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Abstract

We present PRRT (Parallel RRT) and PRRT* (Parallel RRT*), sampling-based methods for 

feasible and optimal motion planning designed for modern multicore CPUs. We parallelize RRT 

and RRT* such that all threads concurrently build a single motion planning tree. Parallelization in 

this manner requires that data structures, such as the nearest neighbor search tree and the motion 

planning tree, are safely shared across multiple threads. Rather than rely on traditional locks which 

can result in slowdowns due to lock contention, we introduce algorithms based on lock-free 

concurrency using atomic operations. We further improve scalability by using partition-based 

sampling (which shrinks each core’s working data set to improve cache efficiency) and parallel 

work-saving (in reducing the number of rewiring steps performed in PRRT*). Because PRRT and 

PRRT* are CPU-based, they can be directly integrated with existing libraries. We demonstrate 

that PRRT and PRRT* scale well as core counts increase, in some cases exhibiting superlinear 

speedup, for scenarios such as the Alpha Puzzle and Cubicles scenarios and the Aldebaran Nao 

robot performing a 2-handed task.
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I. INTRODUCTION

INCREMENTAL sampling-based motion planners, such as the Rapidly-exploring Random 

Tree (RRT) and RRT*, are used in a variety of robotics applications including autonomous 

navigation, manipulation, and computational biology [1], [2]. The objective of these 

planners is to find a feasible or optimal path through the robot’s free configuration space 

from a start configuration to a goal configuration. We introduce PRRT (Parallel RRT) and 

PRRT* (Parallel RRT*), parallelized versions of the single-tree RRT and RRT* motion 

planners that are tailored to execute on modern multicore CPUs.

Most modern PCs and mobile devices have between 2 and 32 processing cores with shared 

memory, and the number of cores is increasing. PRRT and PRRT* are designed to scale and 

efficiently utilize all available cores concurrently, enabling substantial speedups in motion 

planning, as shown in Fig. 1. We have empirically observed that PRRT and PRRT* in some 
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cases achieve a superlinear speedup: when p processor cores are used instead of 1 processor 

core, computation time is sped up by a factor greater than p.

Our focus is on challenging motion planning scenarios for which a large number (tens or 

hundreds of thousands) of configuration samples is necessary to find a feasible path or to 

compute a plan with the desired closeness to optimality. In RRT and RRT*, the time spent 

computing nearest neighbors grows logarithmically with each iteration as the number of 

samples rises, whereas the time spent per iteration on collision detection decreases as the 

expected distance between samples shrinks. Collision detection typically dominates 

computation time in the early iterations. But as the number of iterations rises and the number 

of samples increases, nearest neighbor search will dominate the overall computation.

To enable speedup regardless of the computational bottleneck (e.g. collision detection or 

nearest neighbor searching), we parallelize the outer loop of RRT and RRT*: we create 

multiple threads that each generate samples and incrementally extend the motion planning 

tree based on those samples. To parallelize at this level, independently working threads must 

share access to a common data nearest neighbor search and motion planning tree data 

structure.

Traditionally, shared access might be controlled using locks. In the lock-based approach, 

when a thread must access a shared data structure, it first locks the data structure, then 

accesses it, and finally unlocks it. When another thread attempts to access a locked data 

structure it waits (i.e. is blocked) until the data structure is unlocked. If the lock covers a 

large data structure, then one thread may unnecessarily block other threads. If instead many 

locks are used to cover smaller data structures, then threads will repeatedly lock data 

structures unnecessarily, leading to high overhead. As the number of processor cores 

increases and as the number of samples grows to handle more complex motion planning 

problems, more computation time must be spent on nearest neighbor checking and lock 

contention rises, causing sublinear speedup.

To reduce causes of sublinear speedup and create opportunities, but not a guarantee, for 

superlinear speedup, PRRT and PRRT* introduce three key components relevant to 

multicore concurrency. The first is lock-free concurrency using atomic operations. To 

eliminate slowdowns caused by lock overhead and contention, PRRT and PRRT* use lock-

free shared data structures that are updated using an atomic compare-and-swap (CAS) 

operation, a universal primitive [3]. A CAS operation has three arguments: a location in 

shared memory, the expected value stored therein, and a new value to replace the previous. 

In a single atomic step, CAS loads the value stored in memory, compares it to the expected 

value and, only if they are the same, stores the new value in memory. Without the atomic 

guarantee, another concurrent thread would be able to store a different value between the 

CAS’s load and store. The atomic operation removes the need for locks when updates to 

shared data structures can be formulated into a single update. When a comparison fails due 

to a change made by another thread, the update is reformulated with the new information 

and tried again until it succeeds or is no longer necessary. In PRRT and PRRT* we observe 

that as the number of nodes n in a motion planning tree increases, the probability that any of 

the p threads are updating the same part of the motion planning tree decreases (limn→∞ 
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O(p/n) = 0). As a consequence, CAS operations rarely fail and we avoid the unnecessary 

blocking and overhead associated with locks. Lock-free operations eliminate the need for 

locks and hence reduce the overhead that might otherwise be associated with concurrent 

access to a shared-memory data structure. Lock-free operations by themselves at best enable 

linear speedup, but can be used in conjunction with other components to create opportunities 

for superlinear speedup.

The second component introduced in PRRT and PRRT* that sets up conditions in which 

superlinear speedup might occur is cache-friendly partition-based sampling. To reduce the 

size of each thread’s working data set, we partition the configuration space into non-

overlapping regions and assign a partition to each thread. Partitioning has two benefits. First, 

it reduces the likelihood that two threads will simultaneously attempt to modify the same 

part of the shared data structures, reducing CAS failures. Second, as each processor core is 

expected to work in a smaller subset of the nearest neighbor data structure, more of the 

relevant structure can reside in each core’s cache, thus creating an opportunity for 

superlinear speedup. Cache-efficiency, while not affecting the algorithmic complexity, can 

lead to significant real-world performance gains on modern CPU architectures.

