
Scalable Multicore Motion Planning Using Lock-Free
Concurrency

Jeffrey Ichnowski [Student Member, IEEE] and Ron Alterovitz [Member, IEEE]
Department of Computer Science at the University of North Carolina at Chapel Hill, USA

Abstract

We present PRRT (Parallel RRT) and PRRT* (Parallel RRT*), sampling-based methods for

feasible and optimal motion planning designed for modern multicore CPUs. We parallelize RRT

and RRT* such that all threads concurrently build a single motion planning tree. Parallelization in

this manner requires that data structures, such as the nearest neighbor search tree and the motion

planning tree, are safely shared across multiple threads. Rather than rely on traditional locks which

can result in slowdowns due to lock contention, we introduce algorithms based on lock-free

concurrency using atomic operations. We further improve scalability by using partition-based

sampling (which shrinks each core’s working data set to improve cache efficiency) and parallel

work-saving (in reducing the number of rewiring steps performed in PRRT*). Because PRRT and

PRRT* are CPU-based, they can be directly integrated with existing libraries. We demonstrate

that PRRT and PRRT* scale well as core counts increase, in some cases exhibiting superlinear

speedup, for scenarios such as the Alpha Puzzle and Cubicles scenarios and the Aldebaran Nao

robot performing a 2-handed task.

Keywords

motion and path planning; sampling-based methods; concurrent algorithms

I. INTRODUCTION

INCREMENTAL sampling-based motion planners, such as the Rapidly-exploring Random

Tree (RRT) and RRT*, are used in a variety of robotics applications including autonomous

navigation, manipulation, and computational biology [1], [2]. The objective of these

planners is to find a feasible or optimal path through the robot’s free configuration space

from a start configuration to a goal configuration. We introduce PRRT (Parallel RRT) and

PRRT* (Parallel RRT*), parallelized versions of the single-tree RRT and RRT* motion

planners that are tailored to execute on modern multicore CPUs.

Most modern PCs and mobile devices have between 2 and 32 processing cores with shared

memory, and the number of cores is increasing. PRRT and PRRT* are designed to scale and

efficiently utilize all available cores concurrently, enabling substantial speedups in motion

planning, as shown in Fig. 1. We have empirically observed that PRRT and PRRT* in some

jeffi@cs.unc.edu. ron@cs.unc.edu.

HHS Public Access
Author manuscript
IEEE Trans Robot. Author manuscript; available in PMC 2015 October 01.

Published in final edited form as:
IEEE Trans Robot. 2014 October ; 30(5): 1123–1136. doi:10.1109/TRO.2014.2331091.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

cases achieve a superlinear speedup: when p processor cores are used instead of 1 processor

core, computation time is sped up by a factor greater than p.

Our focus is on challenging motion planning scenarios for which a large number (tens or

hundreds of thousands) of configuration samples is necessary to find a feasible path or to

compute a plan with the desired closeness to optimality. In RRT and RRT*, the time spent

computing nearest neighbors grows logarithmically with each iteration as the number of

samples rises, whereas the time spent per iteration on collision detection decreases as the

expected distance between samples shrinks. Collision detection typically dominates

computation time in the early iterations. But as the number of iterations rises and the number

of samples increases, nearest neighbor search will dominate the overall computation.

To enable speedup regardless of the computational bottleneck (e.g. collision detection or

nearest neighbor searching), we parallelize the outer loop of RRT and RRT*: we create

multiple threads that each generate samples and incrementally extend the motion planning

tree based on those samples. To parallelize at this level, independently working threads must

share access to a common data nearest neighbor search and motion planning tree data

structure.

Traditionally, shared access might be controlled using locks. In the lock-based approach,

when a thread must access a shared data structure, it first locks the data structure, then

accesses it, and finally unlocks it. When another thread attempts to access a locked data

structure it waits (i.e. is blocked) until the data structure is unlocked. If the lock covers a

large data structure, then one thread may unnecessarily block other threads. If instead many

locks are used to cover smaller data structures, then threads will repeatedly lock data

structures unnecessarily, leading to high overhead. As the number of processor cores

increases and as the number of samples grows to handle more complex motion planning

problems, more computation time must be spent on nearest neighbor checking and lock

contention rises, causing sublinear speedup.

