
RESEARCH ARTICLE

Microinverter Thermal Performance in the
Real-World: Measurements and Modeling
Mohammad Akram Hossain1,2, Yifan Xu2,3, Timothy J. Peshek2,7, Liang Ji4, Alexis
R. Abramson1, Roger H. French2,5,6,7*

1Department of Mechanical and Aerospace Engineering, CaseWestern Reserve University, Cleveland,
Ohio, United States of America, 2 Solar Durability and Lifetime Extension (SDLE) Center, CaseWestern
Reserve University, Cleveland, Ohio, United States of America, 3Center for Statistical Research, Computing
and Collaboration, Department of Epidemiology and Biostatistics, CaseWestern Reserve University,
Cleveland, Ohio, United States of America, 4 Underwriters Laboratories, Northbrook, Illinois, United States of
America, 5 Department of Material Science and Engineering, CaseWestern Reserve University, Cleveland,
Ohio, United States of America, 6 Department of Macromolecular Science and Engineering, CaseWestern
Reserve University, Cleveland, Ohio, United States of America, 7Department of Physics, CaseWestern
Reserve University, Cleveland, Ohio, United States of America

* roger.french@case.edu

Abstract
Real-world performance, durability and reliability of microinverters are critical concerns for

microinverter-equipped photovoltaic systems. We conducted a data-driven study of the

thermal performance of 24 new microinverters (Enphase M215) connected to 8 different

brands of PV modules on dual-axis trackers at the Solar Durability and Lifetime Extension

(SDLE) SunFarm at CaseWestern Reserve University, based on minute by minute power

and thermal data from the microinverters and PVmodules along with insolation and environ-

mental data from July through October 2013. The analysis shows the strengths of the asso-

ciations of microinverter temperature with ambient temperature, PV module temperature,

irradiance and AC power of the PV systems. The importance of the covariates are rank

ordered. A multiple regression model was developed and tested based on stable solar

noon-time data, which gives both an overall function that predicts the temperature of micro-

inverters under typical local conditions, and coefficients adjustments reecting refined pre-

diction of the microinverter temperature connected to the 8 brands of PV modules in the

study. The model allows for prediction of internal temperature for the Enphase M215 given

similar climatic condition and can be expanded to predict microinverter temperature in fixed-

rack and roof-top PV systems. This study is foundational in that similar models built on later

stage data in the life of a device could reveal potential influencing factors in performance

degradation.

Introduction
In the past decade, renewable energy has seen remarkable growth, especially in the develop-
ment of photovoltaic (PV) energy systems. The growth in PV is primarily influenced by the
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declining cost of PV modules [1]. The International Energy Agency (IEA) predicts that by
2050, the cumulative global PV capacity will reach around 3000 GW and meet 11% of the
demand for global electricity [2]. Studies in [3, 4] show that 20%-30% PV integration to the
grid can be accommodated through: 1. Use of demand response and system balance, 2.
Increased flexibility of dispatchable generation, 3. Advanced forecasting in fast market opera-
tions, and 4. Greater system interconnections and faster scheduling. For example, Plug in
hybrid electric vehicles (PHEVs) and electric vehicles (EVs) are potential sources of dispatch-
able loads [5–8]. Integrated energy storage or battery storage can store the excess PV power in
low demand periods and reduce the problem of variability. An essential component of the inte-
gration of PV system to grid is the inverter that converts the DC output of the PV module to
utility frequency AC. String inverters and microinverters are two widely used types of inverter
systems used in a PV system. In a string inverter system, a number of PV modules, electrically
in series connection with each other, are connected together and the cumulative total DC
power generated by the connected PV modules is supplied to the string inverter. On the other
hand, a microinverter is designed to connect with one PV module where the AC power output
from all of the inverters is in parallel, i.e. there are no series connections in this system. One
advantage of microinverters is that maximum power point tracking (MPPT) is performed on a
per module basis and contains no single point of failure of the whole PV system [9]. Per mod-
ule MPPT eliminates the effects of module mismatch and reduces the effect of shading, which
are very common in residential PV systems [10].