The third component introduced to create opportunities for superlinear speedup in PRRT* is 

parallel work-saving. During the rewiring phase of RRT*, the algorithm evaluates the costs 

of paths to nearby nodes, rewires them through the new node if such routing would produce 

a shorter path, and percolates updates up the tree. To reduce the number of rewiring 

operations in RRT*, we ensure that when multiple threads attempt to rewire the same 

portion of the tree, only the one with the better update continues. This frees the other threads 

to continue expanding the RRT*, effectively reducing computation effort relative to single-

threaded RRT* for percolating rewiring up the tree. Parallel work-saving can enhance an 

algorithm’s performance and can in some cases enable superlinear speedup.

PRRT and PRRT* are designed to run on standard shared-memory, multicore, CPU-based 

computing platforms (rather than, for example, a cluster or a GPU). This facilitates easy 

direct integration with existing libraries for collision detection, robot kinematics, and 

physics-based simulation [4], [5]. In this paper we provide a refined, archival version of our 

methods originally introduced in a conference paper [6] and generalize the lock-free kd-tree 

data structure to support configuration spaces such as SE(3) and include new evaluations. 

We also provide pseudocode sufficiently detailed to show where CAS operations are used, 

how they impact the surrounding instructions, and how we ensure correctness under 

concurrency. We demonstrate the fast performance and scalability of PRRT for feasible 

motion planning using the Alpha Puzzle scenario and a random spheres scenario, and we 

demonstrate PRRT* for optimal motion planning using the Cubicles scenario, a holonomic 

disc-shaped robot, and an Aldebaran Nao small humanoid robot performing a 2-handed task.

II. RELATED WORK

Sampling-based motion planners include several components that can naturally be 

parallelized, and prior work has taken multiple avenues to exploit this parallelism using 

multicore and multi-processor CPUs, clusters, and GPUs. Early work by Amato et al. [7] 
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showed that sampling-based probabilistic roadmaps (PRMs) can be parallelized. Our focus 

is on parallelizing RRT and RRT*.

Parallelizing RRT introduces new challenges since the validity of the tree must be 

maintained as it is updated by multiple processes. A direct approach on a shared-memory 

system is to use locks on shared data structures, which is one of the methods proposed by 

Carpin et al. [8] and implemented as pRRT in OMPL [5]. Parallelizing RRT has also been 

investigated for distributed-memory systems common in clusters. Devaurs et al. propose 

collaborative building of an RRT across multiple processes using message passing [9]. This 

approach achieves a sublinear speedup as the number of available processors increases. 

Jacobs et al. [10] recently introduced speedups by adjusting the amount of local computation 

before making an update to global data structures and by radially subdividing the 

configuration space into regions. Approaches targeting distributed-memory systems (e.g., 

[9], [10]) can also be run on shared-memory systems, but they do not take advantage of 

shared-memory primitives that can offer additional opportunities for speedup. KPIECE [11] 

prioritizes cells in a discretized grid for sampling based upon a notion of each cell’s 

importance to solving a difficult portion of the motion plan and has been demonstrated to 

parallelize on shared-memory systems using locking primitives. Our focus is on shared-

memory systems (common in PC’s and mobile devices), which enables us to utilize atomic 

CPU operations and cache-friendly algorithms to set up conditions under which superlinear 

speedup might occur for a single RRT.

Several approaches to parallelizing motion planning across multiple cores/processors have 

utilized multiple tree-based data structures. Carpin et al. [8] propose an OR parallel 

algorithm in which several RRT processes run in parallel and the algorithm stops when the 

first RRT process finds a solution. Plaku et al. [12] introduced the Sampling-based Roadmap 

of Trees (SRT) algorithm, which subdivides the motion planning problem into subproblems 

that are distributed, solved by another planner, e.g. RRT, and connected together. SRT 

achieves near-linear speedup that slightly tapers at higher processor counts. Otte et al. [13] 

also distribute the generation of independent path planning trees among several processes 

and achieve significant speedups by sharing information between processes about the best 

known path. Unlike the above methods that rely on multiple trees, we focus on building a 

single motion planning tree as in RRT and RRT*. Hence, our approach is complementary to 

the above multi-tree methods, which utilize multiple single-tree data structures. Our lock-

free methods for shared-memory, multicore concurrency resulted in an empirically observed 

superlinear speedup for some scenarios for both feasible and optimal single-tree motion 

planning.

Bialkowski et al. [14] parallelize RRT* and related methods by improving the rate of 

collision detection. This approach results in substantial speedups for environments where 

collision detection dominates processing time. But due to Amdahl’s law [15], parallel 

performance will taper as the number of samples increases and nearest neighbor checks 

begin to dominate as discussed in Sec. I.

Partitioning of configuration space has been used to various effect in motion planning. For 

example, Rosell et al. [16] hierarchically decomposes C-space to perform a deterministic 
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sampling sequence that allows uniform and incremental exploration. Morales et al. [17] 

automatically decompose a motion planning problem into (possibly overlapping) partitions 

wellsuited for one of many (sampling-based) planners in a planning library. Yoon et al. [18] 

show how cache-efficient layouts of bounding volume hierarchies provide performance 

benefits in the context of collision detection.

GPU-based parallel computation has also been used to accelerate motion planning, including 

GPU-based methods for the PRM [19], rasterization-based planning [20], Voronoi diagram-

based sampling [21], [22], and R* [23]. Implementing GPU-based algorithms is challenging 

in part because the single-instruction-multiple-data (SIMD) execution model of GPU’s 

constrains algorithm design. When each thread needs to do something different (inherently 

divergent), such as traversing a space partitioning tree, the SIMD model loses nearly all 

ability to parallelize [24]. Another challenge with GPU approaches is that, while they can 

gain the benefit of the high computational throughput associated with GPUs, they sacrifice 

some interoperability with standard systems and libraries based upon CPUs.

III. PROBLEM FORMULATION

A. Parallel Computing Environment

Our target computing environment is the one available in almost every modern computer: a 

multicore/multi-processor concurrent-read-exclusive-write (CREW) shared-memory system 

with atomic operations that synchronize views of memory between threads running on 

different cores. This is the model in the current generation of x86-64 and ARM multicore 

processors as well as many other CPU architectures.

