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ABSTRACT
The distortion of biomedical signals by powerline noise from recording biomedical
devices has the potential to reduce the quality and convolute the interpretations
of the data. Usually, powerline noise in biomedical recordings are extinguished
via band-stop filters. However, due to the instability of biomedical signals, the
distribution of signals filtered out may not be centered at 50/60 Hz. As a result,
self-correction methods are needed to optimize the performance of these filters. Since
powerline noise is additive in nature, it is intuitive to model powerline noise in a
raw recording and subtract it from the raw data in order to obtain a relatively clean
signal. This paper proposes a method that utilizes this approach by decomposing
the recorded signal and extracting powerline noise via blind source separation and
wavelet analysis. The performance of this algorithm was compared with that of a 4th
order band-stop Butterworth filter, empirical mode decomposition, independent
component analysis and, a combination of empirical mode decomposition with
independent component analysis. The proposed method was able to expel sinusoidal
signals within powerline noise frequency range with higher fidelity in comparison
with the mentioned techniques, especially at low signal-to-noise ratio.

Subjects Bioengineering, Computational Biology, Cardiology, Drugs and Devices, Neurology
Keywords Noise-assisted noise reduction, Electrophysiology, Neurotechnology, Ensemble
empirical mode decomposition, Independent component analysis, Wavelet, Machine learning

INTRODUCTION
Powerline noise from recording biomedical devices have been known to introduce

distortion to recorded signals and, as a result, compromise their integrity and negatively

affect their interpretations. Consequently, fields such as neural engineering, neurosurgery,

cardiology, and drug discovery need to refine raw data by eliminating powerline noise.

An adulteration of neural signals by powerline noise makes it difficult to understand the

properties of ion channels and how ensembles of neurons interact to perform specific

computations for observed behaviors. In effect, clinical applications of neural interfaces

such as brain-machine and brain-computer interfaces become difficult to implement.

Neurosurgical procedures often involve recording neural activity for intraoperative

monitoring, localization of brain regions, and proper placement of stimulating electrodes
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for deep brain stimulation (Finnis et al., 2003; Guridi et al., 1999; Schramm et al., 1990).

Special rhythms of the brain such as high synchronous intra-cortical activity in the gamma

frequency band (25 Hz to 100 Hz) often lead to dyskinesia (Brown, 2006). Since powerline

noise exists within the frequency range of some of these important neural oscillations, it is

essential to extinguish it to make valid neuro-pathological conclusions and, in succession,

develop appropriate approaches for treatment. Details about the condition of the heart

and, in turn, the flow of blood in the body is vital in disease diagnosis. By the same

token, electrocardiography has become an indispensable clinical tool in cardiology. The

electrocardiogram (ECG) is a representation of the electrical activity of cardiac tissue

during systole and diastole. This signal is typically obtained by measuring the electrical

potential between a specific spatial combination of recording electrodes. As the cardiac

depolarization-mediated mean electrical vector approaches a positive electrode, the ECG

signal increases positively in amplitude and vice versa. The P wave, QRS complex and T

wave in ECG signals are manifestations of atrial depolarization, ventricular depolarization

and ventricular repolarization respectively. Although its origin is still under debate, an

inversion of the U wave has been shown to be an indicator of myocardial ischemia (Miwa

et al., 1993; Gerson et al., 1979; Van Eck, Kors & van Herpen, 2005). In the presence of pow-

erline noise, a malformation in the morphology of the ECG waveform—and by extension,

the U wave—is very difficult to detect with the naked eye. Lastly, microelectrodes have

been demonstrated to be very useful in drug discovery (Cui et al., 2006; Jones et al., 2011;

Jain & Muthuswamy, 2008; Stett et al., 2003). Signal perturbations influenced by powerline

noise make it difficult to understand drug-tissue interactions for the development of

clinically-viable pharmaceutical products prior to clinical trials. For these reasons, the

elimination of powerline noise has been a vigorous field of investigation (Keshtkaran

& Yang, 2014; Agrawal & Gupta, 2013; Van Alste & Schilder, 1985; Levkov et al., 2005;

Piskorowski, 2012; Poungponsri & Yu, 2013; Keshtkaran & Yang, 2012; Poornachandra &

Kumaravel, 2008; Clancy, Morin & Merletti, 2002; Philips, 1996).

Powerline noise is characterized by a chronic sinusoidal 50/60 Hz element which can

be observed in raw recordings of biomedical data. The sinusoidal component is usually a

result of the use of devices that employ alternating current as a source of power. Alternating

current has been used in the design of biomedical devices because it has been demonstrated

to possess the quality of being relatively stable, especially over long distances, as opposed

to direct current. In some cases, powerline noise is removed by low-pass filters with cut-off

frequencies below 50/60 Hz. Although this approach solves the problem of extinguishing

powerline noise and has its applications, it is challenging to implement on some forms

of biomedical data because of the importance of broadband signals. These include, but

are not limited to, electroencephalogram signals and extracellular neural recordings.

For some purposes, such as the extraction of action potentials from broadband neural

tissue recordings, the pitfall of obtaining noisy recordings can be potentially avoided

by employing a high-pass filter with a cut-off frequency above 250 Hz (Oweiss, 2010).