To reduce causes of sublinear speedup and create opportunities, but not a guarantee, for

superlinear speedup, PRRT and PRRT* introduce three key components relevant to

multicore concurrency. The first is lock-free concurrency using atomic operations. To

eliminate slowdowns caused by lock overhead and contention, PRRT and PRRT* use lock-

free shared data structures that are updated using an atomic compare-and-swap (CAS)

operation, a universal primitive [3]. A CAS operation has three arguments: a location in

shared memory, the expected value stored therein, and a new value to replace the previous.

In a single atomic step, CAS loads the value stored in memory, compares it to the expected

value and, only if they are the same, stores the new value in memory. Without the atomic

guarantee, another concurrent thread would be able to store a different value between the

CAS’s load and store. The atomic operation removes the need for locks when updates to

shared data structures can be formulated into a single update. When a comparison fails due

to a change made by another thread, the update is reformulated with the new information

and tried again until it succeeds or is no longer necessary. In PRRT and PRRT* we observe

that as the number of nodes n in a motion planning tree increases, the probability that any of

the p threads are updating the same part of the motion planning tree decreases (limn→∞

Ichnowski and Alterovitz Page 2

IEEE Trans Robot. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

O(p/n) = 0). As a consequence, CAS operations rarely fail and we avoid the unnecessary

blocking and overhead associated with locks. Lock-free operations eliminate the need for

locks and hence reduce the overhead that might otherwise be associated with concurrent

access to a shared-memory data structure. Lock-free operations by themselves at best enable

linear speedup, but can be used in conjunction with other components to create opportunities

for superlinear speedup.

The second component introduced in PRRT and PRRT* that sets up conditions in which

superlinear speedup might occur is cache-friendly partition-based sampling. To reduce the

size of each thread’s working data set, we partition the configuration space into non-

overlapping regions and assign a partition to each thread. Partitioning has two benefits. First,

it reduces the likelihood that two threads will simultaneously attempt to modify the same

part of the shared data structures, reducing CAS failures. Second, as each processor core is

expected to work in a smaller subset of the nearest neighbor data structure, more of the

relevant structure can reside in each core’s cache, thus creating an opportunity for

superlinear speedup. Cache-efficiency, while not affecting the algorithmic complexity, can

lead to significant real-world performance gains on modern CPU architectures.

The third component introduced to create opportunities for superlinear speedup in PRRT* is

parallel work-saving. During the rewiring phase of RRT*, the algorithm evaluates the costs

of paths to nearby nodes, rewires them through the new node if such routing would produce

a shorter path, and percolates updates up the tree. To reduce the number of rewiring

operations in RRT*, we ensure that when multiple threads attempt to rewire the same

portion of the tree, only the one with the better update continues. This frees the other threads

to continue expanding the RRT*, effectively reducing computation effort relative to single-

threaded RRT* for percolating rewiring up the tree. Parallel work-saving can enhance an

algorithm’s performance and can in some cases enable superlinear speedup.

PRRT and PRRT* are designed to run on standard shared-memory, multicore, CPU-based

computing platforms (rather than, for example, a cluster or a GPU). This facilitates easy

direct integration with existing libraries for collision detection, robot kinematics, and

physics-based simulation [4], [5]. In this paper we provide a refined, archival version of our

methods originally introduced in a conference paper [6] and generalize the lock-free kd-tree

data structure to support configuration spaces such as SE(3) and include new evaluations.

We also provide pseudocode sufficiently detailed to show where CAS operations are used,

how they impact the surrounding instructions, and how we ensure correctness under

concurrency. We demonstrate the fast performance and scalability of PRRT for feasible

motion planning using the Alpha Puzzle scenario and a random spheres scenario, and we

demonstrate PRRT* for optimal motion planning using the Cubicles scenario, a holonomic

disc-shaped robot, and an Aldebaran Nao small humanoid robot performing a 2-handed task.