In this environment, a computer contains one or more processors. Each processor may 

contain one or more cores. Each core acts as an independent CPU capable of having a single 

thread running simultaneous to the threads running on the other cores. The total number of 

cores in the system is:

For example, a system with 4 processors, where each processor has 8 cores, has p = 32.

Speedup refers to how much a parallel algorithm is faster than a corresponding sequential 

algorithm. Let Tp be the execution time of a program that is executed using p cores. 

Formally, speedup Sp is the ratio of the sequential (single-threaded) execution time T1 to 

parallel execution time Tp with p cores:

Linear speedup means Sp = p, and superlinear speedup means Sp > p.
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To achieve large speedups, we will utilize several features that are common on modern 

multicore processors. First, we will use the atomic compare-and-swap (CAS) operation. 

Second, modern processors typically have a cache hierarchy between the core and RAM that 

includes one or more small but fast caches local to each core (L1 and L2) and a larger and 

slower cache shared among cores (L3). When the data set in use by a core is smaller, the 

core uses the faster local caches more often and gains a proportional speed benefit. CPU 

caches can be leveraged to gain superlinear speedups by distributing the working dataset 

into smaller chunks across multiple cores.

B. Problem Definition

Let C be the d-dimensional configuration space of the robot and Cfree ⊆ C denote the 

subspace of the configuration space for which the robot is not in collision with an obstacle. 

Let q ∈ C denote a configuration of the robot. PRRT and PRRT* each require as input the 

start configuration qinit of the robot and a set of goal configurations Qgoal ⊆ Cfree.

The objective of PRRT (feasible motion planning) is to find a path in the robot’s 

configuration space that is feasible (e.g., avoids obstacles) and reaches the goal region. 

Formally, the objective of PRRT is to compute a path Π : (q0, q1, q2, … , qend) such that q0 

= qinit, qend ∈ Qgoal, and Π lies in Cfree. The objective of PRRT* (optimal motion planning) 

is to compute a feasible path that reaches the goal region and minimizes a user-defined cost 

function. An example cost function is the minimum total Euclidean length of the segments 

in the planned path.

C. Problem-specific Functions

Similar to their sequential motion planning counterparts RRT and RRT*, PRRT and PRRT* 

require as input the definition of problem-specific functions. For two configurations q1, q2 ∈ 

C, the function STEER(q1, q2) returns a new configuration that would be reached if taking a 

trajectory from q1 heading toward q2 up to some maximum user-specified distance. The 

function FEASIBLE(q1, q2) returns false if the local path from q1 to q2 collides with an 

obstacle or violates some motion constraint, and true otherwise. For PRRT*, the function 

COST(q1, q2) specifies the cost associated with moving between two configurations q1 and 

q2, which can equal control effort, Euclidean distance, or any problem-specific user-

specified metric that can be used with RRT* [2]. We also require a function GOAL(q) that 

returns true if q ∈ Qgoal and false otherwise.

The above problem-specific functions are standard in RRT and RRT*, which enables current 

implementations of these problem-specific functions to be used in PRRT and PRRT* largely 

unchanged. For the algorithm we present here, the only additional requirement we add is 

that the implementation of the problem-specific functions must be either (1) thread-safe and 

non-blocking or (2) capable of having multiple non-shared instances in the same program.

IV. PRRT

We present Parallel RRT (PRRT), a lock-free parallel extension of the RRT algorithm. We 

describe the algorithm in sufficient detail to show where atomic operations are used, how 

they impact the algorithm design, and how we ensure correctness under concurrency.
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The PRRT algorithm maintains data structures that are shared across all threads, including 

the data structure for nearest neighbor searching, the RRT tree τ , the approximate iteration 

number, and whether or not a path to the goal has been found. As shown in Algorithm 1, 

PRRT begins by partitioning the configuration space into non-overlapping regions and 

launching an independent thread for each partition. For peak performance, each thread runs 

on a dedicated core. The impact of partitioning is that it localizes each thread’s operations 

(e.g. random sampling and nearest neighbor searching) to a smaller portion of the 

configuration space. This allows for more effective use of each core’s caches and 

contributes in some cases to our method’s empirically observed superlinear performance.

A. PRRT Threads

The algorithm for each thread of PRRT is shown in Algorithm 2. PRRT is nearly identical to 

the standard RRT algorithm except that (1) each thread only samples in its partition and (2) 

PRRT uses a lock-free nearest-neighbor data structure (introduced in Sec. IV-B). We note 

that although sampling is local to a partition, the nearest-neighbor data structure spans the 

entire configuration space and is shared by all threads.

As in the standard RRT algorithm, the function PRRT creates a new node for qnew and sets 

its parent pointer to the node of qnear (line 6) and then inserts the node into the lock-free kd-

tree (line 7). The ordering is important since PRRT must ensure that other threads only see 

fully initialized nodes, and the new node will become visible as soon as it is inserted into the 

kd-tree.

Complicating matters, modern CPUs and compilers may speculatively execute memory 

reads and writes out-of-order as a performance optimization. These optimizations are done 

in a manner that guarantees correctness from the view of a single thread, but out-of-order 

writes may cause a thread executing concurrently on another core to see uninitialized or 

partially initialized values, resulting in an incorrect operation. The solution to this problem is 

to issue a memory barrier (also known as a memory fence) [25]. A memory barrier tells the 

compiler and CPU that all preceding memory operations must complete before the barrier, 

and similarly no memory operations may speculate ahead of the barrier until after the barrier 

completes. For PRRT_Thread to operate correctly, it must ensure that a memory barrier is 

issued before a new node becomes visible to another thread, which is done in the lock-free 

kd-tree insertion algorithm described next.

B. Building a Lock-Free kd-Tree

The RRT algorithm requires an algorithm Nearest(τ, q) for computing the nearest neighbor 

in τ to a configuration q in configuration space. Using a logarithmic nearest neighbor search 

rather than a brute-force linear algorithm often results in a substantial performance gain 
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[26]. In PRRT, for nearest neighbor searches we use a variant of a kd-tree data structure [27] 

that we adapt to allow for concurrent lock-free inserts using CAS.

