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Abstract

Although organic-based direct conversion X-ray detectors have been developed, their photocurrent generation
efficiency has been limited by recombination of excitons due to the intrinsically poor electrical properties of organic
materials. In this report, we fabricated a polymer-based flexible X-ray detector and enhanced the X-ray detection
sensitivity using a single-walled carbon nanotube (SWNT) enriched polymer composite. When this SWNT enriched
polymer composite was used as the active layer of an X-ray detector, it efficiently separated charges at the interface
between the SWNTs and polymer, preventing recombination of X-ray-induced excitons. This increased the photocurrent
generation efficiency, as measured from current-voltage characteristics. Therefore, X-ray-induced photocurrent and X-ray
detection sensitivity were enhanced as the concentration of SWNTs in the composite was increased. However, this
benefit was counterbalanced by the slow and unstable time-dependent response at high SWNT concentrations, arising
from reduced Schottky barrier heights between the active layer and electrodes. At high SWNT concentration, the dark
current also increased due to the reduced Schottky barrier height, leading to decrease the signal-to-noise ratio (SNR) of
the device. Experimental results indicated that 0.005 wt.% SWNT in the composite was the optimum composition for
practical X-ray detector operation because it showed enhanced performance in both sensitivity and SNR. In mechanical
flexibility tests, the device exhibited a stable response up to a bending radius of 0.5 cm, and the device had no

PACS code: 8.67.5c

noticeable change in diode current after 1,000 bending cycles.
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Background

Since their development, radiation detectors have been
widely used in various fields such as crystallography,
medical imaging, and security due to their ability to in-
spect visually opaque objects [1-3]. Conventionally, the
active layers of X-ray detectors have been composed of
inorganic materials such as cadmium telluride (CdTe),
silicon carbide (SiC), and amorphous selenium (a-Se), since
they offer high energy resolution, high detection effi-
ciency, and room-temperature operation [4,5]. However,
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inorganic-based X-ray detectors also suffer from some
critical drawbacks in terms of large-scale fabrication, high
cost, and fragile property. Especially, it is difficult to make
flexible devices based on inorganic materials, and although
flexibility can be achieved by using a thin inorganic layer,
this reduced the active layer thickness and thus sacrifices
absorption ability [6].

In recent decades, organic-based semiconducting ma-
terials have been widely used as active layers of various
electronic devices such as photovoltaic devices [7], light-
emitting diodes [8], and thin-film transistors [9] due to
their relatively low cost, availability for large-area fabri-
cation, and mechanical flexibility [10]. However, there
have been only a few scientific publications on the use
of semiconducting organic materials for direct detec-
tion of X-rays. Boroumand et al. reported the first direct
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X-ray detection of X-ray-induced photocurrents in thick
films of conjugated polymers using poly[1-methoxy-4-(2-
ethylhexyloxy)-phenylenevinylene] (MEH-PPV) and poly
(9,9-dioctylfluorenyl-2,7-diyl) (PFO) [11]. Intaniwet et al.
reported a direct X-ray detector using blends of polymer
poly(triarylamine) (PTAA) and 6,13-bis(triisopropylsi-
lylethynyl) (TIPS)-pentacene to increase the transport
of holes [12]. Despite these efforts, however, the X-ray-
induced output photocurrents of such devices are still
limited due to the intrinsically low electron carrier mobility
of the organic materials [13].

