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Abstract

Despite the complexities of cancer, remarkable diagnostic and therapeutic advances have been 

made during the past decade, which include improved genetic, molecular, and nanoscale 

understanding of the disease. Physical science and engineering, and nanotechnology in particular, 

have contributed to these developments through out-of-the-box ideas and initiatives from 

perspectives that are far removed from classical biological and medicinal aspects of cancer. 

Nanostructures, in particular, are being effectively utilized in sensing/diagnostics of cancer while 

nanoscale carriers are able to deliver therapeutic cargo for timed and controlled release at localized 

tumor sites. Magnetic nanostructures (MNS) have especially attracted considerable attention of 

researchers to address cancer diagnostics and therapy. A significant part of the promise of MNS 

lies in their potential for “theranostic” applications, wherein diagnostics makes use of the 

enhanced localized contrast in magnetic resonance imaging (MRI) while therapy leverages the 

ability of MNS to heat under external radio frequency (RF) field for thermal therapy or use of 

thermal activation for release of therapy cargo. In this chapter, we report some of the key 

developments in recent years in regard to MNS as potential theranostic carriers. We describe that 

the r2 relaxivity of MNS can be maximized by allowing water (proton) diffusion in the vicinity of 

MNS by polyethylene glycol (PEG) anchoring, which also facilitates excellent fluidic stability in 
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various media and extended in vivo circulation while maintaining high r2 values needed for T2-

weighted MRI contrast. Further, the specific absorption rate (SAR) required for thermal activation 

of MNS can be tailored by controlling composition and size of MNS. Together, emerging MNS 

show considerable promise to realize theranostic potential. We discuss that properly 

functionalized MNS can be designed to provide remarkable in vivo stability and accompanying 

pharmacokinetics exhibit organ localization that can be tailored for specific applications. In this 

context, even iron-based MNS show extended circulation as well as diverse organ accumulation 

beyond liver, which otherwise renders MNS potentially toxic to liver function. We believe that 

MNS, including those based on iron oxides, have entered a renaissance era where intelligent 

synthesis, functionalization, stabilization, and targeting provide ample evidence for applications in 

localized cancer theranostics.
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1 Introduction

Magnetic nanostructures (MNS) have emerged as promising functional probes for 

simultaneous diagnostics and therapeutics (theranostic) applications. The diagnostics 

potential of MNS arises from their role in enhancing the contrast in magnetic resonance 

imaging (MRI). The therapeutic prospects of MNS stem from thermal activation under 

external applied radio frequency (RF) field and/or localized release of therapeutic cargo, 

either through diffusive processes or triggered by thermal activation. Both of these attributes 

of MNS are related to their unique size-dependent physical properties as well as 

compatibility of size to typical biomolecules (Fig. 1) [1–7]. The characteristics of MNS are 

typically measured by saturation magnetization (Ms), remanent magnetization (Mr), and 

coercivity (Hc). Saturation magnetization is the maximum magnetization value of MNS 

under an applied magnetic field while remanent magnetization is the magnetization after 

removing that field. Coercivity is the strength of the applied magnetic field that is necessary 

to reverse the remanent magnetization back to zero [8]. Superparamagnetism (SPM) occurs 

when particles are small enough for thermal fluctuations to cause random flipping of 

magnetic moments, resulting in no remanent magnetization and coercivity in the absence of 

an applied magnetic field, akin to para-magnetism. However, under external applied 

magnetic field, the nanostructures can be magnetized and manipulated for transport and 

thermal activation. The superparamagnetic nanostructures are essential for biomedical 

studies where no remanent magnetization is critical in preventing their coagulation and 

sustaining a long period of circulation in the body. Additional properties of MNS required 

for biomedicine include greater magnetic susceptibility and high saturation magnetization 

that results in faster and stronger response, even at low external applied magnetic field, and 

also enhances thermal activation. The magnetic properties of MNS are dictated by the 

composition, size, shape, and surface properties [9]. Hence, tuning control of these physical 

properties is essential for success of MNS for in vivo platform.
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Typically, MNS comprise a magnetic core and biocompatible coating and/or surface 

functionalization that allows integration of targeting agents and bio/chemotherapeutics (Fig. 

2). Targeting agents have been coupled with MNS for both diagnostic imaging and therapy 

of specific tumors [5, 10–12]. The diagnostic applications of MNS stem from the MRI [13]. 

MRI offers clinicians the ability to noninvasively obtain anatomic and metabolic/functional 

information with high spatial and temporal resolution [13–15]. The technique is based on the 

response of water proton spin in the presence of an applied magnetic field when triggered 

with a RF pulse. When external magnetic field is applied, protons align in one direction. 

Application of the RF pulse perturbs the alignment and the protons relax to the original state 

via two independent relaxation processes: longitudinal (T1) and transverse (T2) relaxation 

that are used to generate the MR images. The difference in water concentration and local 

environment between organs and tissues results in intrinsic contrast in MR images.

The spatial resolution as well as the sensitivity (S/N) of the MR images can be enhanced 

with the use of contrast agents. Paramagnetic molecular complexes, such as Gd(III) chelates, 

are used as T1 contrast agents that increase signal intensity, i.e., higher r1 relaxation, and 

appear bright in T1-weighted images [16]. T1 contrast agents are not covered in this chapter, 

however, a number of recent reviews have appeared [15–20]. MNS are used as T2 contrast 

agents that decrease the signal intensity, i.e., higher r2 relaxation, and appear dark in T2-

weighted images. When water molecules (protons, more specifically) diffuse into the 

periphery of the induced dipole moment by MNS, the T2 relaxation time of the protons is 

shortened, which enhances the negative contrast that helps in differentiating between 

pathogenic targets and normal tissues in T2 weighted MRI images (Fig. 3).

Several MNS-based T2 contrast agents (e.g., Feridex and Resovist) have been clinically 

approved [21, 22]. The MRI contrast enhancement effect is measured by the relaxation rate 

R1 (s−1) and the relaxivity coefficient r2, a slope of R2 against MNS concentration. The R2 

relaxation rate of MNS is defined as

(1)

where T2 is transverse relaxation time, γ is proton gyromagnetic ratio, Ms is saturation 

magnetization, V is volume of MNS, D is diffusion coefficient of water molecules, r is 

radius of MNS core, and L is thickness of MNS surface coating. [23]. The higher relaxivity 

corresponds to a better contrast effect. Based on Eq. (1), MNS should have high 

magnetization (Ms), large volume (V), and thin surface coating (small L) for better contrast 

effect.

MNS can generate heat under external RF field that make them very useful in cancer 

therapeutics. Under an external RF field (typically a few hundred kHz), superparamagnetic 

MNS switch their magnetization direction along the field directions, back and forth. The 

frictions caused by the physical rotation of the MNS (Brownian relaxation) and the 

magnetization reversal within the MNS (Neel relaxation) lead to the loss of magnetic energy 

and the generation of thermal energy [24]. The capability of generating heat at any targeted 

areas can be used for directly killing cancer cells via the thermal therapy and/or as an 
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actuator for bio/chemo therapy cargo release. The thermal activation of MNS is measured by 

the specific absorption rate (SAR) that is measured as the initial temperature rise of the 

MNS solution per unit volume or mass.