Each node of the kd-tree is a k-dimensional point (i.e., a configuration in PRRT), where k = 

d is the dimension of the configuration space. The kd-tree is a binary tree in which each non-

leaf node represents an axis-aligned splitting hyperplane that divides the space in two; points 

on one side of this hyperplane are in the left subtree of that node and the other points are in 

the right subtree. The axis associated with a node is based on its depth (i.e., level) in the tree. 

For example, in 3D Euclidean space the hyperplane for a node in the first level of the kd-tree 

is perpendicular to the x-axis based on that node’s x dimension value. For successive layers, 

the splitting is perpendicular to the y-axis, then the z-axis, and then repeating x, y, z, x, y, z, 

… down the tree.

To insert a node in the kd-tree for fast nearest neighbor searching, PRRT_Thread calls the 

lock-free kd-tree insert function LockFreeKDInsert shown in Algorithm 3. It starts with a 

pointer to the root (line 4), then traverses down the kd-tree by different dimensions (lines 5, 

6) until it finds an empty branch (line 7). Once found, it generates and records the split (line 

8), performs a memory barrier, and then a CAS (lines 9, 10) to change the pointer from null 

to the new node that was allocated and initialized in line 1. If the CAS succeeds, the node is 

inserted and the algorithm returns. If another thread already updated the pointer, the CAS 

will fail, and the algorithm will continue to walk down the tree until it can attempt another 

insert. The memory barrier before the CAS ensures that the node is fully initialized before it 

is visible to other threads when the CAS succeeds.

In line 8, Split denotes a function that generates the hyperplane. The split is generated based 

upon the bounds of the region of the node’s parent. The bounds are initialized in lines 2 and 

3 and updated in lines 15 and 18. If the bounds are known and finite, Split forces a mid-

point split [28] by returning (qmin + qmax)/2. If the bounds are not known, as might happen 

with the initial values at the root of the tree, Split returns qnew [a], causing the inserted value 

to define the split.

The kd-tree handles most spaces relevant to motion planning in configuration spaces, 

including Rn, T n, and combinations thereof with an appropriate distance metric [26]. For Rn 

spaces, we consider Euclidean distance metrics. For T n spaces (with unbounded revolute 

joints where θ = θ + 2nπ for any integer n) we consider distance metrics based on a circular 

distance in the form distS1 (θ1, θ2) = min(|θ1 − θ2|, 2π − |θ1 − θ2|). For a combination of 

these spaces, we consider the root sum of squares.

We augment the lock-free kd-tree to support SE(3) and SO(3) by defining splits based on the 

approach of vantagepoint trees (vp-trees) [29]. The kd-tree defines a split on an SO(3) 
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component using an orientation asplit in space and a pre-defined distance φ from the 

orientation. The distance function is the shortest arc-length between two orientations and 

thus ranges from 0 to π. Representing orientations using quaternions [30], distSO3(a1, a2) = 

arccos |a1 · a2|. Orientations that are less than φ away from asplit are on one side of the split, 

and orientations greater than φ away are on the other side. We preselect φ as sec 30°, as that 

produces an even split on the orientations in SO(3). The Split function on the SO(3) 

component generates a split orientation by rotating the orientation component anew of the 

inserted point by φ about an arbitrary axis. This causes anew to lie exactly on the split. This 

vp-tree-based approach enables the lock-free kd-tree to efficiently support the SE(3) and 

SO(3) configuration spaces.

PRRT and PRRT* builds up the lock-free kd-tree on the fly by inserting randomly generated 

configuration samples. The resulting tree remains relatively balanced. It can be shown that 

the expected number of comparisons required to insert a random sample into a binary tree 

generated with uniform random insertions is about 2 ln n [31, p. 430–431].

The kd-tree can be used for any number of dimensions, but may become inefficient in very 

high dimensional spaces [26]. Even in such cases, kd-trees distribute random updates 

throughout the tree, leading to low contention over insertion points. In brute-force 

approaches based upon arrays or lists, inserts at a single insertion point (e.g. the tail of the 

list/array) may result in contention.

C. Querying a Lock-Free kd-Tree

For a given query sample, Nearest and Near search the lock-free kd-tree for the sample 

closest to it, or all samples within a radius of it, respectively. They successively compare the 

query to each traversed node’s splitting hyperplane, and recurse down the side on which the 

query sample lies (the “near” side). Recursion ends when encountering empty branches. 

Upon return from the near side, the methods traverse the “far” side of the hyperplane only if 

it is possible that points in that part of the tree would be closer than the closest found so far 

(Nearest) or within the search radius (Near).

In practice PRRT can be used with other nearest-neighbor search approaches that allow for 

non-blocking searches and low-contention updates, and provide partitioned locality 

properties. The alternative of using a nearest-neighbor data structure with locks is also 

possible, but as shown in the results in Sec. VI, unlike the lock-free kd-tree, a lock-based kd-

tree will result in sublinear speedup as different threads contend for access to the structure.

In our implementation, we consider two schemes for configuration space partitioning that 

naturally align with the nearest neighbor search kd-tree: (1) an even subdivision created by 

“slicing” along the first dimension of configuration space, and (2) a multi-dimensional grid 

created by recursively partitioning along successive axes. While more sophisticated 

partitioning approaches (e.g. [11], [16], [17]) might look for ways to focus sampling on 

regions of difficulty (such as regions containing narrow passages), our motivation in 
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partitioning is to create locality with sampling and nearest neighbor searches, and thus 

improve CPU cache utilization. As seen in the results, the choice of partitioning scheme has 

an impact on the overall performance of the motion planner depending on the scenario.

V. PRRT*

We present Parallel RRT* (PRRT*), a lock-free parallel extension of the RRT* algorithm. 

The PRRT* algorithm shares across all threads the data structure for nearest neighbor 

searching, the RRT* tree τ , the approximate iteration number, and the best path to the goal 

found by any of the threads. PRRT*, shown in Algorithm 4, begins just like PRRT except it 

launches threads of PRRT*_Thread(τ, s).

A. PRRT* Threads

PRRT* expands the motion planning tree much like PRRT except that it includes the 

additional step of “rewiring” a small neighborhood of the tree to enable finding optimal 

paths. PRRT*_Thread, shown in Algorithm 5, is the main loop of a thread of PRRT*.