Herein, we demonstrated a polymer-based flexible X-ray
detector and enhanced the X-ray detection sensitivity using
single-walled carbon nanotubes (SWNTs). Because a
SWNT has extremely high electron mobility and greater
electron affinity than a p-type semiconducting polymer, the
X-ray-induced excitons generated in the SWNT enriched
polymer composite can be effectively separated and guided
toward their respective electrodes without recombin-
ation. The composite was coated onto a poly(ethylene
terephthalate) (PET) substrate to fabricate the active layer
of the device, and homogenous dispersion of the SWNTs
was confirmed through optical microscope and scanning
electron microscope (SEM) images. Current-voltage (I-V)
characteristics and X-ray-induced photocurrents of the de-
vices were measured, and we verified that increasing the
concentration of SWNTs in the composite layer not only
enhanced the X-ray-induced photocurrent and X-ray de-
tection sensitivity but also reduced the response speed and
stability of the device. The optimum SWNT concentration
was determined in consideration of both sensitivity and
signal-to-noise ratio (SNR) of the device. Since SWNTs
have exceptional mechanical properties and polymers are
composed of cross-linked molecules, mechanical flexibility
of the X-ray detector was achieved without noticeable
degradation.

Methods

Materials

Metallic SWNTs (Hanwha Nanotech, Daejeon, Korea)
with 1 to 1.2 nm in diameter, 5 to 20 um in length, and
70 wt.% purity were used in this work. Poly(styrene-b-
paraphenylene) with polyphenylene rich in 1,4-addition
(PS-b-PPP) was synthesized via dehydrogenation of poly
(styrene-b-1,4-cyclohexadiene) (Polymer Source, Dorval,
Canada). The p-type semiconducting polymer, ‘Super
Yellow’ (SY, Merck, Darmstadt, Germany), was used with-
out purification.

Preparations of solutions of SWNT enriched polymer
composite

The detailed sample preparation process of composite
solutions is described elsewhere [14]. In brief, we pre-
pared 1 mg/mL of PS-b-PPP solution in toluene. Then,
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1 mg/mL of SWNT solution in PS-b-PPP/toluene was
prepared by adding SWNTs into PS-b-PPP/toluene. The
mixture was horn-sonicated for 5 min (VC 750, Sonics &
Materials, Newtown, CT, USA), followed by a 10-min
bath sonication (NXP-1002, Kodo Technical Research,
Hwaseong, Korea). SWNT solutions with various con-
centrations were made by diluting the 1 mg/mL SWNT
solution in PS-b-PPP/toluene with pure toluene. SYs
(10 mg/mL) were directly dissolved into diluted SWNT
solutions to prepare the SWNT/SY composite solution.
The resulting SWNT concentrations ranged from 0 to
0.1 wt.% for the SY polymer. The whole process was car-
ried out under room temperature.

Fabrications of SWNT enriched polymer composite-based

flexible X-ray detector

A 5-pm-thick SWNT enriched polymer composite film
was prepared by successive drop casting onto PET sub-
strates with predefined Au electrodes (60 nm). The
coated films were stored at room temperature for an hour
until toluene fully evaporated. Finally, LiF (5 nm) and Al
(60 nm) were sequentially deposited on the composite
layer by thermal evaporation. The defined active area of

the devices was 3 x 3 mm?>.

Characterizations

I-V characteristics in the dark and under X-ray illumin-
ation were measured using a Keithley 2400 SourceMeter
(Keithley Instruments Inc., Cleveland, OH, USA). X-ray
photocurrent measurements were carried out with an
8.06-keV Ka X-ray generated from a copper target X-ray
tube. The X-ray beam was irradiated directly onto and
through the Al top electrode at room temperature. The
morphology of the composite layer was characterized
by a field-emission scanning electron microscope (JSM-
7001f, JEOL, Tokyo, Japan).

Results and discussion

Figure la schematically illustrates the SWNT enriched
polymer composite-based flexible X-ray detector. In this
report, we used PS-b-PPP, a conjugated block copolymer,
as a dispersant, which allows a uniform distribution of
SWNTs in both the solution and composite film [14].
The distribution of SWNTs in the composite film was
observed by using the SEM image. Figure 1b shows a
top-view SEM image of the SWNT enriched polymer
composite film at 0.1 wt.% SWNT concentration, and
there was no observation of severe agglomeration of
SWNTs in the composite. In addition, we also confirmed
the distribution of SWNTs in both the solution and
composite film through optical images (Figure S1 and S2
in Additional file 1). Without the dispersant, SWN'Ts in
the toluene solution were bundled to each other and sank
to the bottom of the vial within a few minutes. However,
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Figure 1 Schematic illustrations and SEM image of the fabricated devices. (a) Schematic illustration of the fabricated flexible X-ray detector
structure and (b) SEM image of the composite layer (0.1 wt.% SWNT concentration). Schematic illustration of charge separation in (c) a pure
p-type polymer device and (d) a SWNT enriched polymer composite device.