Band-stop filters have been used to attenuate powerline noise to inconspicuous levels.

Nevertheless, due to the instability of biomedical signals, band-stop filters sometimes fail
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in reducing noise with 50/60 Hz center frequency and thus may have to rely on correction

methods (Ferdjallah & Barr, 1994; Ferdjallah & Barr, 1990; Hamilton, 1996). Although

band-stop Butterworth filters obtain better powerline noise removal results with increasing

filter orders, their step responses are usually characterized by ringing and overshoot. In

the same vein, depending on the filter order, the rate of attenuation can be low. Although

the rate of attenuation in Chebyshev filters are higher than Butterworth filters, their step

responses are marked by higher levels of ringing. Bessel filters do have significantly lower

levels of ringing and overshoot, however their slower attenuation rates make it possible for

powerline noise to leak into the signal.

Many signal processing algorithms have been proposed to solve the issue of powerline

noise interference. Some of the notable procedures involve blind source separation. Empir-

ical mode decomposition has been proposed as a potent approach for eliminating power-

line noise (Blanco-Velasco, Weng & Barner, 2008; De-xiang, Xiao-pei & Xiao-jing, 2008; Li et

al., 2012; Naji, Firoozabadi & Kahrizi, 2011; Nimunkar & Tompkins, 2007; Zhang & Zhou,

2013; Chang, 2010; Chang & Liu, 2011; Zivanovic & González-Izal, 2013). Independent

component analysis has also been explored by many researchers as a potential approach for

removing powerline noise (Xue et al., 2006; Iriarte et al., 2003; Castellanos & Makarov, 2006;

Kuzilek et al., 2014; Chawla, 2011; Kuzilek, Kremen & Lhotska, 2014). A combination of

empirical mode decomposition and independent component analysis has also been looked

into as a potential approach for eliminating powerline noise (Mariyappa et al., 2015).

This paper proposes an algorithm which uses blind source separation and wavelet

analysis to detect and remove powerline noise in biomedical signals. The approach is

subsequently compared with a band-stop 4th order Butterworth filter, empirical mode

decomposition, independent component analysis and a combination of empirical mode

decomposition with independent component analysis. This unsupervised machine learn-

ing approach is fully automatable and void of the need to apply adaptive self-correction

mechanisms.

The proposed approach is motivated by potency of the ensemble empirical mode de-

composition algorithm in decomposing a signal into amplitude–frequency modulations—

whose linear combination is results in the reconstruction of the signal. In this framework,

these modulations are assumed to be a linearly mixed representation of source signals.

Some of the modulations are then selected based on their frequency properties and

un-mixed into their statistically independent sources via independent component

analysis. The Morlet wavelet was used to describe the time-frequency properties of the

decompositions and independent component analysis aided in extracting an optimal

data-driven model of powerline noise. An inversion of the wavelet transform at 50/60 Hz

of the powerline noise model was used to recover the powerline noise that exists within the

signal. The result was subtracted from the original signal to obtain its denoised version.

Current algorithms that employ a combination of empirical mode decomposi-

tion and independent component analysis require the user to manually select the

amplitude–frequency modulations and/or independent components of interest. An inno-

vation of the proposed framework is that the signals of interest are automatically selected
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based on a pre-defined frequency threshold around their wavelet transformations. Another

innovation of the proposed technique is that the inverse wavelet transform is applied on

the powerline noise model—which was obtained via ensemble empirical mode decompo-

sition and independent component analysis—to extract the 50/60 Hz component.

METHODS
Pseudo-code for proposed approach

Algorithm 1 Powerline Noise Elimination via Blind Source Separation and Wavelet Analysis

1: input Y← 1-D signal with powerline noise

2:

3: procedure P N E

4: Y← do ensemble empirical mode decomposition on Y

5: N← choose IMFs from Y by wavelet-based frequency extraction and thresholding

6: U← do independent component analysis on N

7: D←model powerline noise using the most appropriate independent component in U and wavelet

8: Y*← Y − D

9:

10: return Y*

Data source
The data used for the evaluation of this approach consisted of broadband neural activity

from ensembles of hippocampal neurons, electrocardiographs and electroencephalogram

signals (EEG signals).

• One set of data was obtained from the Collaborative Research in Computational

Neuroscience initiative (Mizuseki et al., 2009). The recordings were made in the Cornu

Ammonis 1 layer of the right dorsal hippocampus of Long Evans rats during open field

foraging. This data was sampled at 20 kHz.

• Three randomly chosen sets of data with ECG signals from seemingly healthy volunteers

were also employed (Goldberger et al., 2000; Garcia-Gonzalez et al., 2013; Citi, Poli &

Cinel, 2010). These were sampled at 5 kHz.

• Six data sets of EEG signals from humans used for brain-computer interface applica-

tions were used (Goldberger et al., 2000). Three of them, which were previously used to

elucidate the limitations of using event-related potentials for brain-computer interface

applications, were sampled at 2,048 Hz (Citi, Poli & Cinel, 2010). The other half of the

data sets were aimed at general purpose brain-computer interface design; they were

sampled at 160 Hz (Schalk et al., 2008).