At a high level, PRRT* works much like standard RRT*. In the outer loop, it randomly 

samples a configuration, finds the sample’s nearest neighbor in the motion planning tree, 

and computes a new configuration by steering from the nearest neighbor toward the sampled 

configuration (lines 2–5). PRRT* then searches for all the configurations in a ball around the 

new configuration (line 6) using the ball radius defined in [2]. PRRT* then connects the new 

configuration to the configuration in the ball that produces the shortest path (lines 8–17), and 

then inserts the newly connected configuration into the nearest neighbor structure (line 21). 

Finally, it rewires any configuration in the ball radius that produces a shorter path to goal 

through the newly added configuration.

The notable differences from standard RRT* are: (1) each thread samples within a partition 

of the configuration space (line 2), (2) nearest neighbors are found using a lock-free kd-tree 

(lines 3 and 6), (3) new configurations are added to the RRT* tree in a manner that accounts 

for parallelism by fully initializing them before adding them to the nearest-neighbor 

structure (lines 18–20), and (4) rewiring is accomplished entirely via lock-free operations.

B. PRRT* Rewiring

During the rewiring phase of RRT*, the algorithm considers paths to configurations nearby 

the newly added configuration, and it rewires the RRT* tree if re-routing those paths 

through the newly added configuration is both FEASIBLE and results in a shorter path. 
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Following the approach of prior implementations of RRT* [2], [5], we cache with each 

RRT* node the the path cost to that node’s configuration and push updates down the tree 

when a node is rewired.

PRRT* formulates rewiring (Algorithm 6) into a CAS operation that guarantees rewiring is 

completed correctly, even if another thread is concurrently accessing or rewiring the same 

node. If the CAS update fails, the assertion about the new trajectory being shorter may now 

be incorrect. In that case, the update is re-evaluated and tried again if the rewiring would 

still result in a shorter path.

CAS operations only work on single memory operands. The rewiring assertion however is 

made about two pieces of information: the trajectory and the cost of that trajectory. We thus 

modify the data structures to encapsulate both trajectory and cost into a single unit making it 

suitable for a CAS. The data structures we define are nodes, representing reachable valid 

configurations, and edges, representing trajectories from one node to another. The edges 

form a linked tree structure that represents known trajectories to any nodes. To get from the 

initial configuration to any node’s configuration, the edge structure is followed (in reverse) 

from the node back to the root of the tree where the initial configuration is stored. An edge’s 

path to root never changes, and thus its computed trajectory cost never changes. When 

PRRT* finds a shorter path to a node, the node’s edge is CAS with the better edge. Here 

again, we issue a memory barrier and ensure that the new edge is fully initialized before the 

CAS. The old edge will still essentially be present in the edge tree, but is no longer 

referenced from the node. We call an edge in this state “expired”, and detect it when 

edge.node.edge ≠ edge. Expired edges can be garbage collected and their associated memory 

reused, but care must be taken to avoid the “ABA” problem [3]. (The ABA problem occurs 

when a thread reads ‘A’ from a shared memory location and, before it performs the CAS, 

another thread modifies the shared location to ‘B’ and back to ‘A’, which causes the first 

thread to treat the shared memory location as unmodified.)

By computing CAS operations around an edge, PRRT* guarantees that any update it makes 

results in an equal or better path, a requirement for the solution to converge towards 

optimality. After rewiring a node through a better path, the new shorter path is recursively 

percolated to the nodes that link in to the rewired node. This update process (Algorithm 7) 
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atomically replaces edges to the expired parent with shorter ones. It repeatedly removes the 

old children one at a time (line 4) from a lock-free list structure (e.g. [32], [3]) until no more 

children remain (line 5). It then creates the new child edge with the updated cost, and CAS it 

into place (line 15). A memory barrier before the CAS ensures that the edge is fully 

initialized before another thread can access it. Note that by using the lock-free list removal, 

the algorithm ensures that only one thread is updating a particular child at any time. In the 

case in which two threads are competing to update the same portion of the tree, the thread(s) 

producing the longer update terminate early (lines 10, 13), and only the thread producing the 

shorter update proceeds, thus providing work savings and improving speedup.

C. Asymptotic Optimality of PRRT*

In the case of single-threaded execution, PRRT* runs exactly like sequential RRT* and 

hence is asymptotically optimal.

Next, let us consider PRRT* running with multiple threads and without partitioning. Each of 

the p threads is operating independently on a shared RRT* graph. Each thread begins its 

computation by observing the size nt of the current graph and ends an iteration adding a 

configuration to the graph that is of size . When a single thread is running, . When 

multiple threads are running concurrently,  due to updates from other threads. Since 

the ball radius used in iteration t is based on nt, as t increases and the ball radius shrinks, 

each thread is operating with a ball radius greater than or equal to what is necessary for 

asymptotic optimality according to the proofs from RRT* [2]. Thus it follows from the proof 

of asymptotic optimality of RRT* [2] that PRRT* when running without partitioning is 

asymptotically optimal.

Finally, let us consider PRRT* running with multiple threads and with partitioning. The 

impact of partitioning on the sampling distribution is that (1) PRRT* samples uniformly in 

independent static partitions rather than globally, and (2) each partition (due to the nature of 

the underlying planning problem) may sample at a different rate. If all threads sample their 

partition at the same rate, the sampling distribution of the entire space, in the limit, is 

uniform. We will denote this RRT* graph resulting from these samples at iteration t as Gt. If 

the sampling rate differs between threads, then we can consider Gt as the graph that results 

from running all the threads at the sampling rate of the slowest thread. Samples added by the 

threads with a faster sampling rate result in a graph  that is a superset of Gt. The rewiring 

step of PRRT* guarantees that the quality of plans found on  are at least as good as the 

plans found on Gt. If the ball radius of PRRT* is thus defined to guarantee asymptotic 

optimality of the slowest thread’s partition, we guarantee asymptotic optimality of Gt as t 

increases. The graph , as a superset, is thus also guaranteed to be asymptotically optimal 

as t increases. Hence, PRRT* carries the same asymptotic optimality guarantee as RRT*.