(2)

where μ0 is vacuum permeability, χ0 is equilibrium susceptibility, H0 is RF field amplitude, 

and f is frequency of the external RF field. The higher SAR is crucial for clinical use since 

that would require a smaller amount of MNS to be injected into the patient. According to 

Eq. (2), SAR highly depends on various parameters such as the size, size distribution, shape, 

chemical composition and surface modification, and saturation magnetization of the 

particles [25]. In addition, it is clear that SAR values depend on the frequency f and the field 

amplitude H0 of the applied field. However, in order to apply hyperthermia safely to patients 

and avoid any detrimental effect on healthy tissues due to electromagnetic radiation 

exposure, the H0f factor should not exceed a threshold that was experimentally estimated to 

equal 5 × 109 A m−1 s−1 [26]. Therefore, MNS with an exceptional SAR value that can 

generate heat under H0f limit is highly desirable.

2 Synthesis and Characteristics of MNS: Prospects for Theranostics

For successful theranostic applications, MNS should be monodispersed and have uniform 

composition because the magnetic properties of MNS depend on the size, shape, and 

composition. It is clear from Eqs. (1) and (2) that the particles should possess high saturation 

magnetization and magnetic susceptibility, and be stable to a range of pH and salt 

concentrations. A key parameter for the magnetization of MNS is size. In a bulk magnetic 

material, all of the magnetic spins are aligned parallel to the applied magnetic field. 

However, in the nanoscale regime, a magnetically disordered spin-glass-like surface layer is 

formed. As the nanoparticle size decreases, such surface spin-canting effect becomes more 

pronounced and causes a drop in the saturation magnetization. While high saturation can be 

achieved with larger size particles, avoiding the surface-canting effect [27], the particle size 

should be under the superparamagnetic limit, which is typically less than ~20–30 nm for the 

majority of MNS. Further, the particles should have a coating or surface functional moieties 

that improve dispersion, biocompatibility, and provides a surface that can be functionalized. 

Strict attention to these parameters is essential during the design, synthesis, and formulation 

of MNS in order to be useful for in vivo applications.

MNS can be fabricated by either top-down (mechanical attrition) or bottom-up (chemical 

synthesis) approaches [9]. Since magnetic properties change with size and composition of 

MNS, chemical routes are preferred since they can synthesize MNS with uniform 

composition and size. The chemical methods include co-precipitation, microemulsion, 

thermal decomposition and/or reduction, hydrothermal synthesis, and polyol synthesis. Two 

excellent reviews describing MNS fabrication methods have recently appeared and we will 

provide only a brief summary here [28, 29].

The most common synthetic strategy involves aqueous precipitation of iron salts with in 

situ, or post-synthesis addition of surfactant [30]. This strategy has notable limitations 
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yielding monodispersity [31]. The microemulsion method does produce MNS of narrower 

size distribution compared to aqueous precipitation, but suffers from low yields [32]. 

Recently, the thermal decomposition/reduction method has gained considerable attention 

since this technique offers fine control over the final particle size, shape, and crystal 

structure compared to other methods and is scalable [33, 34]. Monodispersed MNS are 

formed due to the reaction conditions that yield a quick nucleation step followed by slower 

growth phase. However, the reaction occurs in organic solvent containing hydrophobic 

stabilizers, which requires additional surface modifications to the MNS to impart aqueous 

stability.

Here, we discuss different types of MNS synthesized using chemical methods and their 

magnetic properties. Table 1 summarizes different MNS core materials, their magnetic 

properties, and r2 relaxivity.

2.1 Ferrite MNS

Fe3O4 MNS are extensively used in biomedicine because of their biocompatibility and ease 

of synthesis [47, 48]. The magnetic moment of superparamagnetic Fe3O4 MNS is dependent 

on the size with smaller particles producing lower magnetic moments [49]. Hence, the size 

of Fe3O4 MNS can be tuned by changing the reaction conditions such as reflux temperature, 

reflux time, and heating rate. The magnetic moment of Fe3O4 MNS was tuned from 25 to 

43, 80, and 102 emu/(g Fe) with change in the size from 4, 6, 9, and 12 nm, respectively 

(resulting in r2 values of 78, 106, 130, and 218 mM−1 s−1) [27]. Further, the magnetic 

moment of Fe3O4 MNS can be modified by doping transition divalent metal ions (Co2+, 

Ni2+, Mn2+, and Zn2+). By adding different metal precursors during Fe3O4 synthesis, 

monodisperse MFe2O4 MNS were synthesized [38]. The metal ferrite nanostructures have 

an inverse spinel crystal structure composed of face-centered cubic packed lattice of oxygen 

atoms with octahedral sites (Oh) occupied by Fe3+ and M2+ ions and tetrahedral sites (Td) 

occupied by Fe3+ ions (Fig. 4a). The magnetic spins of the ions at the Oh and Th sites align 

opposite to each other. Hence the spins of Fe3+ ions at Oh and Th cancel each other and net 

magnetization of MFe2O4 MNS is decided by magnetic moment of M2+ ions (Fig. 4b). The 

magnetization of NiFe2O4, CoFe2O4, Fe3O4, and MnFe2O4 were found to be 85, 99, 101, 

110 (emu/g metal ions), respectively, depending upon the magnetic moments of the M2+ 

ions. This resulted in r2 values of 152, 172, 218, and 358 mM−1 s−1 (Fig. 4c) [38].

Interestingly, doping of nonmagnetic Zn in Fe3O4 and MnFe2O4 MNS resulted in 

(ZnxFe1−x)Fe2O4 and (ZnxMn1−x)Fe2O4 MNS, respectively, that exhibit extremely high net 

magnetic moment and r2 relaxivity [42]. The magnetization of (ZnxMn1−x)Fe2O4 was 

dependent on the Zn doping level and were found to be 125, 140, 154, 166, 175, and 137 

emu/g metal ions for x = 0, 0.1, 0.2, 0.3, 0.4, and 0.8, respectively, resulting in the r2 values 

of 422, 516, 637, 754, 860, and 388 mM−1 s−1, respectively (Fig. 5). The r2 value for 

Zn0.4Mn0.6Fe2O4 MNS is the maximum r2 value of reported to date for MNS [42], eight 

times higher than r2 of Feridex [36]. (ZnxFe1−x)Fe2O4 MNS exhibited a similar trend, but 

the magnetization and r2 values were slightly lower than (ZnxMn1−x)Fe2O4 MNS (Fig. 5) 

[42].
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2.2 Metallic MNS

MNS based on transition metals of Fe, Co, Ni, and their alloys have higher magnetic 

moments than their oxide counterparts [44, 50–53]. Saturation magnetization of bulk FeCo 

(240 emu/g) and Fe (218 emu/g) is particularly high compared to bulk Fe3O4 (90 emu/g). 