It is critical for microinverter designers and developers to fully understand the environment
in which their products exist. Microinverters are usually installed outdoors underneath the PV
modules, and they have to endure a wide variety of climate conditions, including temperate
(moderate), tropical (warm damp equable), and desert (extremely warm dry), for example [11,
12]. These different climate conditions can induce different degradation mechanism in the
microinverters than observed for string inverters. Modern commercial microinverter manufac-
turers go through accelerated lifetime test (ALT) based on IEC61215 [13] to determine the reli-
ability of the microinverter [14]. Real-world operation is a unique combination of multiple
stressors. Indoor accelerated test can introduce single or several stressors however they do not
simulate the precise combination of multiple stressors to mimic real-world operation.

Metal-oxide-semiconductor field-effect transistors (MOSFETs), capacitors, inductors,
diodes, transformers, and circuit boards are considered as the critical to lifetime performance
(CLP) components for string inverters and microinverters [15, 16] and have various potential
failure modes. Typically electrolytic capacitors are used in microinverters and the operating
lifetime of these capacitors are limited by the operating environment temperature. The aqueous
component of electrolytes evaporates at higher operating temperature, and increase the equiva-
lent series resistance (RESR) of the capacitor [17, 18]. As a consequence of this ESR increase,
more heat accumulates inside the capacitors, accelerates the evaporation rate, reduces the
capacitance and eventually leads to capacitor failure with positive feedback. Although electroly-
tics receive much attention, MOSFETs are considered the most failure prone component in the
inverter system with thermal stress being the dominant stressor [19, 20]. Thermal stress can
develop in the die package due to rapid heat build up in the die as observed in the case of an
insulated-gate bipolar transistor (IGBT) during power cycle [21, 22]. Typically inductors are
the hottest component in an inverter [16]. Thermal stress and cycling, especially in the pres-
ence of a plastic resin pottant, that many microinverters contain, may crack the sintered ferrite
material comprising the inductors and dramatically alter the inductance or saturation field
characteristics. Therefore, predicting thermal behavior or the temperature of the microinverter
in the real-world operation can provide design insights, and more accurate lifetime modeling
and help to assess the system reliability. Furthermore, for accurate modeling of reliability for
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an outdoor technology there must be appropriate models of the thermal performance in the
field given real-world exposure. All components are dependent upon temperature, and in par-
ticular most design parameters and conventional lifetime estimation models are closely depen-
dent upon an estimate of field and use temperatures. However, conventional lifetime
estimation models do not take into account device degradation or the scientific mechanism of
degradation.

In real-world operation, thermal stresses on microinverters can be derived from several heat
and energy sources. The typical DC to AC power conversion efficiency of microinverter is
approximately 96% [23], and the remaining 4% lost energy is converted into heat among the
components. Another important source of thermal stress for microinverters can be the radiant
heat arising from the PV module backsheet temperature. PV modules warm up by absorbing
the solar insolation, and radiates the heat energy from the warm backsheet of the PV module.
The microinverter, located beneath the PV modules, receives the PV module backsheet radi-
ated heat and eventually aids in the development of increased thermal stress in the microinver-
ter. Ambient temperature, wind speed and irradiance are some other important factors behind
the development of thermal stress that we studied to develop the predictive model for microin-
verter temperature.

There are very limited studies conducted for microinverters as a component of full PV sys-
tems, or on temperature prediction of the microinverters. However, the PV community has
been trying to develop PV module temperature predictive models, and these models can be
studied as references for microinverter temperature prediction. King et al. [24] and Faiman
[25] have proposed theoretical and empirical models for predicting PV module temperature as
a function of weather data: irradiance, ambient temperature and wind speed, respectively.
Kurtz et al. [26] used an equivalent PV module temperature to study thermal degradation of
the PV module. Koehl et al. [27] used principal component analysis to identify the main influ-
encing factors behind PV module temperature, and developed a statistical model and a simple
analytical model to predict PV module temperature from weather data. However, these models
did not consider the influence of radiation and natural convection. There are also few studies
that considered heat conduction between PV cells [28], front sheet and back sheet, and convec-
tion, both natural and forced [29, 30]. Several predictive models for PV module temperature
employ the energy balance equation in conjunction with empirical equations [31]. The effect of
PV module inclination, wind velocity and direction on PV module temperature has been stud-
ied and a simulated model was developed to predict PV module temperature [32]. However,
this predictive model did not include the effects of clouds or rapidly changing environmental
conditions where the steady state thermal model is not valid.