VI. RESULTS

We evaluate our method with five scenarios: (1) PRRT on the Alpha Puzzle scenario, (2) 

PRRT on a 10,000 random spheres scenario, (3) PRRT* on the Cubicles scenario, (4) 
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PRRT* on a holonomic disc-shaped robot moving in a planar environment, and (5) PRRT* 

on an Aldebaran Nao small humanoid robot performing a 2-handed task using 10 DOF. 

Results are computed on a system with four Intel x7550 2.0GHz 8-core Nehalem-EX 

processors for a total of 32 cores. Each processor has an 18MB shared L3 cache and each 

core has a private 256KB L2 cache as well as 32KB L1 data and instruction caches.

A. PRRT on the Alpha Puzzle Scenario

The Alpha Puzzle scenario [33] is a motion planning problem containing a narrow passage 

in the configuration space. The puzzle consists of two tubes, each twisted into an alpha 

shape. The objective is to separate the intertwined tubes, where one tube is considered a 

stationary obstacle and the other tube is the moving object (robot), as shown in Fig. 2. We 

specifically use the Alpha 1.2 variant included in OMPL [5], where different variants scale 

the size of the narrow passage (with smaller numbers being more difficult to solve).

Using the Alpha 1.2 scenario, we evaluate PRRT’s ability to speed up computation as the 

number of available CPU cores rises. We note that there has been much work on developing 

sampling strategies that improve RRT’s ability to solve the Alpha Puzzle scenario quickly—

we however used the standard uniform sampling (with and without partitioning) to 

demonstrate the multicore performance of PRRT. As with other RRT variants, customized 

sampling strategies could be used with PRRT (with and without partitioning) to obtain 

results even more quickly. We evaluated PRRT (for both slice and grid-based partitioning) 

on different numbers of processor cores up to 32. For each core count, we ran 500 trials. We 

also consider PRRT with lock-free data structures but without partition-based sampling. We 

plot the median computation times and speedups in Fig. 3(a) and (b), respectively. For 

comparison, we include results from multi-threaded locked variants of RRT in which each 

thread independently samples and computes feasibility, but the shared kd-tree is locked 

either at the tree level (“coarse-grain locking”) or at the node level (“fine-grain locking”). 

We also compare to the multi-tree OR parallel RRT in which each thread creates its own 

tree and all threads stop as soon any find a solution [8].

As shown in Fig. 3, PRRT achieves a superlinear speedup for the Alpha 1.2 scenario for all 

processor counts. PRRT’s speedup for 32 cores was 39.4x. PRRT without partitioning 

achieves sublinear speedup, but due to the lock-free data structures still scales well as the 

number of cores rises. In contrast, RRT with a locked nearest neighbor data structure scales 

poorly; lock contention is very high due to the large number of configuration samples 

necessary to solve this motion planning problem. PRRT’s use of lock-free data structures 

and partitioning enable a superlinear speedup for the Alpha 1.2 scenario on the multicore 

computer. OR parallel RRT performs best on this scenario, which requires creating samples 

inside a short, narrow passage. We hypothesize that the independence of the RRT’s in OR 

parallel RRT facilitates landing the critical samples inside the short, narrow passage, and 

hence is better for this scenario than an approach that accelerates construction of a single 

RRT.
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B. PRRT on 6-DOF, 10,000 Random Spheres

We apply PRRT and related methods to a random spheres scenario in which a holonomic 

spherical robot must navigate through an obstacle course of 10,000 randomly placed spheres 

in 6-dimensional C-space. The objective for the robot is to navigate from the center of the C-

space to a corner while avoiding collision with the obstacles. The problem does not have a 

single difficult narrow passage like the Alpha problem, but the problem is still difficult 

because solutions necessarily have many segments.

In the random spheres scenario, OR parallel RRT does not perform as well as in the Alpha 

Puzzle scenario, likely because this scenario does not include a short, narrow passage 

requiring a “lucky” few samples to solve. In contrast, PRRT scales well with additional 

cores, which allow it to rapidly generate configuration samples and make progress towards 

the goal. The results are plotted in Fig. 4.

C. PRRT* on the Cubicles Scenario

The Cubicles scenario, included in OMPL [5], is a motion planning problem in which an 

“L”-shaped robot must move in SE(3) through a 2-story office-like environment. As shown 

in Fig. 5, to move from the start pose to the goal pose, the robot must find a path through 

SE(3) that includes traveling through a different floor. For computing path cost, we use 

OMPL’s configuration space distance metric that sums the weighted spatial and orientation 

components. The objective is to compute a feasible path from the start pose to the goal pose 

that minimizes path cost.

Using the Cubicles scenario, we evaluate PRRT*’s ability to speed up computation as the 

number of available CPU cores rises. We evaluated PRRT* with and without partition-based 

sampling on different numbers of processor cores up to 32. For each core count, we ran 100 

trials of each method, generating trees with 50,000 configurations in each trial. We plot the 

median computation times and speedups in Fig. 6(a) and (b), respectively. For comparison, 

as with RRT, we compare against multi-threaded locked variants of RRT*. In the locked-

RRT* fine-grain variant, access to the kd-tree and the rewiring updates of the tree are locked 

at the node (i.e. configuration) level—at most times multiple locks must be acquired to 

guarantee only one thread is updating a portion of the graph at any given moment, and locks 

are always acquired in the same order to avoid deadlock. We also compare against a multi-

threaded “OR” parallel RRT*, in which each thread computes an independent RRT* graph, 

and the final computed path is the one with the minimum cost selected from all graphs.

PRRT* with slice partitioning and PRRT* without partitioning achieve superlinear speedup 

on the Cubicles scenario. On 32 cores, PRRT* with slice partitioning achieves a speedup of 

36.6x and PRRT* without partitioning achieves a speedup of 38.9x. All methods achieved 

median solution path costs that are within 1% of one another, indicating that parallelization 

and partitioning do not significantly affect path quality when the size of the tree (50,000 

configurations in this case) is held constant. In this scenario, PRRT* with grid partitioning 

does not perform as well as other PRRT* variants because some of the threads sample in 

partitions that are unreachable (i.e., the space on the left of Fig. 5(c)) from the start and goal 

configurations. At 32 cores, grid partitioning allocates 8 cores to partitions entirely in the 
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unreachable space. PRRT* performs substantially better than RRT* with a locked kd-tree 

for nearest neighbor searching, which achieved sublinear speedup for both fine and coarse 

grain locking due to lock overhead and contention.

