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INTRODUCTION 

Hepatocellular carcinoma (HCC) is a growing clinical problem, 

being the second leading cause of cancer deaths worldwide (GLO-

BOCAN, http://globocan.iarc.fr) and one of the only increasing 

causes of cancer-related mortality in the U.S.1 In contrast to devel-

oping countries in the Asia-Pacific regions and sub-Saharan Afri-

ca, where hepatitis B virus (HBV) is the major risk factor for HCC, 

chronic infection with hepatitis C virus (HCV) has been a leading 

cause of HCC in developed countries2 and is the first indication for 

liver transplantation for patients with HCC in the U.S.3 Worldwide, 

the World Health Organization (WHO) estimates that 3% of the 

world’s population has been infected with HCV and that more 

than 170 million people are currently chronic carriers of HCV 

(WHO, www.who.int). In the U.S., more than 75% of HCV-infect-

ed adults were born between 1945 and 1965, so-called “baby 

boomers” and more than 1 million of the baby-boomer popula-

tion is predicted to develop HCV-related cirrhosis, hepatic decom-

pensation, or HCC by 2020 with current hospital inpatient man-

agement costs for this population over $15 billion annually.4,5 

The risk of HCC, in chronic HCV infection, is associated with fi-

brosis stage. In cirrhotic subjects, the annual incidence of HCC is 

extremely high (1-7% per year), although HCC rarely develops in 

livers with less fibrosis.6,7 Although the emergence of highly effec-
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tive direct-acting antivirals (DAAs) for HCV is expected to reduce 

the incidence of HCV-related HCC,8 the achievement of a sus-

tained virological response (SVR) does not eliminate the risk of 

HCC, especially when the patients have already developed ad-

vanced liver fibrosis.9,10 Although molecular mechanisms of HCV-

induced HCC development have not been fully elucidated, these 

epidemiological observations suggest that the major role of HCV 

in carcinogenesis is to create a cirrhotic tissue microenvironment 

that serves as a carcinogenic milieu. In addition, direct carcino-

genic effects of HCV proteins have been suggested in a variety of 

experimental models as additional drivers of HCV-induced HCC 

development.11 

In this review, we overview the current molecular understanding 

of HCV-induced hepatocarcinogenesis and discuss potential strat-

egies that may allow to stratify subjects with HCV infection at dif-

ferent risks of HCC occurrence based on clinical or, more refined, 

molecular markers. 

Pathogenesis of HCV-induced HCC

HCV-induced HCC development is a multi-step process that may 

progress over 20-40 years and involves a number of steps: estab-

lishment of chronic HCV infection, chronic hepatic inflammation, 

progressive liver fibrosis, initiation of neoplastic clones accompa-

nied by irreversible somatic genetic/epigenetic alterations, and 

progression of the malignant clones in a carcinogenic tissue mi-

croenvironment (Fig. 1). Each step of HCV-induced hepatocarcino-

genesis is a potential target for therapeutic intervention or che-

moprevention.12 Unlike HBV which can integrate into the host 

genome leading to potential direct carcinogenic activity, HCV is a 

RNA virus with limited integration of its genetic material into the 

host’s genome. Therefore, the carcinogenic potential of HCV is 

generally assumed to be linked to indirect mechanisms, although 

the lack of a convenient in vitro model system to study biology is 

a major obstacle for the understanding of the mechanisms linking 

Figure 1. Natural history and biological drivers of HCV-induced HCC development. Some figures sourced from www.servier.com 
under a Creative Commons Attribution 3.0 Unported License. HCV, hepatitis C virus; HCC, hepatocellular carcinoma; LPS, lipopolysac-
charide; SNP, single nucleotide polymorphism.



