glioblastoma models in vivo.45 When combined with radiation therapy or CED, 

this approach has promise for future steps in combating glioblastoma growth.

Carrier Molecules—Other treatment strategies aim to use carrier molecules to transport 

drugs across the BBB. In creating these compounds, the surface coating can be engineered 
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to optimize transport and targeting abilities. Other factors such as core polymer, drug, and 

stabilizer formulation have also been shown to influence nanoparticle delivery.39 Particle 

systems such as poly(lactic-coglycolic acid) and dendrimer nanoparticles have been studied 

in the context of brain cancer.39 Another synthetic peptide, K16ApoE, carries 

chemotherapeutic compounds into the brain via a ligand-receptor system.103 Although it is 

difficult to accurately monitor dosage, as well as systemic toxicological effects, these 

systems offer greater promise for drug delivery. Studies have reviewed optimal nanoparticle 

sizing, but future research on ligand-receptor interactions at the BBB and the ideal surface 

characteristics of nanoparticle delivery mechanisms is necessary.81,127 Nanotherapeutic 

approaches also have used magnetic therapy to localize drug-carrying molecules.29 In this 

method, a carrier molecule with iron residues is guided to the tumor location with an 

external magnetic field. Such an approach is encouraging, as a drug can be administered 

directly to the brain and with sustained release. Advances in biomaterials will also be able to 

increase the half-life of the encapsulated drug, improving efficacy.29

Liposomal Delivery—Liposomes contain a drug of interest within a lipophilic vesicle, 

facilitating endocytosis and uptake into brain tissue. These compounds hold great promise 

for glioblastoma, offering more surface area for passive diffusion. Various liposome 

preparations have been explored and combined with CED in previous studies.43,60 

Liposomal delivery has been extensively studied for doxorubicin, showing disease 

stabilization and low systemic toxicity.36 A recent study using a rat glioma model found that 

the surface charge of liposomes is a significant factor for deposition within the brain.54 The 

beneficial effect was noted independent of techniques disrupting BBB permeability, offering 

a safer and simpler method of administration. Other studies have added compounds such as 

wheat germ agglutinin (WGA) to the liposome surface. WGA has been shown to aid in 

adsorptive endocytosis in the BBB, as this glycoprotein binds to negatively charged residues 

in the epithelial membrane. 33 Liposomes modified with WGA have been shown to reliably 

target glioma tumors both in vitro and in vivo, offering a possible area of research for 

glioblastoma treatment. 69 Limitations of this delivery mechanism include the large size of 

liposomes and controlled release of the encapsulated drugs from the vesicles

Polymer Wafers—Polymer wafers that are implanted into the resection cavity after 

surgery allow for the localized administration of drugs that would otherwise be unable to 

access the tumor site due to the BBB.21,22 This approach has renewed interest in 

therapeutics originally believed to be of limited use due to their inability to penetrate the 

BBB or due to their toxicity.15 The Gliadel wafer (Eisai) is a critical example of this strategy 

and received FDA approval for use in 2003 for newly diagnosed and recurrent malignant 

gliomas. 9,20,56,79 However, its use is not generally recommended as subsequent studies 

demonstrated marginally increased survival in patients with glioblastoma and a high 

incidence of associated complications such as seizures, cerebral edema, and infection. Bregy 

and colleagues reviewed 795 patients with newly diagnosed high-grade glioma treated with 

Gliadel wafers in 19 studies and reported an overall complication rate of 42.7%.20 Thus, 

more work must be completed to reduce complications associated with this approach and 

additional polymer delivery methods must be developed.
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P-gp Targeting and Modulation—Modulation of specific surface proteins on capillary 

endothelial cells can offer more specific and less disruptive strategies to deliver drugs into 

the CNS. Pharmacological interventions often fail in the brain setting due in part to P-gp–

mediated efflux of small molecules out of brain tissue back into the capillary lumen. 

Strategies have been developed to circumvent the BBB through either inhibition of P-gp or 

the modulation of its expression and/or trafficking.

