Skip to main content
. 2015 Apr 8;6(2):224–247. doi: 10.4338/ACI-2014-11-RA-0107

Table 3.

Characteristics (n, %)a of Nurses (n=847)

Demographics Total (n=847) ePHR nonusers (n=447) ePHR users (n=400) X2 p
Age (years), Mean (SD) 45.1 (12.6) 44.3 (12.8) 46.0 (12.4) t= –1.91 0.06
≤ 50 498 (59.0) 281 (63.0) 217 (54.5) 6.26b 0.01
> 50 346 (41.0) 165 (37.0) 181 (45.5)
Female 799 (94.6) 424 (95.1) 375 (94.0) 0.29b 0.59
White 633 (75.2) 321 (72.6) 312 (78.0) 2.97b 0.09
Education
Diploma/associate’s degree 109 (12.9) 68 (15.3) 41 (10.3) 13.91 <0.01
Bachelor’s degree 451 (53.4) 251 (56.4) 200 (50.0)
Master’s/doctoral 285 (33.7) 126 (28.3) 159 (39.8)
Marital status
Never married 166 (19.7) 105 (23.6) 61 (15.3) 9.19 <0.05
Divorced/separated/widowed 106 (12.6) 53 (11.9) 53 (13.3)
Currently married/living with partner 572 (67.8) 287 (64.5) 285 (71.4)
Employment status
Full-time employed, yes 772 (91.1) 412 (92.2) 360 (90.0) 0.98b 0.32
Years of working as registered nurse, Mean (SD) 18.9 (12.9) 18.0 (12.7) 19.9 (13.0) t= –2.20 0.03
Current position
Staff/general duty/private duty 515 (60.8) 310 (69.4) 205 (51.3) 61.18 <0.01
Nurse manager/supervisor/other administrator 119 (14.0) 58 (13.0) 61 (15.3)
Clinical informatics specialistc 119 (14.0) 25 (5.6) 94 (23.5)
Otherd 94 (11.1) 54 (12.1) 40 (10.0)
Specialty area
Noncritical care 539 (63.6) 319 (71.4) 220 (55.0) 53.72 <0.01
Critical care 177 (20.9) 97 (21.7) 80 (20.0)
Nursing informatics 131 (15.5) 31 (6.9) 100 (25.0)
Health
Poor/fair 35 (4.1) 24 (5.4) 11 (2.8) 3.02b 0.08
Good/very good/excellent 812 (95.9) 423 (94.6) 389 (97.3)
Nursing group
Hospital 664 (78.4) 395 (88.4) 269 (67.3) 54.34b <0.01
Nursing informatics community 183 (21.6) 52 (11.6) 131 (32.8)
Chronic illness and medication use
No 266 (31.4) 160 (35.9) 106 (26.5) 8.17b <0.01
Yes 580 (68.6) 286 (64.1) 294 (73.5)
Providers use electronic health record
No 250(29.5) 191 (42.7) 59(14.8) 78.10b <0.01
Yes 597 (70.5) 256 (57.3) 341 (85.3)

ePHR=electronic personal health record. SD=standard deviation.

aPercentage may not sum to 100 because of rounding; numbers may not sum to totals due to missing responses.

bYate’s correction for continuity to compensates for the overestimate of the Chi-square value when used with a 2 by 2 table.

cClinical analyst/Nursing informatics analyst/nurse informaticist/informatician/informatics nurse specialist/informatics specialist/chief nursing informatics officer/supervisor nursing informatics/nursing informatics consultant/developer.

dNurse practitioner/certified registered nurse anesthetist/clinical nurse specialist/certified nurse midwife/educator/researcher