X SWNTs
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with the dispersant, SWNTs were well-dispersed in toluene
solution and no aggregation was observed even after
1 month of storage at room temperature (Figure S1
in Additional file 1). As shown in Figure S2 in Additional
file 1, the composite film without the dispersant showed a
large aggregation of SWNTs, whereas the composite film
with the dispersant showed a smooth film morphology
without any dark spots.

Figure 1c,d illustrates the charge separation mechan-
ism in the devices. It has been reported that when a
pure p-type conjugated polymer is used as the active
layer for an X-ray detector, it produces low photo-
current because of its low electron mobility and high
recombination rate; this mechanism is illustrated in
Figure 1c [15]. As illustrated in Figure 1d, after SWNTs
are added to the active layer, charge separation can easily
occur at the SWNT-polymer interface. Electrons move
into the SWNTs and holes move into the polymer be-
cause the SWNTs have a greater electron affinity than
the polymer [16]. This effective charge separation pre-
vents the recombination of charges, enhancing the X-ray-
induced photocurrent [17].

Figure 2a shows the dark I-V characteristics of the de-
vices with various SWNT concentrations under voltages
ranging from —150 to 150 V applied to the Au electrode.

In the case of the polymer device without SWNTs
(0.000 wt.% SWNT), the I-V curve showed rectifying
behavior with low reverse bias current. As the SWNT
concentration was increased from 0 to 0.01 wt.%, the
resulting -V curves of the devices still showed similar
rectifying behavior. However, after the concentration of
SWNTs was increased above 0.015 wt.%, the device
showed ambipolar characteristics. At excessively high
carbon nanotube concentrations, it is known that elec-
trical properties of devices are determined by the carbon
nanotubes than the polymer [18]. Under the domination
of SWNTs, it is natural that the electrical property of
the device shows ambipolar characteristic because the
SWNT we used has metallic property. To verify this, we
also fabricated a similar device using the composite of in-
sulating poly(methyl methacrylate) (PMMA) and SWNT
as the active layer. As shown in Figure S3 in Additional
file 1, the I-V characteristic of the SWNT/PMMA device
showed ambipolar characteristics at a high SWNT con-
centration (0.1 wt.%).

Figure 2b shows the X-ray-induced photocurrent as
a function of reverse bias voltage for the devices with
three different SWNT concentrations. The reverse bias
voltage applied ranged from 0 to 150 V with an X-ray
dose rate of 7 mGy/s. The photocurrents were calculated
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Figure 2 Current-voltage characteristics and photocurrents of
the fabricated devices. (a) Dark current-voltage characteristics of
flexible X-ray detectors with various SWNT concentrations. Ambipolar
characteristics were observed as SWNT concentration was increased.
(b) Photocurrents as a function of applied reverse bias voltage for
devices with different SWNT concentrations. Photocurrent was
enhanced with increasing SWNT concentration up to 10.67 nA at

150 V for the 0.010 wt9% SWNT device.

by subtracting the dark current from the X-ray irradiated
current. It was clearly observed that the photocurrents
of the X-ray detectors were increased for all applied
operational voltages when the SWNTs were included
in the active layer. Especially, under high electric field, the
photocurrents were considerably increased as the SWNT
concentration increases. For instance, at a reverse bias
voltage of 150 V, the photocurrents of the devices in-
creased from 2.86 to 10.67 nA, which is about 273%
larger, by increasing the SWNT concentration from 0
to 0.01 wt.% as listed in Table 1. When the reverse
bias voltage increased, the devices also showed differ-
ent photocurrent increase tendencies depending on
the concentration of SWNT. The 0.000 wt.% SWNT
and 0.005 wt.% SWNT devices showed a saturating
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Table 1 Photocurrents and enhancements of the devices