Sliding time window
For the purpose of computational speed, a sliding window with no overlap was used.
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Decomposition of raw signal into amplitude-frequency
modulations
Empirical mode decomposition
Suppose we want to eliminate a chronic sinusoidal xHz noise from a signal y(t) in a single

channel. We can employ empirical mode decomposition (EMD) to split the time series

signal into narrow-band amplitude–frequency sections (Huang et al., 1998; Wang et al.,

2014). These sections, called intrinsic mode functions (IMFs), are obtained by an iterative

sifting procedure. Initially, the local maxima and minima of the signal are detected and are

connected by cubic splines to form the upper and lower envelopes respectively. The mean

of the envelopes is then subtracted from the original signal to give rise to the first IMF.

Subsequently, the first IMF is subtracted from the original signal to result in the residue.

This process is repeated k times with the residue obtained at the end of each iteration

serving as the input for the next. Ultimately, k IMFs and one residue will be obtained. The

signal y(t) can be reconstructed by a summation of the IMFs ci(t) and the residue r(t):

y(t)=
k

i=1

ci(t)+ r(t). (1)

The method by which the local extrema are detected is described in the Appendix

(Ensemble empirical mode decomposition: detecting the local extrema).

Ensemble empirical mode decomposition
The ensemble empirical mode decomposition algorithm (EEMD) is an extension of EMD

which is aimed at making the extraction of IMFs a robust process (Wu & Huang, 2009). In

this algorithm, Gaussian noise of zero mean and a specified standard deviation is added

to the input signal before EMD is applied. For the extraction of each IMF, the addition of

Gaussian noise to the input is done over a specified number of ensembles and the mean

extract in all the ensembles of putative IMFs is selected as the true IMF. This is a truly

noise-assisted method of blind source separation because Gaussian noise forces the EMD

algorithm to consider all options when sifting. With a high enough number of ensembles

for each EEMD iteration, it can be inferred by central limit theorem that the mean of the

ensembles is representative of the most likely IMF; thus, the fittest survive. The input signal

for each ensemble can be summarized as follows:

G∼N (0,σ 2
e ); σ 2

e = [nl ∗ σ

y(t)


]
2
; ehin = y(t)+G (2)

where nl is the desired inverse signal-to-noise ratio of the input signal and ehin is the input

signal for each ensemble h.

Powerline noise detection
Due to the fact that IMFs obtained via EEMD have the attribute of being

amplitude–frequency modulations (Fig. 1A), it is essential to un-mix the cocktail into

their statistically independent sources. In principle, independent constituents of y(t) with

specific frequencies—such as a chronic sinusoidal xHz noise—can be extracted with the
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Figure 1 Ensemble empirical mode decomposition on an ECG signal with 60 Hz powerline noise
added to it and the frequency spectra of the resulting intrinsic mode functions. (A) On the left is
the original snippet of an ECG signal corrupted with powerline noise (green). Seven IMFs obtained via
EEMD have been shown on the right. A constriction of the windows of IMF 4 and IMF 5 reveals that
a chronic sinusoidal modulation exists within them. (B) The frequency spectra of the IMFs shown in A
have been plotted. From this, it is plausible that the modulations seen in IMFs 4 and 5 are powerline noise
at 60 Hz.

aid of ci(t) and r(t). However, due to the high level of variability in the frequency spectrum

for each IMF and the occasional overlap in their frequency spectra (Fig. 1B), selecting

which IMFs will undergo independent component analysis will help reduce the probability

of having noisy estimates of source components. Each IMF selected should be a putative

powerline noise in accordance with the properties of its frequency.

IMF selection via wavelet analysis
A wavelet ϕ(a,b)(t) is square-integrable function that can be dilated (or constricted) along a

and translated along b; it is written in the following form:

ϕ(a,b)(t)=
1
√

a


t− b

a


, ∀a ∈ ℜ+ ∧∀b ∈ ℜ. (3)
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For this framework, the real component of the consecutive Morlet wavelet was employed:

ϕ(f ,j)(t)=


1+ e−f 2

− 2e
−3f 2

4


1
√

2π
e2π if e

−(t−j)2

2


, (4)

where f and j represent the center frequency (scale) and translation respectively. In order

to describe the frequency properties of each independent component, a projection of

the Morlet wavelet unto ci(t) = [c1(t),...,ck(t),r(t)]T was used. This projection p(F,i)

was by accomplished by finding the frequency f in the set of frequencies F = {fi}80
fi=20

that maximizes a pseudo-convolution between ϕ(f ,j)(t) and ci(t) and a summation of the

pseudo-convolution values at all temporal locations t:

p(F,i)= argmax
f∈F


tk





jk

ϕ(f ,j)(t) ∗ ci(t)

− 1

tkfk


tk


fk




jk

ϕ(f ,j)(t) ∗ ci(t)