Our infrastructure is designed to handle data acquisition, validation and cleaning of real-
world time series datastreams that allows for insights to be gained and data-driven predictive
models to be generated. We apply a degradation science methodology to gain insights into the
thermal performance of microinverters using data science [33], or an agnostic approach that
relies on exploratory data analysis and statistical practices to further scientific knowledge, past
examples include our work on PV modules’ degradation pathways under damp heat [34],
acrylic degradation [35], and transparent conducting oxides [36]. We apply these methods and
develop a parametric, time-independent regression model of microinverter temperature given
the rank-ordered predictors.

The remainder of this paper is structured as follows. In the Experimental Setup and Metrol-
ogy Platform section, the outdoor real-world test setup and data collection methodology is
described. The Data analysis section describes the data cleaning and validation techniques,
exploratory data analysis techniques and the modeling methods and principles followed to
develop the predictive model of microinverter temperature. The impacts of different predictors
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on microinverter temperature, thermal behavior of PV modules and microinverter in different
times of the day, the accuracy and limitations of the predictive model are discussed in the Dis-
cussion section. Finally, conclusions and future work directions are presented in the Conclu-
sion section.

Experimental Setup and Metrology Platform
In this study, 24 Enphase M215 microinverters connected to 8 different brands of polycrystal-
line PV modules on dual-axis trackers were analyzed from July through October 2013 in SDLE
SunFarm (latitude 41.50°, longitude -81.64°) on the campus of Case Western Reserve Univer-
sity in Cleveland, Ohio. Three PV modules from each brand are connected to the microinver-
ters. The rated output power of this microinverter is 215 W, and peak output power is 225 W.
The 24 microinverters are distributed in 3 different tracker sites of the SunFarm: tracker 6, 12,
and 14. The baseline power of different brands of PV modules are listed in Table 1. Baseline
power was measured by the SPIRE4600 solar simulator [37]. In Table 1, the letters “K”, “L”,
“O”, “P”, “Q”, “R”, “S” and “T” represent the different PV module brand names and t# corre-
sponds to the site and tracker location, for example: K.t6 represents PV module brand K at
tracker 6.

A Kipp & Zonen CMP11 pyranometer was used to measure insolation data and a Vaisala
WXT520 weather transmitter collected the environmental data: ambient temperature, wind
speed, wind direction, relative humidity, and rain intensity. T-type thermocouples (CO1-T)
from Omega Engineering Inc. were used to measure the PV module backsheet temperature
and the microinverter peak temperature. The thermocouples were attached to the middle of
the backsheet of the PV modules and the hottest point on the microinverters (Fig 1) as deter-
mined by infrared (IR) thermography collected at the maximum rated input power using a
FLIR T300 camera [38]. The pyranometer, weather transmitter and the thermocouples reports
the data to the Campbell CR1000 data loggers [39] and multiplexers [40] at a one minute time
interval. The data loggers store all the collected data in the central database every two hours.
An Enphase Envoy device maintains power line communication with the Enphase microinver-
ters to collect the inverter telemetry: DC voltage and current, and AC power, frequency, and
microinverter internal temperature and reports those data to the Enphase enlighten website
every 5 minutes. The power data was automatically acquired from the Enphase enlighten web-
site using the Java Selenium web driver package and stored in SDLE Center’s local file-store.
Later, all these data: power, insolation, temperature and climate, were ingested into SDLE cen-
ter’s informatics and analytics infrastructure, known as Energy CRADLE [41]. Data visualiza-
tion and analytics in this manuscript were generated using ‘R’ open-source software [42, 43].

Table 1. Baseline DC power of different brands of PVmodules.

Module Brand Baseline power (W) Standard deviation (W)

K.t6 225.19 2.59

L.t6 231.02 4.12

O.t12 241.14 1.65

P.t12 231.75 0.95

Q.t12 212.86 4.98

R.t14 231.38 1.53

S.t14 230.95 1.03

T.t14 232.20 2.47

doi:10.1371/journal.pone.0131279.t001
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Data Analysis
A time lag exists between data collected from disparate data sources, due to asynchronicity of
internal clocks and varying sensitivity to daylight savings time. The time lags of different data
sources were determined using a cross correlation function (ccf) and it was found that the
Enphase Enlighten system reported power data that was lagging approximately 1 hour 6 min-
utes behind the environmental, temperature, and insolation data reported by the Campbell sys-
tems. The power data were then slewed to match the environmental, temperature, and
insolation data.