Direct inhibition of P-gp through small molecules and other pharmaceutical methods have 

been initially met with limited efficacy and safety in a clinical setting; however, recent 

advances in drug discovery have elucidated promising new molecules with nanomolar 

specificity and acceptable tolerability.65,113 The most promising drug to result from this 

process is tariquidar, which binds P-gp noncompetitively at nanomolar concentrations.97 

This drug has been shown to sufficiently inhibit P-gp at the BBB in vivo. Kreisl et al. 

showed greater uptake of 11C-N-desmethylloperamide by PET, a known P-gp substrate.61 

Acceptable tolerability is achieved in combination with dose–linear responses, tariquidar 

shows promise for inhibiting P-gp at the human BBB and allowing effective CNS drug 

delivery.

Pinzón-Daza et al. has elucidated the role of crosstalk between canonical and noncanonical 

Wnt pathways and its relationship to P-gp expression in the human BBB.88 The authors 

found that downregulation of β-catenin led to a decrease in P-gp expression. It was also 

shown in vitro that the inhibition of β-catenin enhanced delivery of doxorubicin, a P-gp 

substrate, across a BBB epithelial monolayer against glioblastoma cells.

Modulation of P-gp has attracted much attention in disrupting the BBB in a noninvasive, 

specific, and rapid manner. However, despite numerous clinical trials involving P-gp 

inhibitors, none have been performed in any patients with primary or metastatic neoplasms 

of the CNS.109 Outcomes to explore would be whether co-administration of P-gp inhibitors 

along with chemotherapy can stop tumor growth and/or reduce tumor size, result in 

prolonged survival, and result in an outcome that avoids any long-term sequelae.3

Conclusions

A growing body of evidence implicates the BBB as critical in fully understanding brain 

tumor pathophysiology. Future studies hold potential for both fundamental biological 

knowledge and for critical therapeutic discoveries. However, the question remains whether 

BBB disruption coupled with targeted therapy will improve patient survival. Several 

investigators across multiple disciplines are working collaboratively to improve the ability to 

penetrate the BBB to allow novel therapeutics to infiltrate further into the tumor and the 

surrounding brain.

ABBREVIATIONS

ABC ATP-binding cassette

AQP4 aquaporin-4
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BBB blood-brain barrier

CED convection-enhanced delivery

ECM extracellular matrix

FUS focused ultrasound

P-gp P-glycoprotein

WGA wheat germ agglutinin

ZO zona occludens
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FIG. 1. 
The normal, physiological BBB structure maintains strict control over CNS penetration. The 

major components of the BBB are cerebral endothelial cells bound together by tight 

junctions. The endothelium is surrounded by the basal lamina, pericytes, astrocytic endfeet, 

and microglia. These diverse cell types give rise to a dynamic environment that regulates 

entry into the brain.
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FIG. 2. 
Molecular composition of the cerebrovascular endothelial tight-junction structure. Claudins 

and occludin are critical junctional components. Two other components of the tight junction 

are junctional adhesion molecules (JAMs) and the endothelial selective adhesion molecule 

(ESAM). ZO-1 serves as an adaptor molecule in the cytoplasm with the ability to bind 

membrane proteins. Other important adaptor molecules are cingulin and 7H6. These adaptor 

proteins, in conjunction with other regulatory proteins, foster communication between 

membrane junctional molecules and the cytoskeleton. A second junctional complex is the 

adherens junction, consisting of vascular endothelial cadherin (VE-cadherin) and the 

platelet–endothelial cell adhesion molecule (PECAM).
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TABLE 1

Summary of current FDA-approved pharmacological treatments for CNS tumors

Drug Indications* Molecular Weight (Da) ABC Transporter Substrate

Carmustine Glioblastoma37 214 No

Cisplatin Medulloblastoma40 300 ABCC2, ABCC6

Cyclophosphamide Medulloblastoma 261 No

Etoposide Glioblastoma 588 ABCB1

Irinotecan Glioblastoma 586, 623 (HCl), 677 (HCl trihydrate) ABCB1

Lomustine Medulloblastoma, Grade III glioma108 233 No

Procarbazine Grade III glioma 221 No

Temozolomide Glioblastoma 194 ABCB1

Vincristine Medulloblastoma, Grade III glioma 824 ABCB1

Bevacizumab Glioblastoma 149,000 No

*
Treatment indications collected from the literature.37,40,108
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