, (5)

where jk, tk and fk are integers representing the kth translation, time and frequency

evaluated respectively. A summation of the pseudo-convolution values at all temporal

locations exposes the overall frequency morphology that describes a particular IMF. As

mentioned previously, although each consecutive IMF exist within a lower frequency

range, there is a likelihood of obtaining IMFs with partially overlapping frequency

spectra (Fig. 1B). Thus, by choosing IMFs with dominant frequencies within a specified

range, there is an appreciable degree of assurance that the xHz signal is in either of the

chosen IMFs. Essentially, with Eq. (5), if xHz− bHz ≤ p(F,i) ≤ xHz+ bHz (with bHz

serving as a threshold for IMF selection), then ∃i such that i is the index that defines

ci(t) as a putative xHz powerline noise. In the following subsections, any ci(t) such that

xHz− bHz ≤ p(F,i)≤ xHz+ bHz is denoted as nq(t). This method is further elucidated in

the Appendix (IMF selection).

Independent component analysis
Independent component analysis (ICA) is a data-driven approach to blind source

separation of mixed input signals into their independent components. The premise of

ICA is the assumption that each vectorial input signal nq(t) in n = [n1(t),...,nk(t)]T is an

observed signal which is a linearly mixed representation of its intrinsic source component

si(t) and components of statistically independent origin (Hyvärinen, Karhunen & Oja,

2004). This assumption infers the following:

n= As, (6)

where A is the mixing matrix and the source component s = [s1(t),...,sk(t)]. Inevitably,

finding the un-mixing matrix R to obtain a matrix of output signals u which are estimates

of si(t) is the essence of ICA:

u= Rn= RAs. (7)
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In this implementation of ICA, R was determined by an approximate simultaneous

diagonalization of the third and fourth order cumulant tensors. Independent component

analysis: finding R of the Appendix provides an explanation of how R was computed.

Powerline noise recognition
The powerline noise in u is recognized by extending the method outlined in Eq. (5) to

search for the ui whose frequency properties resemble that of xHz powerline noise the

most:

dcomp(t)= argmin
ui(t)


argmax

f∈F


tk





jk

ϕ(f ,j)(t) ∗ ui(t)

− 1

tkfk


tk


fk




jk

ϕ(f ,j)(t) ∗ ui(t)



− x


,

(8)

where x represents the expected frequency of the powerline noise (50 Hz or 60 Hz). In

essence, the ui(t) that satisfies Eq. (8) is the most appropriate approximation of powerline

noise. The motivation behind this approach has been explicated in Powerline noise

recognition of the Appendix.

Signal reconstruction
Powerline noise is modeled by inverting a convolution between dcomp(t) and the real

portion of the Morlet wavelet, and normalizing the root-mean-square amplitude—via

learning and estimating the least square distance aggregate—to compensate for the loss of

amplitude information due to ICA (Appendix, Signal reconstruction):

d(t)= AC−1
limT→∞


T−1

 T
0


jk
ϕ(x∈S,j)(t) ∗ y(t)

2
dt

limT→∞


T−1

 T
0


jk
ϕ(x∈S,j)(t) ∗ dcomp(t)

2
dt

×


j

ϕ(x∈S,j)(t)


jk

ϕ(x∈S,j)(t) ∗ dcomp(t)

,

where S= {50,60} ∧C =


t

ϕ(x∈S,j)(t)
2

∧A ∈ ℜ. (9)

In the same light as Eq. (1), the denoised signal y(t) can be reconstructed in the follow-

ing manner:

y(t)=
k

i=1

ci(t)+ r(t)− d(t)= y(t)− d(t). (10)

RESULTS AND DISCUSSION
In this section, properties of the proposed algorithm are explored. The performance of

the proposed denoising algorithm is evaluated in the presence of artificial and natural
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Figure 2 Independent component selection, signal reconstruction and the effect of time win-
dow. (A) The blue, green and red signals are the recovered, original and noised signals respectively. (B)
The blue, green and red signals are the power spectrum for the recovered, original and noised signals
respectively. (C) The grey trace is the AC noise extracted and the black trace is the Manhattan distance
between the original signal and the recovered signal. (D) The upper image is the pseudo-convolution of
the selected independent component for the first 200 ms of the data. The lower represents that of the final
50 ms. Note that they both peak at circa 60 Hz.

powerline noise. Subsequently, the performance with varying SNRs is compared with that

of a band-stop 4th order Butterworth filter, empirical mode decomposition, independent

component analysis and the combination of empirical mode decomposition with inde-

pendent component analysis.