Using the same mass of metallic MNS would then produce a far greater impact than their 

oxide counterparts, improving the T2 contrast enhancement and therapeutic efficacy of drug 

delivery. However, the metallic MNS carries their own set of disadvantages like chemical 

instability, leaching of the noniron elements, and toxicity that renders them questionable for 

in vivo applications [9, 53, 54]. In addition, these pure metal nanoparticles are also 

ferromagnetic at room temperature, rather than superparamagnetic. This means that once 

they are magnetized, they will remain that way regardless of whether an external magnetic 

field is withdrawn, resulting in an aggregation. A number of reports have been published 

demonstrating coatings that prevent aggregation and ensure chemical stability of metallic 

MNS. Options under consideration include inert metals, such as Au and Ag, peptide capping 

ligands, ferrites, graphite, and silica [43, 44, 52, 55–57]. For example, after graphitic shell 

coating, FeCo MNS were stable up to 1 month and showed very high magnetic moment 

(215 emu/g) and r2 relaxivity (644 mM−1 s−1 which is far superior to conventional ferrite 

MNS [43, 52]. Crystalline Fe3O4 shell was also used to protect metallic Fe MNS that 

resulted in Ms and r2 of 164 emu/g and 220 mM−1 s−1, respectively [44, 56]. Co MNS were 

coated with Au shell to provide an inert, biocompatible and stable shell with a well-known 

surface chemistry. Though the bulk saturation magnetization of Co is ~160 emu/g, the 

measured value was found ~100 emu/g after Au coating, which was still higher than Fe3O4 

MNS (75–80 emu/g) [55].

2.3 Multifunctional MNS

Hybrid MNS with two or more different functional units, such as Au–Fe3O4, FePt–CdS, and 

Fe2O3–carbon nanotube can be synthesized through seed mediated growth. In such a 

heterogeneous nanostructure, each unit exhibits its unique magnetic, optical, or electronic 

properties [10, 58–60]. Au–Fe3O4 nanostructures were prepared that preserved the optical 

property of Au (plasmonic absorption at ~530 nm) as well as the magnetic property of 

Fe3O4 MNS (Ms = 80 emu/g) [61]. This approach was extended to prepare semiconductor-

metal alloy [62], semiconductor–metal oxide [63], and carbon nanotube–metal oxide 

complex [64]. MNS have been coupled with a wide range of fluorophores for multimodal 

imaging applications [65–67]. Lastly, T1/T2 MRI agent were prepared by conjugating Gd 

(III) based chelating agent with MNS [68].

3 Coating and Functionalization of MNS

In order to apply MNS in vitro and subsequently in vivo, the surface needs to be 

functionalized so that it; (i) protects against agglomeration; (ii) provides biocompatibility 

and chemical handles for the conjugation of drugs and targeting ligands; (iii) limits 

nonspecific cell interactions; and (iv) enhances MNS pharmacokinetics [69]. A diverse 

group of organic and inorganic coatings has been investigated including DMSA [27], PEG 

[70, 71], dextran [72], chitosan [73], liposomes [74], gold [75], and silica [76]. MNS coating 

can be achieved via a number of approaches, including in situ coating, post-synthesis 
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adsorption, and post-synthesis end grafting [15]. Here, we discuss some of the most 

common coatings, their methods of attachment, and examples in cancer targeting.

3.1 Poly(Ethylene Glycol) (PEG)

PEG is a neutral and amphiphilic polymer that has been used clinically as excipients in FDA 

approved pharmaceutical formulations [77]. PEG coating of MNS improves their dispersion 

in biological media and increases blood circulation time since they are not readily 

recognized by the reticuloendothelial system (RES) [78]. Lutz et al. demonstrated in situ 

coating of PEG onto Fe3O4 MNS under aqueous conditions [79] while PEG grafting was 

achieved by single-point chemical anchoring through different functional groups including 

silanes [70], phosphate derivatives [80] and dopamine [81]. Peng and Sun reported ligand 

exchange with bifunctional PEG with dopamine [56]. Most recently, nitrodopamine has 

been proposed as an ultrastable chemical anchor for MNS [82]. We have developed MNS 

with high buffer stability by coating Fe3O4 with bifunctional PEG conjugated with 

nitrodopamine and carboxylate terminal groups [83]. The nirodopamine was covalently 

attached to the Fe3O4 surface by one end and the carboxylate group at the other end was 

kept open to functionalize with targeting ligands or therapeutic agents.

3.2 Dextran

Dextran is a branched polysaccharide comprised of glucose subunits and is widely used for 

MNS coatings because of its biocompatibility and polar interactions (chelation and hydrogen 

bonding). Addition of dextran during synthesis of Fe3O4 via the co-precipitation method 

resulted in dextran coated Fe3O4 MNS [84]. Subsequent iterations of this method produced 

clinically approved ferumoxtran-10 (AMI-277) and ferumoxides (AMI-25) [85–90]. These 

two structures have cores of ~5 nm, but differ significantly in dextran coating thickness (20–

40 nm vs. 80–150 nm) which results in varying blood circulation times (24 h for 

ferumoxtran and 2 h for ferumoxides) [35]. Since the dextran molecules are adhered 

nonspecifically through hydroxyl interactions with the iron oxide core, there is always a 

possibility of desorption [91]. In order to prevent this, the dextran polymers were chemically 

cross-linked on MNS surface [92]. Using this strategy, clinically approved ferumoxytol [93] 

and ferucarbotran [22] have been synthesized.

3.3 Silica

Silica coating on MNS is popular because of the ease of synthesis and aqueous stability. By 

hydrolyzing silica precursors in basic solution, a uniform and thickness-controllable silica 

coating on MNS was obtained [76, 94, 95]. The silica shell have been used as a carrier for 

anticancer drugs (e.g., paclitaxel) and fluorescent molecules (e.g., fluorescein isothiocyanate 

(FITC)) [96]. Imparting additional functionalities to the silica coating have enabled targeting 

and labeling functionality. By addition of 3-aminopropyl-triethoxysilane (APS) to the silica 

precursors, we have coated silica shells with primary amine groups with controlled thickness 

[97]. Similarly, by reacting APS with isothiocyanate functionalized fluorescent dyes, Lu et 

al. were able to develop fluorescent MNS, a multimodal diagnostic agent [94]. Currently, 

silica coated MNS is available as ferumoxil (AMI-121), an orally ingested T2 contrast agent 

for delineation of the intestinal loops from adjacent tissues and organs [21].
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4 Pharmacokinetics and Biodistribution

The two most important factors that determine MNS pharmacokinetics are their surface 

characteristics and hydrodynamic size [98, 99]. Interplay of these properties with the 

reticuloendothelial system (RES) clearance determines plasma lifetime (blood circulation 

time). In RES clearance, circulating opsonin proteins adsorb to MNS surface (opsonization) 

that are recognized and removed from the bloodstream by tissue macrophages (Fig. 6). It has 

been shown that MNS with a hydrodynamic diameter of 10–100 nm are pharmacokinetically 

optimal for in vivo applications [100]. MNS smaller than 10 nm are subject to tissue 

extravasation and renal clearance, whereas those larger than 100 nm are quickly opsonized 

and eliminated from the circulation via the RES [31]. Decuzzi et al. produced models 

suggesting that within this range, smaller size nanostructures have longer blood circulation 

time [101].

With respect to the surface properties, charge can affect pharmacokinetics of MNS by 

enhancing their interactions with the plasma proteins and nontargeted cells, resulting in short 

blood circulation time [102]. In addition, hydrophobic groups on the surface of MNS induce 

the agglomeration of the MNS upon injection, leading to rapid removal by the RES. The rate 

of clearance, however, can be reduced by modification of MNS surfaces with coatings that 

resist RES interactions. As mentioned, surface modification with molecules such as the 

hydrophilic PEG has been a hallmark solution to many pharmacokinetic problems, including 

MNS [103, 104]. PEG chains linked to MNS reduce opsonization and macrophage uptake 

processes through steric repulsion, prolonging their circulation times [78, 105].