107

Nicolas Goossens, et al. 
Hepatitis C virus-induced hepatocellular carcinoma

http://www.e-cmh.org http://dx.doi.org/10.3350/cmh.2015.21.2.105

HCV infection, inflammation and carcinogenesis.13,14 

Interaction of HCV with cellular pathways

The “field effect” or “field cancerization” refers to the cirrhotic 

milieu/microenvironment that allows initiation and promotion of 

neoplastic clones by facilitating genetic aberrations and cellular 

transformation.15 Chronic damage to hepatocytes, such as HCV 

infection, leads to a release of inflammatory and fibrotic media-

tors such as reactive oxygen species, cell death signals, hedgehog 

ligands and nucleotides.16 A complex series of mechanisms center-

ing on the hepatic stellate cell, mediated through intracellular in-

flammasome activation, the nuclear receptor family, (farsenoid-X-

receptor, peroxisome proliferator-activated receptors and others) 

and other transcriptional events contribute to stellate cell activa-

tion. The activated hepatic stellate cell promotes liver scarring 

through proliferation, contractility, fibrogenesis, matrix degrada-

tion and inflammatory signaling. HCV broadly infects hepatocytes, 

monocytes, lymphocytes and other secretory cells, and contrib-

utes to stellate cell activation. HCV core and nonstructural pro-

teins stimulate profibrogenic mediators such as TGF-beta.17 HCV 

infection induces TGFB1 through reactive oxygen species (ROS) 