Noise extraction and signal reconstruction
Characteristics of the proposed approach
To demonstrate the viability of the process of powerline noise removal, artificial 60 Hz

noise was added to local field potentials (SNR= 4.2816dB; amplitude= 700) and was

subsequently reconstructed. A 200 ms time window (without overlap) was used to de-

noise 250 ms of the mentioned neural data. As shown in Figs. 2A and 2C, the procedure

was able to recover a sufficient amount of the original signal with little Manhattan dis-

tances. The morphology of the Manhattan distance suggests that the procedure extracted

the appropriate frequency, but obtained relatively erroneous amplitude information. As

shown in Figs. 2B and 2D, the pseudo-convolution procedure for extraction of power-

line noise chose the 60 Hz noise—which is the right frequency for the noise model in

this context. Since the pseudo-convolution between the extracted alternating current

noise peaks at about 60 Hz on all translations, it implies that the summation of the
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pseudo-convolution values on every translation should result in a function that also

peaks at about 60 Hz. Thus, whichever independent component that has its summed

pseudo-convolution peak closest to 60 Hz is indeed the desired powerline noise. Al-

though the final round of blind-source separation in this algorithm requires prior

knowledge about the statistical properties of the source data being approximated, it is

plausible that this constraint is not a hindrance but, instead, facilitates the process. With

the assumption of statistical independence, at least one of the resulting approximations of

the source data is forced to look undeniably unique. Signals of this form are usually some

fluctuations that are chronically present in the mixed data. For this reason, ICA effectively

serves as a helper for the extraction and identification of the desired powerline noise to

be removed. The Manhattan distance between the original signal and the denoised signal

increased during the final 50 ms of the neural data. This suggests the approach does not

provide good results with very small time windows. Essentially, the best approach will

be to run the algorithm without a time window. In conclusion, it is most appropriate for

offline signal analysis.

Learning the noise amplitude
In accordance with the fact that the problem of deconvolution is ill-posed, the solutions

are not unique; this issue is tackled by learning the appropriate amplitude for the noise

model. To exhibit the amplitude learning procedure, an EEG with natural 50 Hz noise

was denoised using the proposed framework. As presented in Fig. 3C, the learning pro-

cedure aimed at minimizing the cost function has a unique solution. This indicates that

there is some level of consistency in the process. In view of the fact that there is virtually

no ground truth with natural AC noise, the power spectra of the original signal and the

denoised signal were compared. The traces in Fig. 3A show that there is little difference

between the original signal and the recovered signal. However, Fig. 3B reveals that this

manifestation is primarily due to the low amplitude of the 50 Hz AC noise. Although the

amplitude is very small, the algorithm was able to extinguish an appreciable amount of

powerline noise. The same figure indicates that if the amplitude of the AC noise is small

enough, it might go unnoticed after Fourier transformation. Further, in order to obtain

an accurate view of how a biomedical signal behaves under various frequency specifi-

cations, it is better to employ the wavelet transform (which is a convolution between a

wavelet and a signal) rather than the Fourier transform. This is due to the fact that the

Fourier transform assumes the signal being transformed is of a sinusoidal origin (Bloom-

field, 2004), which is not true in most cases. Although the short-term Fourier transform is

used to avoid this pitfall, the wavelet transform (which handles frequencies in a logarith-

mic fashion) adapts better to highly variable signals (Daubechies, 1990). The suggested

algorithm employed a transformation analytically similar to the wavelet transform. By the

same token, the frequency properties revealed by a summation of the pseudo-convolution

between the real component of the Morlet wavelet and the signals aided in reliably in

extracting powerline noise; this, in turn, provided a solid model foundation for learning

the most appropriate amplitude.
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Figure 3 Learning the amplitude of powerline noise in a natural context. (A) The green trace is the
original signal and the blue trace is the reconstructed signal after removing natural 50 Hz AC noise. (B)
The green trace represents the power spectrum for the original signal and the blue one represents that
of the reconstructed signal. (C) This shows the process by which the noise amplitude is learned by the
algorithm.

Artificial corruption of biomedical signals with powerline noise
Neural signals
Sub-cortical local field potentials and extra-cranial EEGs were resampled to have equal

sampling rate, concatenated and adulterated with artificial powerline noise. A band-stop

4th order Butterworth filter was used to filter out signals between 59.5 Hz and 60.5 Hz,

and the proposed framework was also applied to the adulterated signal. The introduction

of powerline noise introduced a slight amplitude decorrelation between the original

signal and the adulterated signal. The aim of Fig. 4 was to characterize the level of re-

correlation after removing the powerline noise using the proposed approach and the

mentioned infinite impulse response filter (IIR filter). It was noted that although the fre-

quency spectra indicated that both methods expelled powerline noise, their correlations
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Figure 4 Scatterplot matrix of results obtained with neural signals. The off-diagonal elements are scatterplots of the signal amplitudes and the
diagonal elements are Fourier transformations of the signals. For each of the off-diagonal elements, the abscissa is the label of nearest diagonal
element above or below and the ordinate is the label of the nearest diagonal element on its side. For example, on the first row and second column the
amplitudes of neural signals without noise is compared with the same version adulterated with powerline noise using a scatterplot. On the first row
and third column, neural signals without noise is compared with a reconstructed version using a 4th order Butterworth filter. On the first row and
fourth column, the results obtained via the proposed approach is compared with the original neural signals. This convention is used throughout
the figure.

differed minutely. The proposed approach recovered the signals with a slightly higher

correlation than the named IIR filter (proposed= 1.0000, Butterworth filter= 0.9999).