Thermocouples were attached using purpose specific special polyester adhesive tape on the
backsheet of PV modules and microinverters (Fig 1) to report the backsheet temperature data
[44]. The thermocouple reported temperature data were plotted together with ambient temper-
ature and Enphase reported microinverter internal temperature. If any thermocouple reported
temperature trends with the ambient temperature closely, even under high insolation when the
inverter was under full load, then it was assumed that the thermocouple delaminated from the
backsheet and is reporting ambient temperature. This assumption was then confirmed by field
investigation and those data where the external thermocouple matched ambient temperature at
high insolation were excluded from further analysis [45].

Exploratory Data Analysis
Exploratory Data Analysis (EDA) [46] was conducted to detect outliers, check preliminary
assumptions, find patterns and trends, summarize the characteristics of data sets, and suggest
appropriate statistical models. Pairwise scatter plots for multivariate graphical EDA were

Fig 1. PVmodule andmicroinverter setup in a dual-axis tracker in SDLE SunFarm. PVmodule and microinverter setup in a dual-axis tracker with
thermocouple attached to the hottest points of the PV module and the microinverter.

doi:10.1371/journal.pone.0131279.g001
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generated that provide us the graphical overview of the relations between all pairs of variables,
and correlation coefficients were also calculated. Note that the correlation coefficient measures
the linear correlation between two variables. It ranges from -1 to 1, where -1 indicates strong
inverse correlation, 0 means no correlation, and 1 indicates strong positive correlation.

Fig 2 shows the pairwise scatter plots (lower half), histograms and corresponding correla-
tion coefficients (upper half) among irradiance, wind speed, ambient temperature, module
temperature, AC power and microinverter temperature, for the cleaned data set [47, 48]. The
ambient temperature and PV module temperature are strongly correlated with the microinver-
ter temperature. Additionally, AC power, and irradiance are also moderately correlated with
the microinverter temperature. However, the wind speed shows little correlation with any
other variables measured in this study.

Table 2 summarizes the brand-dependent maximum temperature of the PV modules and
the connected microinverters where Module.TM, Micro.TM, ΔModule.TM, and ΔMicro.TM

denote the maximum PVmodule temperature, the maximum microinverter temperature, the
maximum temperature difference between PV module temperature and ambient temperature,
and the maximum temperature difference between microinverter temperature and ambient

Fig 2. Pairwise scatter plot matrix, histogram and correlation coefficients of all related variables for the microinverters connected with different
brands of PVmodule. Pairwise scatter plots are in lower triangle boxes, histograms are in the diagonal boxes, and upper triangle boxes give the correlation
coefficients between variables. Brand, Ambient. T, Wind speed, Module. T, Power and Micro. T denote PV module brand, ambient temperature, 5 point
moving average wind speed, PV module temperature, AC power output and microinverter temperature respectively.

doi:10.1371/journal.pone.0131279.g002
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temperature respectively. For this study, the average ambient temperature is 21.54°C with stan-
dard error (SE) 0.02°C (maximum observed ambient temperature is 36.09°C, minimum tem-
perature is 7.5°C and median temperature is 1.63°C), and average wind speed is 1.73m/s
(maximum, minimum and median wind speed are 5.592m/s, 0.108m/s and 1.63m/s respec-
tively). Maximum PVmodule temperature are observed in Q.t12 and T.t14 respectively, and
maximum microinverter temperature are observed in T.t14 and Q.t12 microinverters
respectively.

Fig 3 is a plot of daily thermal variation of microinverter as a function of PV module brand
on a typical sunny day (2013-09-17). During the low irradiance morning hours, the

Table 2. MaximumPVmodule temperature, PVmodule temperature difference with ambient tempera-
ture, maximummicroinverter andmicroinverter temperature difference with ambient temperature dur-
ing study period.

Brand Module.TM ΔModule.TM Micro.TM ΔMicro.TM
(°C) (°C) (°C) (°C)

P.t12 58.47 34.23 43.98 15.79

O.t12 58.09 32.36 43.46 13.01

Q.t12 59.20 33.51 44.17 12.99

R.t14 55.00 32.66 42.30 13.62

S.t14 56.39 32.20 41.74 12.65

T.t14 59.16 35.76 44.28 13.52

K.t6 55.75 30.57 42.60 13.73

L.t6 58.72 32.23 43.39 12.90

doi:10.1371/journal.pone.0131279.t002

Fig 3. Comparison of averagemicroinverters temperature on atypical sunny day. Comparison of average microinverters temperature connected to 8
different brands of PV module on a sunny day (date: 2013-09-17).

doi:10.1371/journal.pone.0131279.g003
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temperature variance between the microinverters connected to the different PV module brands
is very small. The temperature variance is comparatively higher during noontime. This also
indicates a duality of thermal performance behavior according to the time of day (morning and
noontime).