production, p38 MAPK, JNK, ERK, and NF-kappaB pathways.18 

Platelet-derived growth factor (PDGF) is the most potent mito-

genic signal, inducing expression of beta PDGF receptor expres-

sion in stellate cells together with other cell surface receptors of 

growth signaling such as integrins.19 Transgenic mice expressing 

PDGF-C develop liver fibrosis and HCC,20 and an acyclic retinoid, 

peretinoin, represses fibrosis and HCC development in the mod-

el.21 Severity of liver fibrosis is tightly correlated with increasing 

risk of HCC in patients with chronic HCV infection, suggesting 

that cirrhosis-driven carcinogenesis is the major mechanism in the 

development of HCV-related HCC.6,22 

Clinical data suggest the role of HCV viral factors in disease 

progression and HCC development. For example, genotype 3 HCV 

has a worse response to DAAs, increased steatosis, and increased 

fibrosis progression rate,23,24 whilst, although the evidence is con-

flicting, HCC risk seems to be dependent on viral genotype and 

potentially increased in subjects with HCV genotype 3.25-27  Exper-

imental data also seem to suggest that HCV proteins interact with 

cellular proliferation and survival pathways leading to an in-

creased risk of HCC. Over-expression of HCV proteins, promotes 

cellular proliferation, transformation, and/or tumor formation in 

mice, suggesting the direct contribution of viral proteins to acti-

vating oncogenic molecular pathways.28-31 The viral core protein 

inhibits tumor suppressor genes TP53, TP73, and RB1 as well as 

negative regulator of cell cycle such as CDKN1A.32-35 NS3 and 

NS5A also inhibit TP53,36,37 and NS5B inhibited RB1.38 HCV core, 

E2, NS5A, and NS5B activate cellular proliferative RAF/MAPK/ERK 

kinase pathways and E2F1 pathway, which are associated with 

more aggressive biological phenotype of HCC tumors.34,38-41 HCV 

proteins such as core are known to induce generation of ROS and 

transactivate MAPK and AP1 pathways.42 Insulin-like growth fac-

tor signaling is activated via IGF1R in early stage HCV-related 

HCC.43 NS5A was found to be involved in activation of PI3K/AKT 

and β-catenin/WNT pathways, and evasion from apoptosis by 

caspase-3 inhibition.44 NS5A inhibits TGF-beta signaling by pre-

venting nuclear translocation of Smad proteins, resulting in down-

regulation of the tumor suppressor CDKN1A.45 

Interferon pathway activation is a well-known innate immune 

response to HCV infection, and recent studies have elucidated its 

role in anti-tumor immunity.46 The HCV core protein inhibits the 

NF-kappaB mediated immune responses47 whereas the JNK path-

way, activated in non-parenchymal liver cells by proinflammatory 

signals such as ROS, generates an inflammatory hepatic microen-

vironment that supports HCC development.48 Viral proteins also 

appear to subvert innate immune pathways via the suppression of 

innate immunity, inhibition of natural killer cells and impairment 

of antigen-presenting cells by viral proteins.49-51 

Clinically, the interaction of HCV, steatosis and the metabolic 

syndrome has suggested a modulation of metabolic pathways by 

chronic HCV infection.52,53 In addition, HCV-related HCC is often 

accompanied by histological steatosis within the tumor and non-

tumoral liver.54 Expression of core protein in transgenic mice in-

duces steatosis, insulin resistance and HCC, whereas HCV core 

protein co-localizes with apolipoprotein A2 on the surface of tri-

glycerides, suggesting its association with lipid metabolism.31,55 

HCV core protein suppresses microsomal triglyceride transfer pro-

tein activity and interferes with hepatic assembly and secretion of 

triglyceride-rich very low density lipoproteins, further contributing 

to steatosis.56 HCV core protein interacts with RXR-alpha and per-

oxisome proliferator-activated receptor-alpha (PPAR-alpha), and 

modulates cell differentiation, proliferation and fatty acid trans-

port and catabolism in mice.57 In the presence of HCV core in-

duced mitochondrial dysfunction, PPAR-alpha exacerbates steato-

sis, induces oxidative stress, and increases cell growth signals.58

Activating somatic mutations in telomerase reverse-transcrip-

tase promoter is a frequent early neoplastic event in HCC with 

mixed etiologies including HCV.59 Hepatocyte proliferation is gen-

erally decreased at the stage of cirrhosis after many rounds of re-
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generation accompanied by telomere shortening that triggers cel-

lular senescence though ATM, TP53, and CDKN1A as a safeguard 

to prevent carcinogenesis.60 HCV core protein overcomes stress-

induced hepatocyte senescence by down-regulating CDKN2A ex-

pression via DNA methylation.61 

Host factors affecting susceptibility to HCV-related 
HCC

A multi-kinase inhibitor, sorafenib, is the only drug currently ap-

proved for advanced HCC.62 Sorafenib showed anti-HCC effect by 

blocking paracrine hepatocyte growth factor from stromal cells in 

response to vascular endothelial growth factor-A secreted from 

HCC cells.63 Interestingly it improved portal hypertension in cir-

rhotic patients, supposedly due to its anti-angiogenic activity.64 

Epidermal growth factor (EGF) is a mitogen involved in cellular 

growth, proliferation, differentiation, and carcinogenesis. In ro-

dent models of cirrhosis-driven HCC, pharmacological inhibition 

with a small molecule EGF receptor (EGFR) inhibitor, erlotinib, re-

gressed fibrosis and inhibited HCC development65 despite no inhi-

bition of EGF pathway in the tumors, suggesting that the HCC 

preventive effect was through action on the cirrhotic tissue micro-

environment that supports initiation of neoplastic clones. In con-

trast, another small molecule EGFR inhibitor, gefitinib, suppressed 

growth of initiated HCC clones in rats.66 EGFR was recently identi-

fied as a co-factor for HCV cellular entry, and erlotinib inhibited 

HCV infection, suggesting its role as a potential anti-HCV 

drug.67,68 

Various host polymorphisms associated with the immune sys-

tem have been associated with HCV-induced HCC. A Japanese 

genome-wide association study comparing HCV-related HCC pa-

tients with chronic hepatitis C patients identified a single nucleo-

tide polymorphism (SNP) in MHC class I polypeptide-related se-

quence A (MICA - rs2596542), which is involved in response of 

dendritic cells to type-I interferon in chronic hepatitis C.69,70 An-

other SNP in the MICA promoter (rs2596538) was associated with 

increased serum soluble MICA protein.71 A subsequent study in 

Caucasian hepatitis C patients in Switzerland did not replicate the 

association with HCC for this locus, but for a nearby locus in 

HCP5 (rs2244546), suggesting that the MICA/HCP5 region con-

tains a potential susceptibilit y locus.72 An IL28B variant 

(rs12979860), initially identified as an interferon response predic-

tor, may be associated with increased risk of HCV-related HCC.73,74

SNPs in genes associated with metabolic functions have also 

been weakly associated with HCV-induced HCC. Although some 

teams reported an association between HFE gene mutations, in 

particular H63D, and increased risk of HCC,75 these findings were 

not replicated in other studies.76 In patients with chronic hepatitis 

C with advanced fibrosis, positive association between liver iron 

deposition and higher incidence of HCC and poor prognosis was 

nevertheless observed.77 A SNP in the patatin-like phospholipase 

domain-containing protein 3 (PNPLA3) gene (rs738409) associat-

ed with alcoholic and non-alcoholic steatohepatitis may have 

weak association with HCV-related HCC.78 

Assessment of risk of HCC in HCV-infected 
individuals

Considering the high prevalence of HCV-induced cirrhosis, the 

population at risk of development of HCC, requiring surveillance 

according to clinical guidelines, is huge and likely unmanageable. 