II. RELATED WORK

Sampling-based motion planners include several components that can naturally be

parallelized, and prior work has taken multiple avenues to exploit this parallelism using

multicore and multi-processor CPUs, clusters, and GPUs. Early work by Amato et al. [7]

Ichnowski and Alterovitz Page 3

IEEE Trans Robot. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

showed that sampling-based probabilistic roadmaps (PRMs) can be parallelized. Our focus

is on parallelizing RRT and RRT*.

Parallelizing RRT introduces new challenges since the validity of the tree must be

maintained as it is updated by multiple processes. A direct approach on a shared-memory

system is to use locks on shared data structures, which is one of the methods proposed by

Carpin et al. [8] and implemented as pRRT in OMPL [5]. Parallelizing RRT has also been

investigated for distributed-memory systems common in clusters. Devaurs et al. propose

collaborative building of an RRT across multiple processes using message passing [9]. This

approach achieves a sublinear speedup as the number of available processors increases.

Jacobs et al. [10] recently introduced speedups by adjusting the amount of local computation

before making an update to global data structures and by radially subdividing the

configuration space into regions. Approaches targeting distributed-memory systems (e.g.,

[9], [10]) can also be run on shared-memory systems, but they do not take advantage of

shared-memory primitives that can offer additional opportunities for speedup. KPIECE [11]

prioritizes cells in a discretized grid for sampling based upon a notion of each cell’s

importance to solving a difficult portion of the motion plan and has been demonstrated to

parallelize on shared-memory systems using locking primitives. Our focus is on shared-

memory systems (common in PC’s and mobile devices), which enables us to utilize atomic

CPU operations and cache-friendly algorithms to set up conditions under which superlinear

speedup might occur for a single RRT.

Several approaches to parallelizing motion planning across multiple cores/processors have

utilized multiple tree-based data structures. Carpin et al. [8] propose an OR parallel

algorithm in which several RRT processes run in parallel and the algorithm stops when the

first RRT process finds a solution. Plaku et al. [12] introduced the Sampling-based Roadmap

of Trees (SRT) algorithm, which subdivides the motion planning problem into subproblems

that are distributed, solved by another planner, e.g. RRT, and connected together. SRT

achieves near-linear speedup that slightly tapers at higher processor counts. Otte et al. [13]

also distribute the generation of independent path planning trees among several processes

and achieve significant speedups by sharing information between processes about the best

known path. Unlike the above methods that rely on multiple trees, we focus on building a

single motion planning tree as in RRT and RRT*. Hence, our approach is complementary to

the above multi-tree methods, which utilize multiple single-tree data structures. Our lock-

free methods for shared-memory, multicore concurrency resulted in an empirically observed

superlinear speedup for some scenarios for both feasible and optimal single-tree motion

planning.

Bialkowski et al. [14] parallelize RRT* and related methods by improving the rate of

collision detection. This approach results in substantial speedups for environments where

collision detection dominates processing time. But due to Amdahl’s law [15], parallel

performance will taper as the number of samples increases and nearest neighbor checks

begin to dominate as discussed in Sec. I.

Partitioning of configuration space has been used to various effect in motion planning. For

example, Rosell et al. [16] hierarchically decomposes C-space to perform a deterministic

Ichnowski and Alterovitz Page 4

IEEE Trans Robot. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

sampling sequence that allows uniform and incremental exploration. Morales et al. [17]

automatically decompose a motion planning problem into (possibly overlapping) partitions

wellsuited for one of many (sampling-based) planners in a planning library. Yoon et al. [18]

show how cache-efficient layouts of bounding volume hierarchies provide performance

benefits in the context of collision detection.

GPU-based parallel computation has also been used to accelerate motion planning, including

GPU-based methods for the PRM [19], rasterization-based planning [20], Voronoi diagram-

based sampling [21], [22], and R* [23]. Implementing GPU-based algorithms is challenging

in part because the single-instruction-multiple-data (SIMD) execution model of GPU’s

constrains algorithm design. When each thread needs to do something different (inherently

divergent), such as traversing a space partitioning tree, the SIMD model loses nearly all

ability to parallelize [24]. Another challenge with GPU approaches is that, while they can

gain the benefit of the high computational throughput associated with GPUs, they sacrifice

some interoperability with standard systems and libraries based upon CPUs.