MNS biodistribution and cell uptake is significantly influenced by their physicochemical 

properties [99, 106, 107]. For example, it has been reported that MNS smaller than 150 nm 

accumulates in the bone marrow, heart, kidney, and stomach [108] while MNS larger than 

150 nm are found in the liver and spleen [109]. Villanueva et al. showed that the charge and 

nature of surface functionalizing molecules on MNS affected their uptake of cancer cells 

[110]. They found that cells had effective uptake of positively charged aminodextran-MNS, 

minimal uptake of neutral charged dextran coated MNS, and low uptake of negatively 

charged DMSA-coated MNS [110]. Chouly et al. have found that negatively charged MNS 

gets opsonized quicker than neutral MNS and had greater liver uptake [99].

5 Targeting of MNS to Localized Cancer Tumors

The targeting of MNS for selected tumor tissues is critical in both diagnostic imaging and 

therapeutics [5, 10, 11]. Since nonspecific cell binding can place healthy tissue at risk, MNS 

have been engineered to target tumor tissues through passive and active targeting 

approaches.

5.1 Passive Targeting

Passive targeting uses the predetermined physicochemical properties of MNS to specifically 

migrate to selected tissues. The most common example of passive targeting is the enhanced 

permeability and retention (EPR) effect where MNS smaller than 200 nm can accumulate in 

many tumor tissues passively in solid tumors [111]. The compromised vasculature of a solid 
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tumor facilitates passive MNS extravasation from the circulation into the tumor interstitium 

(Fig. 7) [112]. By contrast, endothelial cells of normal tissue vessels are closely packed and 

present a barrier for MNS penetration. However, passive targeting is limited to specific 

tumors since success of EPR effect depends on a number of factors such as lymphatic 

drainage rate, degree of capillary disorder, and blood flow which varies in different tumor 

types [113, 114].

5.2 Active Targeting with Targeting Agents

Because passive targeting is available for only certain types of tumors and does not 

necessarily guarantee internalization of MNS by targeted cells, MNS can be modified with 

tumor-selective agents to employ active targeting [115, 116]. These agents are 

complementary to unique receptors that are overexpressed or present on tumor cells. A 

variety of targeting agents have been used for MNS, depending on the specific target, and 

these are reviewed elsewhere [5, 10]. Some of the studies include: small organic molecules 

[115, 117, 118], peptides [119], proteins [120], and antibodies [27]. The density and 

molecular organization of these ligands significantly influence MNS binding to target cells 

due to the multivalency phenomenon [121]. Some of the targeting agents can be used to 

facilitate MNS internalization into cells, primarily via endocytosis [5]. However, synthesis 

of these targeting agents is expensive and involves complicated chemistry. Therefore, the 

process of scaling up the synthesis is challenging and may be a hurdle for clinical 

applications.

5.3 Active Targeting with External Magnetic Field

Accumulation of MNS can be realized by applying external magnetic field on the target site, 

a unique feature for MNS. Magnetic targeting has been studied for a number of tumor 

models [122, 123]. This technique was successfully implemented in a clinical trial to deliver 

the chemotherapeutic, doxorubicin, to hepatocarcinoma cells [124]. David et al. have 

explored magnetic targeting to brain tumors with PEI functionalized MNS [102, 122]. While 

successful, the efficacy of magnetic targeting is limited to target tissue that is close to the 

body's surface, since the magnetic field strength decreases with the distance from the 

magnetic source.

6 MNS for Diagnostic Imaging of Cancer

The diagnostic imaging applications of MNS have been realized as T2 contrast agents in MR 

imaging over the past 20 years [13–15, 28, 125]. Owing to their significant deposition in 

liver, several MNS-based clinically approved T2 contrast agents (Feridex I.V.®, Resovist®, 

and Gastromark®) have been used for liver imaging of humans [21, 22]. In order to extend 

MR visibility to image tumor at other parts, targeting agents have been coupled to MNS 

[85]. For example, Artemov et al. used Fe3O4 MNS conjugated with biotinylated Her-2/neu 

antibody Herceptin to generate strong T2 contrast in breast cancer cell lines (AU-565, 

MCF-7, and MDA-MB-231) overexpressed with tyrosine kinase Her-2/neu receptors [126]. 

Contrast observed in MR images was found to be proportional to the expression level of 

kinase her-2/neu receptors for the given cell lines. Gao et al. successfully performed targeted 

MR imaging of human colon carcinoma xenograft tumors in mice by conjugating a cancer-
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targeting antibody (rch 24 mAb), to an 11 nm Fe3O4 MNS [127]. T2 and T2*-weighted MR 

images acquired before and after injection showed that the tumor site turned dark as early as 

10 min after the injection of the rch 24 mAb conjugates and became darker and bigger until 

24 h. In contrast, the Fe3O4 MNS without rch 24 mAb showed nearly no variation after 

injection [127]. Sun et al. reported c(RGDyK) peptide-coated Fe3O4 MNS and demonstrated 

their in vivo tumor-specific targeting capability [128]. When administrated intravenously in 

a mice bearing U87MG tumors, the c(RGDyK) peptide-coated Fe3O4 MNS accumulated 

preferentially in the integrin αvβ3-rich tumor area resulting in a significant drop in the tumor 

MR signal intensity [128].

Other than target-specific molecular imaging, MNS-based contrast agents have been used in 

MRI for cell-based therapy since cells must be tracked in vivo to optimize cell therapy [129–

134]. MRI-based immune cell tracking using MNS has been applied to many types of 

preclinical studies, such as tumor targeting of cytotoxic T cells and natural killer cells [135, 

136], organ-specific targeting of autoimmune T cells [137], and neural stem cells [138]. De 

Vries et al. have shown that in vivo magnetic resonance tracking of MNS labeled dendritic 

cells is feasible in humans in conjunction with detailed anatomical information in melanoma 

patients. In contrast to scintigraphic imaging, MRI allowed assessment of the accuracy of 

dendritic cell delivery and of inter- and intranodal cell migration patterns [139–143]. 

Recently, Bulte et al. evaluated the long-term clinical tracking of MNS labeled stem cells 

after intracerebroventricular transplantation in an 18-month-old patient with global cerebral 

ischemia [144]. Twenty-four hours post-transplantation, MRI was able to detect hypointense 

cells in the occipital horn of the lateral ventricle. The signal gradually decreased over 4 

months and became undetectable at 33 months.

To improve T2 contrast for advanced MR imaging, researchers have been studying various 

parameters that affect the r2 relaxivity of MNS. In the following sections, we discuss the 

parameters that have improved T2 contrast of MNS for cancer diagnostic imaging. They 

have been divided into four categories; (i) size, shape, and composition control; (ii) 

nanoassembly of MNS; (iii) coating of MNS; and (iv) MNS with metal core.

6.1 Size, Shape, and Composition Control

According to Eq. 1, the R2 of MNS is proportional to saturation magnetization and volume. 

Since the saturation magnetization of an MNS is proportional to its size due to surface spin-

canting effects, the r2 value of MNS can be increased by increasing the size of MNS. 

However, for biological imaging applications, the hydrodynamic size of MNS should be 

below 100 nm in order to have longer circulation times and to avoid nonspecific uptake 

[145]. Cheon et al. investigated the size effect where Fe3O4 MNS of diameter 4, 6, 9, and 12 

nm resulted in the r2 relaxivity of 78, 106, 130, and 218 mM−1 s−1, respectively (Fig. 8). 