SWNT concentration (wt.%) Photocurrent (nA) Enhancement (%)

0.000 2.86 -
0.005 496 Approximately 73
0.010 10.67 Approximately 273

Photocurrents and enhancements of the devices with three different SWNT
concentrations at a reverse bias voltage of 150 V.

photocurrent tendency, whereas the 0.010 wt.% SWNT
device showed a non-saturating photocurrent tendency.
These differences according to the SWNT concentration
were possibly due to charge injection from the electrodes
caused by a reduction in the Schottky barrier height be-
tween the active layer and each electrode at a high
SWNT concentration (this will be discussed in more de-
tail in the next section; see also Figure 3d).

Figure 3a,b,c illustrates the relationship between the
photocurrent and applied X-ray dose rate under the re-
verse bias voltages of 60 V, 90 V, and 120 V, respectively,
with figure insets showing the time-dependent device re-
sponses. In this experiment, the shutter of the X-ray
source was alternately opened and closed for periods of
30 s with a fixed dose rate of 7 mGy/s. Similar to inorganic
X-ray detectors, our devices showed linear relationships
between the photocurrent and dose rate following the
Fowler model [19].

It should be noted that the X-ray-induced photocur-
rent of the 0.010 wt.% SWNT device increased suddenly
at =120 V (Figure 3c). Furthermore, the time-dependent
response of this device showed a non-saturating behav-
ior, and it was enhanced as reverse bias voltage in-
creased. This unexpected behavior of the device can be
explained through band diagram analysis. Figure 3d rep-
resents the band diagram of the fabricated X-ray de-
tector structure. The work function of the top (LiF/Al)
and bottom (Au) electrodes is 4.2 and 5.1 €V [20,21], re-
spectively. The lowest unoccupied molecular orbital and
highest occupied molecular orbital levels of SY are 2.8
and 5.0 eV, respectively [22,23]. When the pure p-type
polymer is used as the active layer of the X-ray detector,
the Schottky barrier heights are 2.3 eV for electrons and
0.8 eV for holes. Adding SWNTs (which has a work
function of 4.5 eV) [20] in the active layer reduced the
Schottky barrier heights for electrons and holes to 0.6
and 0.3 eV, respectively (Figure 3d). This changed the
contacts from Schottky to near-Ohmic, which supply
space-charge-limited current (SCLC) [24]. According
to a previous report, the generation of SCLC influences
the effective barrier height of a device and causes the for-
mation of slower and non-saturating transients in the de-
vice [25]. We confirmed that such phenomenon was even
more pronounced according to the increment of SWNT
concentration.
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Figure 3 Photocurrents and band diagram of the fabricated devices. Photocurrents of devices with three different SWNT concentrations as a
function of applied X-ray dose rate under the reverse bias voltages of (a) 60 V, (b) 90 V, and (c) 120 V. Insets show the devices' time-dependent
responses. (d) Band diagram of the flexible X-ray detector. Charges can be easily injected into the active layer through the reduced Schottky
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X-ray detection sensitivity is an important factor for
the evaluation of the X-ray detector. Figure 4a shows the
calculated X-ray detection sensitivity as a function of re-
verse bias voltage for the devices with three different
SWNT concentrations. The sensitivity of the device was
obtained by dividing the slope of the photocurrent ver-
sus dose rate graph (Figure 3a,b,c) by the active volume
of the device (3 mm x3 mm x5 um). All of the devices
showed positive correlation between the sensitivity and
applied voltage, which was due to the longer carrier drift
length of the X-ray-induced charges at high electric field
strength [25]. Similar to the photocurrent, it was ob-
served that the sensitivity of the devices increased when
SWNTs were included in the active layer. At a reverse
bias voltage of 150 V, for instance, the sensitivities of the
devices with SWNT concentrations of 0, 0.005, and
0.01 wt.% were 12.5, 16.9, and 38.9 uC/mGy/cm?, re-
spectively. This implies that our SWNT enriched poly-
mer composite efficiently enhances the performance of
the polymer-based X-ray detector.