In order to understand the subtle differences between the proposed method and the

mentioned IIR filter, the Manhattan distance between the Fourier transformation of

the original signal which had no powerline noise and the denoised signal using both

approaches were evaluated (Fig. 5). It is shown that the difference between the power
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Figure 5 Comparison of power spectra. (A) The red trace represents the Manhattan distance between
the Fourier transformation of the proposed reconstruction procedure and the original signal without
artificial noise. Similarly, the blue trace is the Manhattan distance between the Fourier transformation of
the signal obtained via band-stop Butterworth filtering and the original signal without artificial noise. (B)
The red trace is a scatterplot of the Fourier transform of the original signal and the reconstructed signal
using the proposed approach. Likewise, the blue trace represents a scatterplot of the Fourier transform of
the original signal and the reconstructed signal using a band-stop Butterworth filter. Pearson’s correlation
coefficient for both were 1.0000.

spectrum of the original signal and the one reconstructed using the proposed approach

was smaller than that of the band-stop Butterworth filter. This was further validated via a

Wilcoxon rank-sum test; the p-value obtained by comparing the original power spectrum

with that of the one reconstructed using the proposed approach was 0.9903, while that

of the band-stop Butterworth filter was 0.7627. In spite of the fact that there was no

statistically significant difference between the reconstructed power spectra and that of

the original, there was a statistically significant difference between the power spectrum

of the signals reconstructed using the suggested algorithm and that of the band-stop IIR

filter (p-value < 0.0001). On a grand scale, the power spectra of the denoised signals were

highly correlated. This is an indication that there was a relatively similar response at the

powerline noise frequency for neural signals.

Electrocardiogram signals
Electrocardiogram signals without powerline noise were corrupted with artificial 60 Hz

powerline noise. Thereafter, they were reconstructed via band-stop Butterworth filtering

and the proposed method. The results obtained were almost identical in the time series

(Fig. 6A), however there was a substantial difference circa 60 Hz. Similar to the results

obtained with neural signals, the power of the extract using the proposed method at

60 Hz was lower than that of the Butterworth filter. One of the many properties of ECG

signals sought after is the waveform. In accordance with the knowledge that the ECG

signal used was a concatenation of three data sets with two electrode recordings each,

it is expected that at least six different clusters ECG waveforms can be detected. The

waveforms were detected via simple thresholding and were partitioned via the k-means

algorithm. Naturally, clustering such high dimensional data requires dimensionality
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Figure 6 Comparison of power spectra and waveforms. (A) The red, green, black and blue traces are
the adulterated signal, original signal, signal obtained after Butterworth filter and signal obtained using
the proposed denoising framework. (B) The waveforms detected via k-means without dimensionality
reduction. (C) The blue signal is the Manhattan distance between the Fourier transform of the results
from the proposed approach and the original signal. Similarly, the black trace is the Manhattan distance
between the Fourier transform of the signal obtained via Butterworth filtering and the original signal.

reduction via principal component analysis or laplacian eigenmaps. This clustering pro-

cess was done without dimensionality reduction in order to accurately compare the effect

of the proposed approach and that of the Butterworth filter on the reconstructed signal.

As shown in Fig. 6B, although the labels of the classes were different, their elements were

not. This further proves that the relative temporal morphology of each reconstructed

signal is preserved.

Natural powerline noise removal
To evaluate the utility of the proposed method in a natural setting, an EEG data set with

50 Hz powerline noise was used. As shown in Fig. 7, the proposed framework and the

band-stop 4th order Butterworth filter both removed the powerline noise. This further

proves the potency of the proposed method.

Comparison with other approaches
The performance of the proposed approach was compared with that of a 4th order band-

stop Butterworth filter, EEMD, ICA and a combination of EEMD and ICA (EEMD-ICA).

The log-mean squared error between the original signal and the signal recovered after

eliminating powerline noise was used as a parameter to compare the performance of the

approaches. With Fig. 8, it is shown that the proposed approach performed better than

the approaches mentioned previously. It can be noted that EEMD, ICA and EEMD-ICA
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Figure 7 Powerline noise removal in a natural setting. The proposed method and the stop-band
Butterworth filter extinguished natural powerline noise in a comparable fashion.

Figure 8 Comparison of the proposed method with other approaches. The proposed approach per-
formed better than others at all SNRs considered.

had comparable results from a broad perspective; however ICA performed slightly better

under high SNRs. From this, it is plausible that the reason why EEMD-ICA had lower

log-mean squared errors at higher SNRs than EEMD alone was due to the effect of ICA.

The mentioned infinite impulse response filter—which is a state-of-the-art technique—

proved to be better at eliminating powerline noise than all the mentioned approaches

except the proposed framework. In contrast with the other techniques, the change in
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performance (from a log-mean squared error point of view) plateaued rather quickly at

SNRs greater than 0dB; however, it still maintained the highest performance across all

SNRs evaluated. This is a strong indication that the proposed approach works relatively

better at low SNRs.

CONCLUSION
A framework for the elimination of powerline noise in biomedical signals has been

introduced. This adaptive method does not make assumptions on linearity, stationarity

nor time-invariance and is virtually void of the need for self-correction mechanisms.

Pattern recognition of the extracted features by wavelet analysis provides an enhancement

to this procedure by making it fully automatable and completely unsupervised. It is worth

noting that this approach is better suited for offline analysis due to its sensitivity to the

time window.