For instance, despite guidelines recommending HCC surveillance 

in subjects with cirrhosis,79 most patients at risk of HCC in the US 

do not receive recommended regular surveillance. Only 12% of 

cirrhotic HCV patients had routine annual surveillance in one US 

Veterans Affairs series and only 2% of HCV patients who devel-

oped HCC had previous appropriate screening in another se-

ries.80,81 Additionally, in a population-based US study, less than 

20% of patients with cirrhosis who developed HCC received regu-

lar surveillance.82 Growing numbers of early-stage, asymptomatic 

cirrhotics identified by non-invasive fibrosis detection methods 

such as elastography may also add to the HCC screening burden.83 

Therefore prognostic indicators are being actively developed to 

stratify HCV subjects, as well as patients with other liver diseases, 

into clearly defined risk groups to enable effective clinical man-

agement of the patients.12

Clinical stratification of HCC risk in HCV

A number of non-invasive and invasive clinical markers and sys-

tems have been proposed to assess risk of HCC in subjects with 

HCV, in particular in patients with HCV-induced cirrhosis (Table 1). 

Scores identifying subjects at risk of developing HCC after SVR 

have also been reported84,85 although these scores require further 

validation. This is especially relevant in this era of highly effective 

DAAs where the burden of HCV-related complications might shift 

to subjects who have achieved SVR, but remain at high risk of liv-

er-related complications. Overall, although clinical variable-based 

prediction models for HCC development have been explored, their 

performance is limited and none of them has been established in 

practice.86,87
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Molecular markers of HCC risk in HCV

Molecular biomarkers of HCC risk and/or poor prognosis may 

enable further enrichment of the high-risk population and may 

significantly contribute to improvement of early HCC detection. 

Numerous germline SNPs have been reported as HCC risk vari-

ants, although very few of them are replicated in independent pa-

tient series/cohorts.88 The EGF 61*G allele (rs4444903) was asso-

ciated with HCC risk in a prospective cohort of patients with HCV-

related advanced fibrosis or cirrhosis (Table 2),89,90 while a SNP in 

an antioxidant enzymes, myeloperoxidase, (MPO -463*G, 

rs2333227) was associated with HCC risk in another prospective 

study.91 A 186-gene-expression signature was associated with 

HCC risk in prospectively followed patients with early-stage HCV-

related cirrhosis (HR=2.65).92 The gene signature has proven 

prognostic not only for HCC recurrence but also for liver disease 

progression, HCC development and overall survival in subjects 

with early-stage HCV cirrhosis.92-94 The signature was present in 

the liver of rodent models of fibrosis/cirrhosis-driven HCC, and the 

poor prognosis pattern of the signature was reversed in associa-

tion with the HCC chemopreventive effect of an FDA-approved 

EGFR inhibitor, erlotinib,65 which is now being tested in a phase 1 

trial with the gene signature as a companion biomarker (Clinical-

Trials.gov, NCT02273362). Circulating cells or biomolecules such 

as miRNAs may be alternative sources to obtain similar molecular 

information less invasively.95 In addition, molecular imaging of 

collagen could potentially be used to monitor fibrosis regression, 

which may correlate with decreased HCC risk.96

One possible role of molecular risk stratification of subjects with 

HCV-induced liver disease could be chemopreventive trial enrich-

Table 1. Clinical prognostic systems to assess risk of HCC in HCV subjects

Risk score
Etiology of liver 

disease
Proportion cirrhotics Variables Reference

Risk index HCV after SVR 10% Age, AST, platelet count 85

ScoreHCC HCV after SVR 30% Age, AFP level, low platelets and advanced fibrosis 84

Chang et al HCV after therapy 45% fibrosis stage 3-4 A�ge, male sex, AFP level, low platelet, advanced fibrosis, 
HCV genotype 1b and non SVR

105

El-Serag et al HCV 100% AFP, ALT, platelets, interaction terms, and age 106

HALT-C model HCV 41% A�ge, race, alkaline phosphatase, esophageal varices, ever 
smoked, and platelet count

107

REVEAL-HCV HCV 4% A�ge, ALT, AST/ALT ratio, HCV RNA, cirrhosis and HCV 
genotype

108

HCC, hepatocellular carcinoma; HCV, hepatitis C virus; SVR, sustained virological response; AST, aspartate aminotransferase; AFP, alpha-fetoprotein; ALT, 
alanine aminotransferase.