The MR contrast changed from light gray to black or from red to blue in color-coded images 

(Fig. 8) [27]. The 9 nm Fe3O4 MNS conjugated with Herceptin was used to image a breast 

cancer cell line, SK-BR-3, which possesses overexpressed HER2/neu cancer markers. 

Herceptin was selected due to its specific binding properties against a HER2/neu receptor. In 

the T2-weighted MR images, treatment of 9 nm Fe3O4 MNS-Herceptin probe conjugates to 

the SK-BR03 breast cancer cell lines resulted in the significant negative contrast of the MR 
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images compared to nontreated cell lines [27]. Chen et al. studied the size effect of 

polyvinylpyrrolidone (PVP)-coated Fe3O4 MNS (core size 8, 23, 37, and 65) on MRI of 

hepatic lesions in vivo [146]. PVP-Fe3O4 MNS with core size 37 and 65 nm showed higher 

r2 relaxivity (239 and 248 mM−1 s−1, respectively) compared to other sizes. When 

administered in nude mice bearing orthotopic Huh7 liver cancer, PVP-Fe3O4 MNS with 37 

nm core size showed higher contrast change compared to Feridex in T2 and T2* weighted 

MR images [146].

The change in shape of the MNS has been used to increase r2 relaxivity. We reported size 

and shape effects of CoFe2O4 MNS on their r2 relaxivity. Spherical CoFe2O4 MNS of 

various sizes were synthesized via seed mediated growth method, while faceted irregular 

CoFe2O4 MNS were synthesized via the same method but in the presence of a magnetic 

field [147]. While the r2 relaxivity coefficient of CoFe2O4 MNS increased with an increase 

in size for spherical particles, faceted CoFe2O4 MNS showed higher r2 relaxivity than 

spherical CoFe2O4 MNS [147]. Recently, Gao et al. reported octapod shape Fe3O4 MNS 

that exhibited highest relaxivity of 679.3+/30 mM−1 s−1 for Fe3O4 and demonstrated in vivo 

imaging and tumor detection [148].

As discussed earlier, the magnetization (and hence r2) of MNS can be influenced by doping 

with magnetically susceptible elements. The effect of metal doping on the r2 relaxivity was 

investigated for MFe2O4 in which Fe2+ ions were replaced by other transition metal dopants 

(Mn2+, Zn2+, Ni2+, and Co2+). The r2 of 12 nm MnFe2O4 MNS was observed 358 mM−1 s−1 

compared to 218 and 62 mM−1 s−1 from 12 nm Fe3O4 and dextran coated cross-linked 4 nm 

Fe3O4 (CLIO) MNS, respectively (Fig. 9) [38]. This increased MR contrast enhancement 

was tested to detect breast and ovarian cancer tumor in mice after Herceptin conjugation and 

intravenous injection (Fig. 9) [38]. MnFe2O4-Herceptin conjugates produced higher contrast 

than CLIO-Herceptin conjugates at the tumor site after 2 h (Fig. 9 a–d). Quantitatively, r2 

increase up to 34 % was observed for MnFe2O4-Herceptin conjugates in comparison to 5 

and 13 % for CLIO-Herceptin conjugates and 12 nm Fe3O4-Herceptin conjugates, 

respectively (Fig. 9 e,f).

6.2 Nanoassembly of the MNS

Nanoassembly of MNS made up of numerous MNS have shown to increase r2 relaxivity 

since an individual MNS in the nanoassembly is more efficient at dephasing the spins of the 

surrounding water protons [149]. For example, Feridex exhibits much higher r2 relaxivity 

than monocrystalline iron oxide MNS because Feridex consists of several iron oxide 

nanoparticles embedded in a dextran shell [36]. Advances in chemical synthesis have 

enabled the preparation of nanoassemblies of tunable size and shape. Fe3O4 MNS have been 

assembled on dye-doped mesoporous silica nanoparticles (Fig. 10a) [37, 150]. The r2 value 

of Fe3O4 coated silica nanoparticles was 2.8 times higher than that of well-dispersed Fe3O4 

nano-particles (Fig. 10b) [150]. After subcutaneous injection into each dorsal shoulder of a 

nude mouse, MCF-7 cells labeled with Fe3O4-MNS were clearly detected as a dark volume 

of subcutaneous tumor in the T2-weighted MR image, while the unlabeled MCF-7 cells did 

not show any MR contrast enhancement [150]. We have demonstrated controlled assembly 

of 6 nm amine functionalized Fe3O4 MNS [151]. The size of aggregates was ~40 nm and the 
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r2 value was 315 mM−1 s−1, which was significantly higher than r2 of monodisperse 6 nm 

Fe3O4 (~100 mM−1 s−1) [38].

6.3 Coating of MNS

Typically, the role of the MNS coating is to provide stability, biocompatibility, and 

enhanced blood circulation times. In addition, the coating on MNS affect the r2 relaxivity 

since it can increase the residence time of the surrounding water molecules by forming 

hydrogen bonds [152]. For example, polyethylene glycol (PEG) is one of the most common 

coatings that is used to make MNS stable in aqueous/biological media. Each ethylene glycol 

subunit in the PEG associates with two or three water molecules which slows water 

diffusion, resulting in a high r2 relaxivity [152].

We have developed MNS with Fe3O4 core and PEG coating that shows excellent buffer 

stability [83]. It was found that the PEG coating not only provides stability but the thickness 

of PEG coating also affects the r2 relaxivity of Fe3O4 MNS. The thickness was varied by 

changing the molecular weight of PEG that resulted in different r2 relaxivities. The r2 

relaxivity of 12 nm Fe3O4 MNS was found at 160, 194, 277, and 396 mM−1 s−1 when the 

molecular weight of PEG was 200, 400, 500, and 600 Da (Fig. 11). Bao et al. reported 

different r2 relaxivities for phospholipid (DSPE)-PEG-coated Fe3O4 MNS by changing their 

core size (5 and 14 nm) and PEG length (mol. wt. 550, 750, 1000, 2000, and 5000). The 

highest r2 value of 385 mM−1 s−1 was obtained for 14 nm Fe3O4 MNS coated with DSPE-

PEG1000 [39]. In vivo tumor imaging was done using Fe3O4 MNS (5 and 14 nm) coated 

with DSPE-PEG1000 and conjugated with antibodies against mouse VEGFR-1. Tumors 

were induced by implanting human U87 glioblastoma cells subcutaneously in the nude mice. 

Tail vein injection of the 14 nm Fe3O4 MNS with r2 relaxivity ~385 mM−1 s−1 produced 

more T2 contrast enhancement of the tumor tissues in comparison to 5 nm Fe3O4 whose 

relaxivity was 130 mM−1 s−1.

Silica coating on MNS is another common method to provide aqueous stability. It has been 

observed that r2 relaxivity of MNS decreases with increment in silica shell thickness. Pinho 

et al. observed a systematic decrease in the r2 relaxivity, from 228 to 23 mM−1 s−1, after 

coating silica shell up to 20 nm on a 10 nm γ-Fe2O3 MNS [95]. The authors attributed this 

effect to two regions of silica shell coating, an inner water-impermeable layer and an outer 

water-permeable layer. The outer layer provided colloidal stability while the impermeable 

layer reduced the interaction between the MNS and water protons significantly, resulting in 

a drop in r2 relaxivity.