D. PRRT* for a 2D Holonomic Disc-shaped Robot

We executed PRRT* for a 2D holonomic disc-shaped robot that must move to the goal in 

the environment shown in Fig. 1(a). We executed RRT* on 1 core and PRRT* on 4 and 32 

cores for 10 ms of wall clock time. The quality of paths is shown visually in Fig. 1 and 

quantitatively in Fig. 7. With more cores, the size of the constructed tree in the 10 ms 

increases substantially, visibly improving the quality of the computed motion plan. More 

space is explored and more narrow passages are discovered.

As stated in section I, the focus of PRRT and PRRT* is on challenging scenarios requiring 

tens or hundreds of thousands of samples, and this 10 ms scenario does not fall into that 

category. In Fig. 7, we see that as we add more cores above 12, PRRT* begins to show a 

diminishing return on samples generated and quality of solution due to several factors: (1) 

the PRRT* tree grows faster thus causing the per-query time for nearest neighbor to also 

increase, (2) PRRT* is rapidly converging towards the optimal solution, and (3) 10 ms is a 

short enough interval that we observe the overhead of startup. In the early growth of the 

roadmap, where the number of samples n is small, as we add more cores p, the expected 

contention rises (limp→∞ O(p/n) = ∞). As we show in Sec. VI-E, the PRRT* startup 

overhead quickly disappears with additional computation time. We also note that this 10 ms 

scenario performs well for current readily available multicore systems (typically in the range 

of 2–12 cores), producing the significant and visible improvements shown in Fig. 1.

E. PRRT* for a 2-handed Aldebaran Nao 10 DOF Task

We evaluated PRRT* on an Aldebaran Nao small humanoid robot [34] with the task of 

dropping an object held in one hand into a cup held in the other hand while avoiding 

obstacles. Each arm of the Nao robot has 5 degrees of freedom (shoulder pitch/roll, elbow 

yaw/roll and wrist yaw), resulting in a 10 dimensional configuration space for this problem. 

All joints are bounded revolute joints, and we define COST as a Euclidean distance in 

configuration space. The robot must avoid obstacles on the table in front of it while keeping 

the cup upright throughout its motion—i.e. the function FEASIBLE tests if the robot will 

collide with objects in the environment and also tests if the robot’s joint angles will result in 

the cup being upright subject to a tolerance. We define GOAL to return true for 

configurations that satisfy the following constraints within a tolerance: (1) the (x, y) 

coordinates for the left hand and the right hand are the same, (2) the left hand’s z coordinate 

is higher than the right hand, (3) the object in the left hand is pointing down, and (4) the cup 

in the right hand is held upright. We show the Nao robot using PRRT* successfully 

performing the task in Fig. 8.

To demonstrate PRRT*’s ability to compute high quality solutions faster on multiple cores, 

we executed the Nao 10 DOF task for n = 100, 000 configurations with varying core counts 

and averaging over 10 runs. As shown in Fig. 9, we observe superlinear speedup with 

PRRT*. Executing PRRT* on 1 core (thus making it equivalent to standard RRT*) requires 
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420 seconds. On 32 cores, PRRT* required only 11.6 seconds for the same number of 

samples. PRRT* was 36x faster with no significant difference in the quality of the computed 

paths.

The use of lock-free data structures and partitioning in PRRT* both have an impact on 

performance. PRRT* without partition-based sampling performed slightly worse than 

PRRT*, achieving approximately a linear speedup as shown in Fig. 9. We also executed 

RRT* parallelized by locking the kd-tree. At 100,000 configurations, nearest neighbor 

searches dominate the computation time, so threads spend most of their time waiting for 

access to the kd-tree when using locks. Consequently, the lock-based approach cannot 

exceed 4x speedup.

In Fig. 10, we plot the average time for PRRT* and RRT* variants to reach a prespecified 

target path cost. In this experiment we see that PRRT* with and without partitioned 

sampling consistently outperforms the lock-based and OR parallel RRT* versions by at least 

a factor of 1.7x.

We note that the relative performance of motion planning using lock-free and lock-based 

nearest neighbor searching varies with the size of the motion planning tree τ . When the size 

of the tree τ is smaller, collision-detection dominates computation time and the lock-based 

approach achieves a more reasonable speedup. At 2,000 samples on 32 cores, we observe a 

16.4x speedup with locked kd-trees, although PRRT* still outperforms with a 28.9x 

speedup. The locked version’s speedup diminishes as more samples are added, as shown in 

Fig. 11. In contrast, the lock-free PRRT* overcomes thread startup overhead and reaches 

32x speedup by the 20,000th configuration before increasing to 36x speedup by 100,000 

configurations.

To demonstrate how PRRT* can be used to produce better results per unit time, we also ran 

the Nao 10 DOF task 50 times for 3 seconds at various processor core counts. As shown in 

Fig. 12, increasing the number of processor cores enables us to build trees with more 

samples per second and find better solutions. The path cost from the initial configuration to 

the goal shows convergence to an optimal solution as the number of samples increases, as 

expected with RRT*. In contrast to the 10 ms runs for the holonomic disc-shaped robot, in 

these 3-second runs for the Nao robot the impact of startup overhead is no longer significant 

and we see the number of samples generated scale well with the number of cores. We also 

observed that RRT* would find paths to the goal in only 80% of the 3-second runs on 1 

core. With 2 cores, PRRT* found solutions in 98% of the runs. At higher core counts, 

PRRT* found solutions in all runs.

VII. CONCLUSION

We presented PRRT (Parallel RRT) and PRRT* (Parallel RRT*), single-tree sampling-

based methods for feasible and optimal motion planning that are tailored to execute on 

modern multicore CPUs. Using atomic updates and lock-free data structures, PRRT and 

PRRT* remove barriers to scaling to higher processor core counts. We further observe that 

using a non-overlapping partition-based sampling strategy increases cache efficiency by 
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localizing each thread’s computation to a region of memory. While not guaranteed, we 

empirically observed that these contributions enable PRRT and PRRT* in some scenarios to 

achieve superlinear speedup.