According to the distinct thermal characteristics of microinverters in different time ranges,
we segregate two subsample data sets, dubbed “morning” and “noontime”, to isolate and
observe the thermal attributes under relative low and high irradiance conditions. Morning
time is defined as local solar time (LST) [49] from 05:00 to 06:30, and the noontime dataset is
defined between LST from 10:00 to 14:00. Table 3 shows the correlation coefficients of different
variables with microinverter temperature in different time periods [47, 48]. Fig 4(a) shows the
variation in microinverter and PV module temperature with irradiance level for Q.t12 PV
modules and microinverter in the morning. Under conditions of low irradiance in morning

Table 3. Correlation Coefficients of different variables with microinverter temperature in different time
of the day.

Morning Hours Noontime

Irradiance 0.26 0.56

Ambient.T 0.98 0.83

Wind speed 0.05 0.07

Module.T 0.89 0.89

Power 0.13 0.53

doi:10.1371/journal.pone.0131279.t003

Fig 4. Variation in microinverter temperature and PVmodule temperature with irradiance in (a) the morning, and (b) noon time. Variation in
microinverter temperature and PVmodule temperature with irradiance for Q.t12 PV microinverter and PV modules in the morning and noon time.

doi:10.1371/journal.pone.0131279.g004
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hours, ambient temperature has the strongest correlation with microinverter temperature
(Table 3). We find that the temperature difference between the microinverter temperature and
the ambient temperature is very small (approximately 0.40°C) when irradiance is below 60W/
m2. When the irradiance is greater than 60W/m2, the PV modules are heating more dramati-
cally in addition to producing more power. Consequently, the microinverters’ temperature also
starts to increase. These results are summarized in Table 4 where ΔModule.T and ΔMicro.T
stand for temperature differences between the PV module temperature and the ambient tem-
perature, and the microinverter temperature and the ambient temperature respectively.

At the local solar noontime, ambient temperature and PV module temperature are in strong
correlation with the microinverter temperature. Irradiance, and the AC power also have a simi-
lar moderate correlation with the microinverter temperature. Temperature variance in PV
modules is higher when irradiance is above 300W/m2, and PV modules temperature shows
more variance than microinverter temperature (Fig 4(b)). The variance in the microinverters’
temperature due to the PV module brand variation is higher during noontime (Fig 3) since the
PV module temperature rise and power output are different for different brands. The noontime
summary statistics are shown in Table 5 which includes average power output, average PV
module temperature and average microinverter temperature variation within different brands
of PV modules.

Modeling
In pursuit of a statistical model of microinverter temperature given environmental conditions,
we focus on the noontime data as the PV system is most stable and active, and and build a

Table 4. Change in PVmodule andmicroinverter temperature with irradiance during morning hours.

Irradiance Power ΔModule.T ΔMicro.T

(W/m2) (W) SE (W) (°C) SE (°C) (°C) SE (°C)

0–60 5.64 0.18 -1.16 0.022 -0.40 0.009

> 60 61.41 1.44 4.88 0.178 1.02 0.046

doi:10.1371/journal.pone.0131279.t004

Table 5. Average AC power, PVmodule temperature difference with ambient temperature, andmicro-
inverter temperature difference with ambient temperature at noontime.

Brand Power ΔModule.T ΔMicro.T

W SE(W) °C SE (°C) °C SE (°C)

P.t12 131.29 1.57 16.97 0.21 7.91 0.09

O.t12 139.45 1.64 16.50 0.20 6.97 0.07

Q.t12 124.99 1.52 17.53 0.21 7.03 0.07

R.t14 138.09 1.66 14.92 0.19 6.44 0.07

S.t14 137.70 1.68 15.80 0.20 5.84 0.07

T.t14 141.09 1.73 16.59 0.21 7.06 0.08

K.t6 140.96 1.67 15.90 0.19 6.99 0.08

L.t6 127.81 1.47 17.02 0.20 6.84 0.07

doi:10.1371/journal.pone.0131279.t005
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multiple regression model. The responsible variable is the microinverter temperature (Micro.
T). The covariates include:

1. PVmodule backsheet temperature (Module.T),

2. AC power output (Power),

3. Irradiance (Irradiance), and

4. Ambient temperature (Ambient.T).

During ±2 hours around solar noontime Micro.T is highly correlated to Module.T and
Ambient.T (correlation = 0.89 and 0.83) and moderately correlated to Irradiance and Power
(correlation = 0.56 and 0.53). Three of the covariates, Module.T, Irradiance and Power also
show high pairwise correlations among themselves (correlations> 0.78) among themselves,
suggesting potential redundancy. Indeed, since microinverters are installed in the shadow of
PV modules and are not directly exposed to sunlight (Fig 1), the effect of irradiance on Micro.
T is likely through other variables. Using highly correlated covariates in the regression model
can lead to unstable coefficient estimates and cryptic interpretations (collinearity) [50, 51].
One way to examine individual effects of covariates on Micro.T while holding other variables
constant is through examination of the partial correlations [51] which are shown in Table 6

It is clear that when holding Ambient.T and Module.T constant, the Irradiance and Power
have low partial correlation with Micro.T. This is likely due to the fact that the microinverters
sit behind the PV modules and do not directly exposed to sun light, and the efficiency of power
conversion is high. Therefore changes in power generation do not induce large changes in
microinverters.

After identifying the main contributors, we retain the dominant covariates Ambient.T and
Module.T in the regression model. The interaction of Ambient.T and Module.T is also
included, as well as Brand of PV modules to test if different PV brands have significant effects
on the relationships. After step-wise selection and model validation, the final model is given by
the following equation:

Micro:Ti ¼ b0 þ
X7

j¼1

b0jxij þ ðb1 þ
X7

j¼1

b1jxijÞAmbient:Ti

þðb2 þ
X7

j¼1

b2jxijÞModule:Ti

þðb3 þ
X7

j¼1

b3jxijÞAmbient:Ti �Module:Ti þ εi:

ð1Þ

In Eq (1), xij, j = 1, . . ., 7, i = 1, . . ., n are dummy variables from the first 7 brands with sum
contrast. That is, xij = 1 if the i-th observation is from brand j, xij = −1 if the i-th observation is
from brand 8, and xij = 0 otherwise. εi represents the errors associated with the predictive

Table 6. Partial correlations betweenmicroinverter temperature and covariates: ambient temperature,
PVmodule temperature, irradiance and AC power.

Ambient.T Module.T Irradiance Power

Partial correlation 0.727 0.674 0.008 0.006

doi:10.1371/journal.pone.0131279.t006
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model for each brands of PV modules. β0, β1 and β2 are the coefficients for intercepts, Ambi-
ent.T and Module.T respectively for the mean model. The coefficient of the interactions
between the Ambient.T and the Module.T in the mean model is represented by β3. Their esti-
mations are all significant and the values are listed in Table 7.

The coefficients βkj, k = 0, 1, 2, 3 depict the deviation in coefficients of intercepts, Ambient.
T, the Module.T and their interaction respectively from the mean model due to the brand vari-
ation of the PV modules. For the microinverters connected to the 8th PV module brand (T.

t14), the coefficients of the predictive model can be calculated by bk8 ¼ �ðP7

j¼1 bkjÞ. The esti-
mated values are given in Table 8

The adjusted R2 value of the regression model is 0.97 with residual standard error of 0.86°C.
Furthermore the residuals of the final model do not show specific nontrivial patterns when
plotted against fitted values and covariates. See discussion for a note on time related covariance
structure. A QQ-plot suggests approximate normality of the errors [52]. We note that if morn-
ing and afternoon data are included in the model (fittings not shown) then both linearity and
normality assumptions are not satisfied.

Figs 5 and 6 show the comparison between actual and predicted Micro.T of the microinver-
ters connected to the 8 different brands of PV module during ±2 hours around solar noontime
on a sunny day (2013-09-04) and on a cloudy day (2013-08-02), respectively. The predictive
regression model predicts the Micro.T fairly well on a sunny day noontime (Fig 5), however,
temperature differences between the actual and predicted Micro.T are observed during cloudy
days noontime.

Discussion
The data analytics focused on data from ±2 around solar noontime on each day when the PV
system is most stable and active. Dates were identified where PV modules or the trackers were

Table 7. Coefficient values of different variables for mean regression predictive model for microinver-
ter temperature.