6.4 MNS with Metal Core

Although MNS with ferrite cores are promising MRI contrast agents, their saturation 

magnetization can be further improved since a portion of their magnetic spins cancels each 

other. MNS with metallic core such as Fe, Co, FeCo, FePt, and CoPt exhibit higher 

saturation magnetization since all their magnetic spins align in one direction and there is no 

canceled spin. Saturation magnetization of bulk FeCo and Fe is 240 and 218 emu/g, 

respectively compared to 90 emu/g of bulk Fe3O4 MNS. However, each metallic MNS has a 

specific limitation as MRI contrast agents. For example, FePt and CoPt are chemically stable 
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but potentially toxic due to the possibility of leaching of Pt [153]. Fe, Co, and FeCo 

nanoparticles are biocompatible but are chemically unstable in air and prone to oxidation. 

To stabilize MNS with metallic core and maintain their magnetic properties, a number of 

coatings have been applied. MNS with Fe core and ferrite shell were reported that exhibited 

long-term stability in air [44–46]. Sun et al. reported bcc Fe/Fe3O4 core/shell MNS. Due to 

the high magnetization of Fe core, the r2 relaxivity of Fe/Fe3O4 MNS (220 mM−1 s−1) was 

found ~10 times higher than r2 of Fe3O4 MNS (24 mM−1 s−1) of the same size and coating 

[44, 56] and 2 times higher than the typical iron oxide NP contrast agent Feridex (110 mM−1 

s−1). However, no in vitro or in vivo studies were reported. Weissleder et al. further 

improved the r2 relaxivity up to 430 mM−1 s−1 by coating MnFe2O4 shell on Fe 

nanoparticles. The authors intravenously injected Fe/MnFe2O4 MNS, Fe3O4 MNS of the 

same size and cross-linked iron oxide (CLIO). Taken at 3 h postinjection, the images 

verified that Fe/MnFe2O4 MNS resulted in the most significant darkening compared to 

CLIO and Fe3O4 MNS [46]. Dai et al. developed FeCo nanoparticles embedded in graphitic 

carbon (GC) shell that were discrete, chemically functionalized, and water soluble as desired 

for biological applications. Due to the high saturation magnetization, FeCo/GC MNS 

exhibited very high r2 values (644 mM−1 s−1). During in vivo intravascular MR imaging of 

the blood pool in the rabbit, mesenchymal stem cells labeled with FeCo/GC MNS showed 

significantly higher T2 negative contrast enhancement compared to the ones labeled with 

Feridex [43, 52].

7 Thermally Activated MNS for Cancer Therapeutics

With the capability to generate thermal energy at targeted areas, MNS can be used in cancer 

therapeutics [5, 12, 154]. Compared with photodynamic therapy agents such as gold and 

graphene, MNS are advantageous for targets that reside deep inside the biological system 

without penetration depth problem. In addition, the fact that magnetic field causes no 

adverse effect on biological tissues serves as a distinctive benefit for noninvasive, in vivo 

applications.

The use of MNS in cancer therapeutic has been divided into three categories; (i) magnetic 

hyperthermia where MNS kill tumor cells via increase in tissue temperature; (ii) 

chemotherapy where MNS deliver a drug and trigger release at the tumor site; (iii) 

biotherapy where MNS are highly effective carrier platforms for bioactive molecules such as 

siRNA, oligos, and genes and facilitate transport of biomolecules in plasma membrane 

penetration necessary for cell internalization.

7.1 Magnetic Hyperthermia: MNS as Heat Generators

Targeted MNS can accumulate at the tumor site and increase the tissue temperature under an 

external RF field. Since the cancer tissues have higher heat sensitivity than normal tissues, 

thermal activation of MNS can be used to selectively kill tumor cells in the range of 41–47 

°C [69]. As mentioned earlier, as MNS with high SAR have high efficacy for killing cancer 

cells, a variety of next-generation MNS with high SAR have been developed [155–157]. 

(Zn0.4Mn0.6)Fe2O4 MNS have shown high SAR value of 432 W/g which is ~4 times higher 

than SAR of Feridex (115 W/g). The high SAR of (Zn0.4Mn0.6)Fe2O4 MNS resulted in 84.4 

% death of HeLa cancer cells in comparison to 13.5 % from Feridex (Fig. 12) [42]. 
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Similarly, 82 % of Hela cells died when treated with CoFe2O4 MNS with SAR value of 238 

W/g at 168 kHz [158]. Cheon et al. reported a significant increase in the SAR values of 

MNS by synthesizing core/shell MNS with hard ferromagnetic core and soft ferromagnetic 

shell [159]. Due to the exchange coupling between core and shell of MNS, the core/shell 

MNS showed SAR up to 3034 W/g which are an order of magnitude larger than SAR of 

conventional ferrite MNS (~300 W/g). Due to the high SAR values, the therapeutic efficacy 

of these MNS under RF was found superior to a common anticancer drug (doxorubicin). The 

same amounts (75 μg) of MNS and doxorubicin were injected into the tumor of a nude mice 

xenografted with cancer cells (U87MG). The tumor was clearly eliminated in 18 days in the 

group treated with the core/shell MNS, while in the doxorubicin-treated group tumor growth 

slowed initially, but then regrew after 18 days [159]. Recently, the same group reported Gd 

(III) texaphyrins (GdTx) conjugated ZnFe2O4 MNS with SAR of 471 W/g designed for 

hyperthermic treatment for apoptosis. This system is a double-effector MNS that generates 

heat as well as reactive oxygen species (ROS) which remarkably increased the degree of 

apoptotic cell death. Xenograft tumors in mice treated with the double-effector MNS were 

eliminated within 8 days whereas the tumor in untreated mice increased eightfold in 8 days 

[160].

7.2 Biotherapy: MNS as Carrier for Gene Therapeutics

Gene therapy is a technique that uses DNA and antisense RNA (siRNA) to treat and prevent 

disease via gene expression and gene silencing of defective genes [161, 162]. The coupling 

of nucleic acids with MNS improves the plasma pharmacokinetics and plasma membrane 

penetration of nucleic acids necessary for internalization into cells [162]. MNS designed for 

gene therapy have been coated with cationic polymers such as polyethylenimine (PEI), 

polyamidoamine, or chitosan in order to conjugate with negatively charged nucleic acids. 

While the cationic MNS have shown great success in vitro, their applicability in vivo has 

been limited because of toxicity and instability in biological media [163]. Zhang et al. 

coated MNS with a copolymer of PEI, PEG, and chitosan (NP-CP-PEI) [164]. The chitosan 

and PEG suppressed the PEI toxicity while PEG also provided the stability. NP-CP-PEI 

demonstrated an innocuous toxic profile and a high level of expression of the delivered 

plasmid DNA in a C6 xenograft mouse model, while MNS coated with only PEI or chitosan 

showed high toxicity or low gene transfection efficiency, respectively [164]. The attachment 

of the targeting ligand, chlorotoxin (CTX), to NP-CP-PEI enhanced the gene transfection 

efficiency. Histology analysis and confocal microscopy of the C6 xenograft tumor sections 

showed more cells expressing GFP in tumors treated with the NP-CP-PEI attached with 

CTX compared to NP-CP-PEI without CTX [165]. One alternative to the cationic coatings 

was offered by conjugating siRNA to MNS by covalent bonding. Medarova et al. developed 

a dual purpose probe for the simultaneous noninvasive imaging and delivery of siRNAs to 

tumors. This probe consisted of MNS labeled with Cy5.5 dye and conjugated to a synthetic 

siRNA duplex targeting a gene of interest. With use of model (green fluorescent protein, 

GFP) and therapeutic (surviving) genes, the authors demonstrated that the targeting and 

delivery of the probe could be monitored in vivo by MRI and optical imaging. In addition, 

they were able to follow the silencing process by optical imaging and to correlate it with 

histological data [86, 87].
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7.3 Chemotherapy: MNS as Drug Carrier/Release Trigger for Chemotherapeutics

Chemotherapy focuses on the treatment of disease through delivery of small molecule drug 

formulations [88]. Most of the drugs do not have cell-targeting capabilities which results in 

undesirable side effects when internalized by healthy cells. The success of MNS in 

diagnostic imaging has generated considerable interest in their use as drug delivery vehicles. 