APPENDIX. BLIND SOURCE SEPARATION
Ensemble empirical mode decomposition: detecting the local
extrema
The local maxima αmax and minima αmin are found by the following:

αmax = (ymax,x(t)); αmin = (ymin,x(t)), (11)

where ymax = y(t), if y(t) > y(t − 1)∧ y(t) > y(t + 1), ymin = y(t), if y(t) < y(t − 1)∧

y(t) < y(t + 1) and x(t) = t. As noted previously, αmax and αmin serve as the nodes for

cubic spline interpolation to extract the upper and lower envelopes respectively. Cubic

splines connect nodes such that the first and second derivatives of the interpolation

between each node are continuous. The cubic spline function used to connect each node

in an interval (yn,yn+1) is as follows:

f = Afn+Bfn+1+Cf ′′n +Df ′′n+1, (12)

where A≡ yn+1−y
yn+1−yn

, B≡ 1−A, C≡ 1
6(A3
−A)(yn+1−yn)

2 and D≡ 1
6(B3
−B)(yn+1−yn)

2.

Independent component analysis: finding R
In accordance with the initial assumption that ∀si(t) are statistically independent of

each other, u can be described by its cumulants Cu
... to reveal its statistical properties.

As an extension, the off-diagonal elements erode and the cumulant tensors of all orders

are diagonal if and only if ∀ui(t) are independent of each other. Since the first order

cumulant tensor does not have off-diagonal elements and the second order cumulant

tensor can be diagonalized by whitening n, u can be represented as follows:

u= QWn= Rn, (13)

where W is the whitening matrix and Q is an orthogonal transformation matrix that

approximately diagonalizes the third and fourth order cumulant tensors simultaneously.
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Consequentially, it is integral to employ an optimization framework to find the orthogo-

nal matrix Q that maximizes the following contrast function:

Ψ34(Q)=
1

3!


α


βγ δ

QαβQαγ QαδC(Wn)
βγ δ

2

+
1

4!


α


βγ δϵ

QαβQαγ QαδQαϵC(Wn)
βγ δϵ

2

. (14)

Without loss of generality, the Givens rotation for two components µ and ξ with rotation

angle θ and Kronecker delta δαβ can be evaluated in the following manner:

Qµξ
αβ =


cos(θ), for (α,β) ∈ {(µ,µ),(ξ,ξ)}

−sin(θ), for (α,β) ∈ {(µ,ξ)}

sin(θ), for (α,β) ∈ {(ξ,µ)}

δαβ, otherwise.

=⇒ Qµξ
=


cos(θ) sin(θ)

−sin(θ) cos(θ)


. (15)

This extends the optimization procedure to find θ which maximizes an equivalent of the

contrast function laid out in Eq. (14):

Ψ34(θ)=Ψ3(θ)+Ψ4(θ);

Ψn(θ) :=
1

n!

n
i=0

dni(cos(θ)(2n−i)sin(θ)i)+
1

n!

n
i=0

dni(cos(θ)(i)(−sin(θ))(2n−i)),
(16)

where dni represents constants that depend on the cumulants prior to rotation; these

constants have been explicated by Blaschke & Wiskott (2004). From this decomposition,

it is evident that a reversal of this unique θ gives rise to the coveted orthogonal transfor-

mation matrix Q and, as a consequence, provides estimates of si(t).

POWERLINE NOISE DETECTION
IMF selection
The wavelet transform Wϕci(f ,j) is a convolution between a wavelet ϕ(f ,j) and a function

ci(t):

Wϕci(f ,j) =


∞

−∞

ϕ(f ,j)ci(t)dt. (17)

Depending on the wavelet used, this transformation has the potential to provide an

accurate description of the frequency properties of the signal. In a similar fashion, due to

the fact that powerline noise has a similar morphology to that of the Morlet wavelet, the

following term in Eq. (5) (with j≡ t) is used to obtain the temporal frequency spectrum:

T(f ,t) =




jk

ϕ(f ,j)(t) ∗ ci(t)

. (18)
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Eq. (18) can be represented in the following matrix form:

T =






jk

ϕ(f1,j)(t) ∗ c1(t1)

 ···



jk

ϕ(f1,j)(t) ∗ c1(tk)


...

. . .
...


jk

ϕ(fk,j)(t) ∗ ci(t1)

 ···



jk

ϕ(fk,j)(t) ∗ ci(tk)




. (19)

Subsequently, the mean of T is subtracted from T and the absolute value of the result

is computed:

µ=
1

tkfk


tk


fk

T =
1

tkfk


tk


fk




jk

ϕ(f ,j)(t) ∗ ci(t)

,
N = |T−µ| =

T− 1

tkfk


tk


fk

T


=





jk

ϕ(f ,j)(t) ∗ ci(t)

− 1

tkfk


tk


fk




jk

ϕ(f ,j)(t) ∗ ci(t)


.

(20)

This can also be represented in the matrix form as follows:

N =



T(f1,j)−
1

tkfk


tk


fk




jk

ϕ(f ,j)(t) ∗ ci(t1)


 ···

T(f1,j)−
1

tkfk


tk


fk




jk

ϕ(f ,j)(t) ∗ ci(tk)




.