Our method is best suited for challenging motion planning problems in which a large 

number of samples is required to find a feasible or near optimal solution. As the number of 

samples increases, computation time gradually changes from being dominated by collision 

detection to being dominated by nearest neighbor search. PRRT and PRRT* parallelize the 

entire computation of the motion planning tree and thus maintain speedup ratios regardless 

of which portion of the computation is dominating. We demonstrated fast performance and 

significant speedups in 5 scenarios including the Alpha Puzzle and Cubicles scenarios and 

an Aldebaran Nao small humanoid robot performing a 2-handed, 10 DOF task.

In ongoing and future work we would like to adapt PRRT and PRRT* to other commonly-

available hardware architectures and new applications. Some computing architectures 

provide hardware support for simultaneous multithreading (SMT)—running two or more 

threads simultaneously within each core by sharing cache and execution units within the 

core. Additional speedups may be achievable by scheduling such threads in a manner that 

coordinates with the partitioning scheme. The static partitioning in our implementation, 

while having an impact on many real-world level problems, does not produces a sustainable 

cache-locality in the limit. Eventually, the cache-benefit of the static partitioned locality will 

run out. Other work in the field of cache-aware and cacheoblivious algorithms (e.g. [35], 

[36]) has shown how to create a sustained cache-based performance improvement, 

regardless of problem size. More sophisticated partitioning approaches, such as approaches 

that focus sampling on regions of difficulty, could potentially by used with PRRT and 

PRRT* to provide both the benefits of improved partitioned sampling and of localizing 

computations to better fit in a core’s cache. We also plan to investigate adapting the 

algorithmic approaches of PRRT and PRRT* to applications in dynamic environments and 

other challenging scenarios. Included in this investigation will be reducing the overhead 

associated with startup to allow PRRT and PRRT* to make more effective use of additional 

cores in shorter time periods. The speedups gained through utilizing existing and readily 

available multicore concurrency in conjunction with lock-free data structures could enable 

new robotic applications in scenarios that are currently considered too computationally 

expensive when run in a single thread or using lock-based data structures.
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Fig. 1. 
We ran PRRT* for a 2D holonomic motion planning problem for a disc-shaped robot for 10 

ms on 1, 4, and 32 processor cores. The red line shows the optimal path found. With the 

same wall clock time, adding more processor cores increases the size of the tree, enabling 

fast computation of higher quality motion plans on modern multicore computers.
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Fig. 2. 
The Alpha 1.2 scenario. The yellow alpha is the obstacle, and the red alpha is the robot in 

SE(3). The robot must move from inside the obstacle (a) to outside the obstacle (b) by 

sliding through the narrow passage at an appropriate orientation.
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Fig. 3. 
Performance of PRRT and related methods run on the Alpha Puzzle scenario. PRRT finds a 

solution with superlinear speedup with respect to the number of processor cores. PRRT 

without partition-based sampling finds solutions with a slightly sublinear speedup but good 

scalability. In contrast, RRT using a locked kd-tree does not scale as well. Coarse-grain 

locking causes too much lock-contention, and fine-grain avoids some lock-contention but 

adds the overhead of repeated locking. For this scenario, the multi-tree OR parallel RRT 

acheives greater speedups than accelerating the construction of a single tree.
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Fig. 4. 
PRRT and related methods run on the 6-DOF random spheres scenario. PRRT scales well 

with additional cores, which allow it to rapidly generate configuration samples and make 

progress towards the goal.
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Fig. 5. 
We evaluate PRRT* on the Cubicles scenario. The “L”-shaped robot must move from its 

start pose on one side of a wall to the goal pose on the other side of the wall by moving 

through a lower floor (a). We illustrate an example path produced with 50,000 

configurations (b, c).
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Fig. 6. 
Performance of PRRT* and related methods run to 50,000 configurations on the Cubicles 

scenario. PRRT* without partitioning and with slice partitioning both achieve superlinear 

speedups with respect to the number of processor cores. PRRT* with grid partitioning 

suffers in performance as some cores are confined to sampling inside partitions that are 

disconnected by obstacles from the start and goal. RRT* with a locked kd-tree nearest 

neighbor data structure scales poorly due to lock contention.
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Fig. 7. 
PRRT* run for 10 ms on the 2D holonomic disc-shape robot scenario. PRRT* generates 

more samples, and produces a better quality solution with more cores, even in this short time 

interval.
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Fig. 8. 
An example PRRT* motion plan created for the Aldebaran Nao robot. The robot carries an 

effervescent antacid in one hand and places it over a glass of water held in the other hand, all 

while avoiding the bottles on the table and not spilling the water (i.e. FEASIBLE is 

constrained to keep the glass mostly level). In the last frame, after the robot reaches the goal 

configuration, it drops the antacid into the water.
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Fig. 9. 
Performance of PRRT* and related methods run on the Nao 10 DOF task for 100,000 

configurations. PRRT* achieves superlinear speedups with respect to the number of 

processor cores. In contrast, RRT* with a course-grain locked kd-tree nearest neighbor data 

structure cannot exceed 4x speedup due to lock contention.
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Fig. 10. 
We give PRRT* and RRT* variants a specified target path cost and show the time it takes to 

reach the target in the Nao scenario. In this graph we also include OR parallel RRT*, a 

multi-tree RRT* in which 32 RRT* trees are built in parallel and the best result is chosen 

from among them. For target path cost 6.8, OR parallel RRT* exceeded the allotted time and 

is plotted only to 100 seconds. We do not include the coarse-grained locking in this graph—

in all cases it exceeded the allotted time.
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Fig. 11. 
PRRT* running on 32 cores overcomes startup overhead and speedup increases as the 

number of configurations increases. In contrast, using a locked nearest neighbor structure 

shows good speedup initially, but as the number of configurations increases, contention over 

locked data structures slows the algorithm down.
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Fig. 12. 
PRRT* run for 3 seconds on the Nao 10 DOF task. Increasing the number of processor cores 

results in samples being generated at a higher rate and better quality solutions.
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