For the realization of a practical X-ray detector, it is
also required for the device to have a sufficiently large
output photocurrent compared to the dark current.
Therefore, we calculated the SNR of our device, which

was defined as the ratio between the photocurrent and
dark current. Figure 4b shows the SNR as a function of
reverse bias voltage for the devices with three different
SWNT concentrations under a fixed X-ray dose rate of
7 mQGy/s. Generally, the SNR should be greater than 1,
which means that the generated photocurrent should be
greater than the dark current. From this point of view,
the 0.010 wt.% SWNT device showed the lowest SNR
value (approximately 0.18 at —~150 V) although it had the
highest sensitivity. As shown in Figure 3, at high SWNT
concentration, the electrical contacts between the elec-
trodes and active layer were changed from Schottky to
near-Ohmic. This change led to the increase of leakage
current under dark conditions which resulted in a low
SNR value at high SWNT concentration. Therefore, an
appropriate concentration of SWNT should be selected
to enhance the sensitivity and guarantee a minimum
SNR at the same time. Our experimental result indicated
that 0.005 wt.% is the optimal SWNT concentration ra-
ther than 0.01 wt.% because it shows enhanced perform-
ance in both sensitivity and SNR compared to that of the
device without SWNTTs.

Figure 5a shows dark currents and X-ray-induced cur-
rents of the 0.005 wt% SWNT device under bending
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Figure 4 X-ray detection sensitivity and signal-to-noise ratio
of the fabricated devices. (a) X-ray detection sensitivity and
(b) signal-to-noise ratio of the devices with three different SWNT

concentrations as a function of the reverse bias voltage.

conditions with various radii. In this measurement, the X-
ray dose rate was 7 mGy/s and the reverse bias voltage was
120 V. It should be noted that the dark currents exhib-
ited no discriminable response to changes in the bend-
ing radius, even though the X-ray-induced currents
were slightly changed. The different responses may be
attributed to the changes in surface morphology and
the effective intensity of X-ray irradiation on the device
[26]. Figure 5b shows the bending stability of the device
in the same condition as that of Figure 4a. The device
was bent 1,000 times, with a bending radius of 0.5 cm
in the positive direction, and both dark current and
X-ray-induced current were measured after every 100 cy-
cles of bending. These results confirm that the device

0 500 1o'oo
Number of bending cycles

Figure 5 Device stability tests under various bending
conditions. (a) Dark current and X-ray-induced current of the
0.005 wt.% SWNT device as a function of bending radius. The
dark current remained similar despite the bending radius, but
the X-ray-induced current changed slightly. (b) Dark current and
X-ray-induced current of the 0.005 wt.% SWNT device after repeated
bending cycles. The device showed a stable response for up to 1,000
bending cycles.

exhibited a stable X-ray response with good mechanical
flexibility.

Conclusions

In summary, we fabricated a polymer-based flexible X-ray
detector and enhanced the performance using a SWNT
enriched polymer composite as an active layer. The X-ray-
induced photocurrent and the sensitivity were enhanced as
the SWNT concentration of the composite layer increased.
However, at high SWNT concentration, the speed and sta-
bility of the response decrease due to the reduction in the
Schottky barrier height. The optimum SWNT concentra-
tion was determined in consideration of both sensitivity
and SNR. With the SWNT enriched polymer composite
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active layer, we demonstrated the mechanical flexibility of
the device which shows a stable X-ray response. We expect
that our device will be used in medical imaging and non-
destructive analysis as a next-generation flexible X-ray
detector.

Additional file

Additional file 1: Supporting information. A PDF document
containing figures showing optical images and |-V characteristics of the
composite film.
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