Intercept Ambient.T Module.T Ambient.T×Module.T
β0(°C) β1(°C) β2(°C) β3 × 10−3(°C2)

-1.594 0.764 0.406 -2.297

doi:10.1371/journal.pone.0131279.t007

Table 8. List of coefficients for different variables in the predictivemodel due to the brand variations
of the PVmodule.

Brands Intercept Ambient.T Module.T Ambient.T×Module.T
β0j(°C) β1j(°C) β2j(°C) β3j × 10−3(°C2)

S.t14 -1.494 0.094 -0.024 -0.61

R.t14 -0.440 -0.022 0.001 0.12

L.t6 0.472 -0.025 -0.016 0.50

K.t6 -0.353 -0.012 0.055 -1.34

P.t12 -0.265 -0.016 0.053 -0.71

O.t12 0.429 -0.014 -0.004 1.19

Q.t12 0.624 -0.013 -0.042 -0.73

T.t14 1.027 0.008 -0.023 1.58

doi:10.1371/journal.pone.0131279.t008
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malfunctioning, and these data were removed before model fitting. In the regression predictive
model, a continuous response variable (Micro.T) is predicted by both categorical (brands) and
continuous (Ambient.T and the Module.T) predictors. As there is no reference brand, a sum
contrast on the brands variable is used, so that the thermal performance of microinverters con-
nected to different brands of PV modules are easily compared. In the analysis we identified
that although AC power and irradiance level show moderately high correlation to microinver-
ter temperature, the relation is mostly indirect, as shown by their small partial correlations to
Micro.T with the presence of Ambient.T and the Module.T.

Irradiance is the source of energy for a PV system. However, the Micro.T is not strongly cor-
related with irradiance directly (Fig 2 and Table 3) since they are shaded by the PV module.
Therefore, irradiance is more strongly correlated with the Module.T as compared to the
Micro.T.

Figs 5 and 6 show the prediction comparison between different PV modules brands on a
sunny and cloudy day, respectively. During cloudy days, the change in irradiance due to cloud
cover is very sharp. The corresponding response of Module.T is very dynamic due to the direct
interaction between PV module and irradiance. Therefore, the predictive model estimates
rapid change in Micro.T based on the rapid changes in PV module temperature. However, the
temperature rise in the microinverter is relatively slower than the predicted value due to ther-
mal diffusivity of the microinverter. As a result, large over-prediction of Micro.T is observed in
a cloudy noon (Fig 6) compared to sunny day noontime (Fig 5).

Fig 5. Microinverter temperature prediction comparison on asunny day.Comparison of actual and predicted microinverter temperature on a particular
sunny day (2013-09-04).

doi:10.1371/journal.pone.0131279.g005
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Wind speed determines the convective cooling rates of the PV module and microinverter.
Surprisingly, the pair plots and correlation coefficients values from Fig 2 and Table 3, show
that the Module.T and Micro.T have very little correlation with the range of wind speeds
observed in SDLE SunFarm. A possible explanation of this lack of expected response is that
during times of high irradiance, sustained winds were not present to cool the devices suffi-
ciently on the minute time scale and overcome the effects of the more dominant thermal pre-
dictors, such as the radiating module. The very low correlation coefficients between wind speed
and any other variable, including Module.T, strongly suggest that even at higher speeds the
effect of wind on temperature is negligible. Further, at low irradiances where high wind condi-
tions may exist, for example during storms, any change in temperature from the winds is less
noticeable since the Micro.T is dominated by the Ambient.T.

Table 4 summarizes the thermal behavior of both the microinverters and the PV modules
during morning hours. When the incident solar irradiance is less than 60W/m2, the Module.T
and the Micro.T can actually cool down below the Ambient.T (Fig 4(a)). The PV module emis-
sivity is greater than the ambient emissivity [53]. Therefore the PV module losses more energy
through radiation during low irradiance morning hours (when irradiance< 60W/m2) than
the Ambient.T, and this energy loss is not affected by PV module mounting or operational con-
ditions [53]. In the irradiance level below 60W/m2, the AC power output of the system is very
low. Therefore, energy loss during DC to AC conversion is also very small. Furthermore, the
microinverters radiate more energy than it receive from the PV modules as the Module.T is

Fig 6. Microinverter temperature prediction comparison on acloudy day.Comparison of actual and predicted microinverter temperature on a particular
cloudy day (2013-08-02).

doi:10.1371/journal.pone.0131279.g006
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lower than Micro.T during low irradiance morning hour. As a result, Micro.T is slightly below
the Ambient.T.