MNS coatings provide anchor points to which drug molecules can be coupled. Integrating 

the drugs into MNS improves their targeting abilities, limits their side effects, and allows 

increment of the drug dosage at the diseased tissue [5, 10]. Currently, several drugs have 

been combined with MNS for cancer chemotherapy, including paclitaxel (PTX), 

doxorubicin (DOX), and methotrexate (MTX) [89, 90]. The therapeutic moieties can be 

covalently bonded to MNS with cleavable linkages, encapsulated in the hydrophobic coating 

on MNS, or physically absorbed on the surface of MNS.

An ideal drug delivery vehicle should have efficient drug loading and controllable drug 

release. In applications where the drug (such as MTX) has an affinity for the target cell, it 

can be advantageous to graft the drug to the surface of the MNS. Kohler et al. demonstrated 

covalent attachment of MTX to the surface of a PEG-coated MNS via a cleavable amide 

linkage [89]. However, the drug loading capacity via direct conjugation was found low due 

to the small number of functional groups on the surface of MNS. Hollow MNS have been 

used to increase chemotherapeutic efficacy due to higher drug loading capacity [166]. Sun et 

al. utilized porous hollow Fe3O4 MNS with 5 times higher cisplatin loading compared to 

solid Fe3O4 MNS [167]. Once coupled with Herceptin to the surface, the cisplatin-loaded 

hollow NPs targeted breast cancer SK-BR-3 cells with IC50 reaching 2.9 μM, much lower 

than 6.8 μM needed for free cisplatin. Labheshwar et al. coated a PEO-PPO diblock 

copolymer (Pluronic F127) on oleic acid coated MNS, where a hydro-phobic region in the 

oleic acid/PPO layer provided drug loading of 8.2 and 9.5 % for DOX and PTX, 

respectively [168]. They found that MNS loaded with both DOX and PTX in a 1:1 ratio 

demonstrated highly synergistic antiproliferative activity in MCF-7 breast cancer cells 

relative to MNS loaded with only DOX or PTX.

The thermal energy from MNS has been used as an external trigger for controlled drug 

release. Thomas et al. loaded mesoporous silica nanoparticles with DOX and 15 nm 

(Zn0.4Fe0.6)Fe2O4 MNS and capped the pores with cucurbit [6] uril that functioned as a heat 

labile molecular valve [169]. There was no drug release at the room temperature since the 

pores of the mesoporous silica remain capped, but under an external RF field, decapping 

occurred due to thermal activation of MNS, releasing most of the drug. In vitro, this 

controlled drug release killed 7-times more breast cancer cells. MNS coated with thermally 

responsive agents (e.g., hydrogels, thermosensitive polymers, lipids) have been explored 

where temperature works as a trigger for drug release [74, 170]. Recently, we reported 

poly(N-isopropylacrylamide) encapsulated Fe3O4 MNS in which DOX was loaded into the 

hydrogel via absorption. Drug release in presence of RF field was found 2 times higher than 

in absence of RF field due to thermal activation of MNS. In vitro localized drug delivery 

studies of the DOX loaded hydrogel-MNS composite with HeLa cell lines resulted in more 

than 80 % cell death under external RF field compared to 40 % cell death without RF field 

(Fig. 13) [83].
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8 Summary and Outlook

Magnetic nanostructures (MNS) truly represent a prototypical nanotechnology platform in 

the sense that their properties and phenomena are unquestionably size dependent in the 

nanoscale regime. Nominal ferrimagnetic behavior of MNS changes to superparamagnetism 

below ~10–15 nm size scale, which is essential for colloidal stability of MNS. The 

perturbations of protons in vicinity of the MNS provide the essential characteristics for 

contrast in MRI, while enthalpic contributions from external RF field generate localized 

thermal energy for therapeutic purpose. Thus, the combined theranostic attributes of MNS 

arise from diagnostic imaging and thermal therapy combination.

Over and beyond the technical and scientific aspects of theranostic administration of cancer, 

MNS also embody the other important attribute of nanotechnology in terms of 

complementarity, integration, and synergy of nominally disparate fields and subjects. For 

just MNS alone, these subjects and technical themes include: physics of magnetism, 

chemistry of synthesis, materials science of structure–property relationship, surface science 

of functionalization, biomedical engineering in MR imaging protocols and RF activation 

parameters, and the core biology and medical themes of cancer targeting, diagnostics 

imaging, and therapy. As a result, this has brought together scientists, engineers, and clinical 

practitioners from diverse backgrounds for more than a decade to advance biomedical 

sensing, diagnostics, and therapeutics.

As demonstrated by the examples highlighted in this chapter, remarkable advances have 

been made in the recent decade to harness the size, composition, and size-dependent 

properties of MNS for cancer diagnostics, diagnostic imaging, and localized therapy. MNS 

continue to exhibit realistic potential to address diagnostic imaging by MRI and localized 

therapy via thermal activation and/or timed therapeutic cargo release. In particular, it has 

been shown that appropriate choice of composition, size, and surface functionalization has 

the potential for synergistic combination of diagnostics MR imaging and thermally activated 

therapy.

Despite some promising results obtained so far, including in vivo animal studies, there are 

specific challenges for effective use of MNS in humans; the final objective for any cancer 

theranostic platform. Regulatory approval for use in humans will require further and 

extensive safety and toxicology studies. The composition, surface properties, drug loading, 

biodistribution, and pharmacokinetics are the diverse factors that may affect the toxicity of 

the MNS in a direct or indirect manner and need to be understood thoroughly. Limitations 

also exist for targeting efficiency, the lack of homogeneous MNS penetration, and 

inadequate delivery of therapeutics into the tumor volume.