.

.
. . .

.

.

.T(fk,j)−
1

tkfk


tk


fk




jk

ϕ(f ,j)(t) ∗ ci(t1)


 ···

T(fk,j)−
1

tkfk


tk


fk




jk

ϕ(f ,j)(t) ∗ ci(tk)





. (21)

By summing this pseudo-convolution at all temporal locations, a column vector is

obtained:


tk

N =




tk

T(f1,j)−
1

tkfk


tk


fk




jk

ϕ(f ,j)(t) ∗ ci(tk)




...
tk

T(fk,j)−
1

tkfk


tk


fk




jk

ϕ(f ,j)(t) ∗ ci(tk)





=


tk





jk

ϕ(f ,j)(t) ∗ ci(t)

− 1

tkfk


tk


fk




jk

ϕ(f ,j)(t) ∗ ci(t)



. (22)
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Thus, the frequency f which best describes the IMF, for the purpose of powerline noise

detection, can be found in the manner laid out in Eq. (5):

p(F,i)= argmax
f∈F


tk





jk

ϕ(f ,j)(t) ∗ ci(t)

− 1

tkfk


tk


fk




jk

ϕ(f ,j)(t) ∗ ci(t)



, (23)

where any IMF whose with index i such that xHz− bHz ≤ p(F,i)≤ xHz+ bHz is a proba-

ble powerline noise. The threshold b is used to find which IMFs are close to the xHz pow-

erline noise in order to avoid losing putative powerline noise in the extraction process.

POWERLINE MODEL AND SIGNAL RECONSTRUCTION
Powerline noise recognition
After ICA, an extension of a variation of Eq. (23) can be used to extract the independent

component whose frequency property is most akin to that of powerline noise. Assume

the independent components extracted are of the form ui(t). By subtracting the xHz,

it can be inferred that the independent component which resembles powerline noise

the most is the one whose maximum frequency is closest to zero. Thus, the ui(t) which

minimizes the absolute value of the mentioned operation is the most suitable model for

powerline noise:

dcomp(t) = argmin
ui(t)






argmax

f∈F


tk





jk

ϕ(f ,j)(t) ∗ u1(t)

− 1

tkfk


tk


fk




jk

ϕ(f ,j)(t) ∗ u1(t)



− x


.
.
.

argmax
f∈F


tk





jk

ϕ(f ,j)(t) ∗ ui(t)

− 1

tkfk


tk


fk




jk

ϕ(f ,j)(t) ∗ ui(t)



− x







= argmin
ui(t)


argmax

f∈F


tk





jk

ϕ(f ,j)(t) ∗ ui(t)

− 1

tkfk


tk


fk




jk

ϕ(f ,j)(t) ∗ ui(t)



− x


. (24)

Signal reconstruction
To extract the xHz part of the powerline noise model, its wavelet transformation is

multiplied by the xHz portion of the real component of the Morlet wavelet:

dcomp(t)=


j

ϕ(x =60 or x =50,j)(t)


jk

ϕ(x =60 or x =50,j)(t) ∗ dcomp(t)

. (25)

However, due to the loss of amplitude information after ICA this inversion does not

result in an optimal model for denoising. In order to recover the amplitude of the power-

line noise, the amplitude of the convolution between the mentioned wavelet at 50/60 Hz

center frequency and the denoising component dcomp(t) is projected unto that of the

original signal y(t). This projection is accomplished via least squares. An initial powerline
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noise amplitude prediction is done by normalizing the root-mean-square of the wavelet

transformation of the extracted component at xHz to that of the wavelet transformation

of the original signal, y(t), at xHz.

d′(t)= C−1
limT→∞


T−1

 T
0


jk
ϕ(x∈S,j)(t) ∗ y(t)

2
dt

limT→∞


T−1

 T
0


jk
ϕ(x∈S,j)(t) ∗ dcomp(t)

2
dt

×


j

ϕ(x∈S,j)(t)


jk

ϕ(x∈S,j)(t) ∗ dcomp(t)

,

where S= {50,60} ∧C =


t

ϕ(x∈S,j)(t)
2

. (26)

The powerline noise with the appropriate amplitude is obtained by a regression

approach which learns and estimates the parameter λ which minimizes the sum of the

square distances between the signal and putative powerline noise:

A= argmin
λ∈{0.01,...,2}


t


λd′(t)− y(t)

2
. (27)

Ultimately, the powerline noise is modeled and the signal is reconstructed as follows:

d(t)= Ad′(t)

= AC−1
limT→∞


T−1

 T
0


jk
ϕ(x∈S,j)(t) ∗ y(t)

2
dt

limT→∞


T−1

 T
0


jk
ϕ(x∈S,j)(t) ∗ dcomp(t)

2
dt

×


j

ϕ(x∈S,j)(t)


jk

ϕ(x∈S,j)(t) ∗ dcomp(t)

,

y(t) =
k

i=1

ci(t)+ r(t)− d(t)= y(t)− d(t). (28)
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