Fig 3 shows that the temperature variation throughout the day in the microinverters con-
nected to different brands of PV modules. The variation in thermal behavior across different
PV module brands starts to show itself only during high irradiance conditions. Table 5 shows
the variation of thermal behavior of Module.T and Micro.T during high irradiance local solar
noontime. The largest Micro.T is observed in the microinverters connected to the P.t12 PV
modules. The O.t12 PV modules provide more power than P.t12 PV modules and the P.t12
Module.T are slightly greater (approximately 0.5°C) than O.t12 Module.T. However, the P.t12
Micro.T is approximately 1°C higher than O.t12 Micro.T. This temperature difference could
occur due to the backsheet emissivity difference between the P.t12 and O.t12 PV modules. The
Q.t12 PV module produce approximately 16W less than the T.t14 PV modules and the Q.t12
PVModule.T is, on average, 1°C is higher than the T.t14 PV module (Table 5). However, the
microinverters connected to the T.t14 PV modules shows similar temperature rise to the
microinverters connected to the Q.t12 microinverters due to higher Q.t12 Module.T. Similar
behavior was observed among K.t6 and L.t6 Module.T and Micro.T. variables as well. These
results illustrate how significant the Module.T’s influence on the Micro.T compared to the effi-
ciency and direct internal power losses. Enphase recommends a maximum input power of 270
W, of which only 225 W will be converted by the inverter, forcing the module to operate off of
maximum power, and building more heat into the module. Therefore, it may be more benefi-
cial for the long term performance of the microinverter to power match the PV module even if
the conversion efficiency is reduced, since our analysis suggests the inverter will operate at
lower temperature.

Fixed rack tilted PV systems are the most common PV systems in practice. The major dif-
ference between fixed rack tilted and dual-axis tracking PV systems is: the dual-axis tracking
system are always following the sun, therefore, it receives the maximum available irradiance all
the time where the fixed rack system receives the maximum irradiance during solar noon. As a
result, temperature of the PV modules and microinverters in dual-axis trackers rise sharply in
the morning hours, reach saturation/steady state and stay in that state till evening. Tempera-
ture of the PV modules and microinverters in fixed rack tilted PV system rise slowly and reach
at the saturation state only at solar noon and decrease afterwards. Fixed rack tilted PV systems
are usually mounted either on open field or on rooftop. In both cases, the PV modules and
microinverters receive radiation heat energy from the ground or rooftop to which the system is
mount. The radiation heat energy from the ground for PV systems in dual-axis trackers is neg-
ligible due to the greater distance between ground and tracker platform. Therefore, the temper-
ature of PV modules and microinverters in dual-axis trackers will be lower than the
temperature of PV modules and microinverters in fixed rack PV systems.

Conclusion
Amultiple linear regression model for the Micro.T has been developed for the microinverters
connected to different brands of PV modules installed on dual-axis trackers, which reveals the
relations between microinverter temperature and most related stressors, namely Ambient.T
and Module.T. A data science approach has been followed to rank-order these predictors. A
further parametric model can be expanded to predict the Micro.T in fixed-rack system and
roof top systems that will allow us to compare the thermal characteristics of microinverters in
different PV module mountings. From the analysis, we uncover that at high irradiance, the
Module.T, which is determined by the difference between absorbed solar power and maximum
DC electrical power loading the PV module, is the dominant predictor of Micro.T. Our work
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strongly suggests that the lifetime of microinverter can be enhanced by matching power han-
dling capability of PV module and microinverter to avoid the power saturation state of micro-
inverter. This study summarizes the thermal behavior of microinverters on dual-axis trackers,
which can be considered as baseline behavior. As time progresses, microinverters will degrade
and it will effect the thermal response of the microinverters. Future work will explore the deg-
radation of microinverters and the coupling of the data-driven thermal model with a physical
model of the microinverter components to completely understand component-level degrada-
tion and their respective influence on microinverter performance, lifetime and degradation.

Supporting Information
S1 Data. Datasets for the study of microinverter thermal performance in the real-world:
measurements and modeling. The comma-separated values (CSV) file contains full datasets
used for this study.
(CSV)
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