Research is continuing in this regard; including development of new magnetic core materials 

with higher relaxivity and thermal activation properties, along with design of new coating 

materials to improve the pharmacokinetics, biodistribution, and biocompatibility. Success 

with MRI and progress over the past few years offer considerable prospects for eventual 

diagnostic and therapeutic translation of MNS technology. Indeed, several diagnostic 

clinical trials using MNS have been initiated over the past few years. The increasing trend 
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toward in vivo studies in animals and subsequent escalation to clinical trials are expected to 

help translate MNS from the laboratory to the clinic.
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Fig. 1. 
Size scale of MNS as compared to biomolecules. MNS can be adapted to include 

biomolecules, drugs, or targeting and imaging molecules to form targeted MNS theranostic 

agents
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Fig. 2. 
Functional architecture of MNS and theranostic modalities. MNS are comprised of 

thermally active magnetic core and biocompatible coating and/or functionalization that 

allows integration of targeting agents and bio/chemotherapeutics
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Fig. 3. 
T2 contrast enhancement in water due to MNS. When water molecules diffuse into the 

periphery of the induced dipole moment by MNS, the T2 relaxation time of the water 

protons is shortened which enhances the negative contrast
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Fig. 4. 
MFe2O4 (where M = Mn, Fe, Co, Ni) MNS with inverse spinel structure and its magnetic 

spin alignments. The mass magnetization values and r2 relaxivity values of MFe2O4 MNS 

are proportional to the magnetic moments of the divalent ions (M2+) [38]
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Fig. 5. 
Saturation magnetization and r2 relaxivity (at 4.5 T) of (ZnxMn1–x)Fe2O4 MNS at different 

Zn2+ doping levels. The (ZnxMn1–x)Fe2O4 MNS showed significantly high r2 relaxivities 

compared to conventional iron oxide MNS [42]
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Fig. 6. 
Schematic illustration of RES clearance of MNS. MNS larger than 100 nm are absorbed by 

circulating opsonin proteins that are recognized by macrophages and removed from the 

bloodstream
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Fig. 7. 
Passive targeting of MNS via enhanced permeability and retention (EPR) effect. The 

compromised vasculature of a solid tumor facilitates extravasation of MNS of size less than 

200 nm from the circulation into the tumor interstitium, while endothelial cells are closely 

packed and present a barrier for MNS penetration
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Fig. 8. 
Size effects of Fe3O4 MNS on r2 relaxivity. a TEM images, b saturation magnetization 

values, c T2-weighted MR images (top black and white, bottom color), and d the r2 

relaxivity values of 4, 6, 9, and 12 nm sized Fe3O4 MNS. The r2 relaxivity value increased 

with size of Fe3O4 MNS which resulted in the T2 contrast change from light gray to black in 

T2 weighted MR images or from red to blue in the corresponding color-coded images. 

Reprinted with permission from [27]. Copyright 2005 American Chemical Society

Nandwana et al. Page 32

Cancer Treat Res. Author manuscript; available in PMC 2015 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
In vivo MR detection of cancer in a mouse implanted with the cancer cell line NIH3T6.7 

using 12 nm MnFe2O4, 12 nm Fe3O4 and dextran coated cross-linked 4 nm Fe3O4 (CLIO) 

MNS. T2-weighted MR images of the mouse (a) before injection, (b) after 1 h injection, and 

(c) after 2 h injection of MnFe2O4 in comparison to (d) after 2 h injection of CLIO. 

MnFe2O4-Herceptin conjugates produced higher contrast than CLIO-Herceptin conjugates 

at the tumor site after 2 h. e Plot of R2 change versus time. Increase in R2 up to 34 % was 

observed for MnFe2O4-Herceptin conjugates in comparison to 5 and 13 % for CLIO-

Herceptin conjugate (dots) and 12 nm Fe3O4-Herceptin conjugates, respectively. f Change 

in R2 values was confirmed in the ex vivo MR images of explanted tumors (8 h). Reprinted 

with permission from [38]. Copyright 2007 Nature Publishing Group
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Fig. 10. 
MR signal enhancement by assembly of Fe3O4 on SiO2 nanoparticles. a Schematic 

illustration of the synthetic procedure for Fe3O4 decorated mesoporous silica nanoparticles. 

b Relaxivity values and T2 weighted MR image of Fe3O4 decorated SiO2 nanoparticles 

(Fe3O4-MSN) and free Fe3O4 nanoparticles. The r2 relaxivity of Fe3O4 decorated SiO2 

nanoparticles was increased by 2.8 times as compared to free Fe3O4 nanoparticles, hence 

darker signal was observed in T2 weighted MR image at the same concentration of Fe. 

Reprinted with permission from Ref. [150]. Copyright 2010 American Chemical Society
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Fig. 11. 
r2 relaxivity values of 12 nm nitrodopamine-PEG functionalized Fe3O4 MNS with 

molecular weight of PEG 200 (EG2), 400 (EG4), 500 (EG5), and 600 Da (EG6) in 

comparison to Ferumoxytol and Ferumoxides (unpublished). It was found that the PEG 

coating not only provides stability but the thickness of PEG coating also affects the r2 

relaxivity of Fe3O4 MNS. The highest r value of 396 mM−1 s−1 with PEG 600 (EG6) was 

almost four times that of Feridex (Ferumoxide)
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Fig. 12. 
SAR values and percentage of HeLa cells killed after treatment with (Zn0.4Mn0.6)Fe2O4 

MNS or Feridex in AMF. Fluorescence microscopy images of HeLa cells treated with 

(Zn0.4Mn0.6) Fe2O4 nanoparticles (or Feridex) and stained with calcein show live cells as 

green fluorescence. (Zn0.4Mn0.6)Fe2O4 MNS have shown SAR value of 432 W/g, ~4 times 

higher than SAR of Feridex (115 W/g) which resulted in 84.4 % death of HeLa cancer cells 

in comparison to 13.5 % from Feridex. Reprinted with permission from Ref. [42] Copyright 

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Fig. 13. 
a Schematic illustration of drug (DOX) release from thermoresponsive hydrogel-MNS 

composite. b Percent DOX release and cell viability of HeLa cell lines treated with the 

hydrogel-MNS composite with and without external RF field [83]
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Table 1

Summary of MNS with core diameter, surface coating, magnetic properties, and r2 relaxivity

MNS core material Core diameter (nm) Surface coating Magnetic moment (emu/g) B0 (T) r2 (mM−1 s−1) References

Fe3O4 (Resovist) 4 Carboxy-Dextran N/A 1.5 186 [35]

Fe3O4 (Feridex) 5 Dextran 45 1.5 120 [36]

Dy-SiO2-(Fe3O4)n 9 DMSA N/A 9.4 397 [37]

Fe3O4 4–12 DMSA 25–101 1.5 78–218 [38]

Fe3O4 12 Nitrodopa-PEG600 N/A 1.5 396 Unpublished

Fe3O4 14 DSPE-mPEG1000 N/A 0.47 385 [39]

Fe3O4 58 DSPE-mPEG2000 132 1.5 324 [40]

MnFe2O4 6–12 DMSA 68–110 1.5 208–358 [38]

CoFe2O4 12 DMSA 99 1.5 172 [38]

NiFe2O4 12 DMSA 85 1.5 152 [38]

Zn0.34Fe0.66OFe2O3 5 DSPE-PEG 54.1 0.55 34.7 [41]

Zn0.4Fe0.6Fe2O4 15 DMSA 161 4.5 687 [42]

Zn0.4Mn0.6Fe2O4 15 DMSA 175 4.5 860 [42]

Fe40Co60 7 Phospholipid-PEG 215 1.5 644 [43]

Fe/Fe3O4 15 OAm-PEG 164 3 220 [44]

Fe/Fe3O4 16 DMSA 139 1.5 312 [45]

Fe/MnFe2O4 16 DMSA 149 0.47 356 [46]

r2 transverse relaxivity; B0 magnetic field strength; DSPE-PEG 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene 

glycol)]; DMSA 2,3-dimercaptosuccinic acid; OAm-PEG oleylamine-α,ω-bis(2-carboxyethyl)poly(ethylene glycol)
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