Table 2. Molecular prognostic systems to assess risk of HCC in HCV subjects

Risk score
Liver disease 

etiology
Outcomes Proportion cirrhosis Molecular marker Reference

186-gene signature HCV Overall death 
Progression to advanced 

cirrhosis 
HCC

100% 186-gene signature 92,93

EGF HCV 6-year HCC risk 39% EGF 61*G (rs4444903) 90

PNPLA3 Alcohol (52%) 
HCV (48%)

6-year HCC risk 100% PNPLA3 444*G 
(rs738409)

109

MPO HCV HCC risk 100% MPO -463*G 
(rs2333227)

91

CAT HCV HCC risk 100% CAT -262*C (rs1001179) 91

HFE
Alcohol (54%) 

HCV (46%)
HCC risk 100% HFE C282Y (rs1800562) 110

HCC, hepatocellular carcinoma; HCV, hepatitis C virus; EGF, epidermal growth factor; MPO, myeloperoxidase; CAT, catalase; HFE, hemochromatosis.
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ment with subjects at high risk of HCC.12 Until now, several large 

phase 3 clinical trials have failed to show the usefulness of che-

mopreventive strategies in HCC despite the enrollment of thou-

sands of patients and a follow-up time approaching decade(s).97-99 

Enrichment of high-risk patients with the use of HCC risk biomark-

ers and/or prognostic indices is critical to increase HCC incidence 

and keep required sample size and study duration within practi-

cally feasible range. HCC risk biomarker-based clinical trial enrich-

ment will drastically lower the bar to conduct cancer chemopre-

vention trials by substantially reducing required sample size and 

the duration of follow-up comparable to oncology trials enrolling 

advanced-stage cancer patients.100

CONCLUSIONS AND FUTURE PERSPECTIVES

Recent clinical trials of DAA-based interferon-free regimens 

have demonstrated SVR rates greater than 90% across a wide 

spectrum of HCV-induced disease101 hopefully leading to reduced 

rates of HCC development in subjects achieving SVR.9 However a 

number of challenges remain before HCV antiviral therapy will 

lead to eradication of HCV-induced HCC. The current cost of DAA-

based therapy is prohibitive for most subjects infected with HCV 

outside developed countries suggesting that a reservoir of HCV-

infected individuals is likely to remain for the foreseeable future. 

In addition, a significant proportion of individuals are not aware 

of their HCV-positive status; for instance the US Center for Dis-

ease Control estimates that 3% of baby boomers are HCV-posi-

tive, and has recently approved point-of-care testing and recom-

mended universal one-time HCV screening for all adults born 

between 1945 and 1965.102 Although the number of HCV-infected 

people may stabilize or even decline in the next decades, most 

projections agree that the incidence of HCV-related complications 

will continue rising and peak around 2020-2030.103,104 Finally, and 

importantly, achievement of SVR leads to a reduction, but not an 

elimination of the risk of HCC9,10 suggesting that risk stratification 

for risk of HCC is still important even in this subgroup.

In conclusion, despite an improved understanding of direct and 

indirect mechanisms leading to HCV-induced HCC and despite the 

development of highly potent DAAs for HCV therapy HCV-related 

HCC will remain a major health challenge in the coming decades. 

Although prevention of HCV-induced HCC is not yet established, 

direct and indirect oncogenic roles of HCV and candidate target 

genes and molecular pathways have been suggested in experi-

mental and clinical studies. Well validated clinical and molecular 

biomarkers will be key to target subjects at the higher end of the 

risk spectrum with more intensive interventions, surveillance and 

possibly chemoprevention trials. 
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