III. PROBLEM FORMULATION

A. Parallel Computing Environment

Our target computing environment is the one available in almost every modern computer: a

multicore/multi-processor concurrent-read-exclusive-write (CREW) shared-memory system

with atomic operations that synchronize views of memory between threads running on

different cores. This is the model in the current generation of x86-64 and ARM multicore

processors as well as many other CPU architectures.

In this environment, a computer contains one or more processors. Each processor may

contain one or more cores. Each core acts as an independent CPU capable of having a single

thread running simultaneous to the threads running on the other cores. The total number of

cores in the system is:

For example, a system with 4 processors, where each processor has 8 cores, has p = 32.

Speedup refers to how much a parallel algorithm is faster than a corresponding sequential

algorithm. Let Tp be the execution time of a program that is executed using p cores.

Formally, speedup Sp is the ratio of the sequential (single-threaded) execution time T1 to

parallel execution time Tp with p cores:

Linear speedup means Sp = p, and superlinear speedup means Sp > p.

Ichnowski and Alterovitz Page 5

IEEE Trans Robot. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

To achieve large speedups, we will utilize several features that are common on modern

multicore processors. First, we will use the atomic compare-and-swap (CAS) operation.

Second, modern processors typically have a cache hierarchy between the core and RAM that

includes one or more small but fast caches local to each core (L1 and L2) and a larger and

slower cache shared among cores (L3). When the data set in use by a core is smaller, the

core uses the faster local caches more often and gains a proportional speed benefit. CPU

caches can be leveraged to gain superlinear speedups by distributing the working dataset

into smaller chunks across multiple cores.

B. Problem Definition

Let C be the d-dimensional configuration space of the robot and Cfree ⊆ C denote the

subspace of the configuration space for which the robot is not in collision with an obstacle.

Let q ∈ C denote a configuration of the robot. PRRT and PRRT* each require as input the

start configuration qinit of the robot and a set of goal configurations Qgoal ⊆ Cfree.

The objective of PRRT (feasible motion planning) is to find a path in the robot’s

configuration space that is feasible (e.g., avoids obstacles) and reaches the goal region.

Formally, the objective of PRRT is to compute a path Π : (q0, q1, q2, … , qend) such that q0

= qinit, qend ∈ Qgoal, and Π lies in Cfree. The objective of PRRT* (optimal motion planning)

is to compute a feasible path that reaches the goal region and minimizes a user-defined cost

function. An example cost function is the minimum total Euclidean length of the segments

in the planned path.

C. Problem-specific Functions

Similar to their sequential motion planning counterparts RRT and RRT*, PRRT and PRRT*

require as input the definition of problem-specific functions. For two configurations q1, q2 ∈

C, the function STEER(q1, q2) returns a new configuration that would be reached if taking a

trajectory from q1 heading toward q2 up to some maximum user-specified distance. The

function FEASIBLE(q1, q2) returns false if the local path from q1 to q2 collides with an

obstacle or violates some motion constraint, and true otherwise. For PRRT*, the function

COST(q1, q2) specifies the cost associated with moving between two configurations q1 and

q2, which can equal control effort, Euclidean distance, or any problem-specific user-

specified metric that can be used with RRT* [2]. We also require a function GOAL(q) that

returns true if q ∈ Qgoal and false otherwise.

The above problem-specific functions are standard in RRT and RRT*, which enables current

implementations of these problem-specific functions to be used in PRRT and PRRT* largely

unchanged. For the algorithm we present here, the only additional requirement we add is

that the implementation of the problem-specific functions must be either (1) thread-safe and

non-blocking or (2) capable of having multiple non-shared instances in the same program.

IV. PRRT

We present Parallel RRT (PRRT), a lock-free parallel extension of the RRT algorithm. We

describe the algorithm in sufficient detail to show where atomic operations are used, how

they impact the algorithm design, and how we ensure correctness under concurrency.

Ichnowski and Alterovitz Page 6

IEEE Trans Robot. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The PRRT algorithm maintains data structures that are shared across all threads, including

the data structure for nearest neighbor searching, the RRT tree τ , the approximate iteration

number, and whether or not a path to the goal has been found. As shown in Algorithm 1,

PRRT begins by partitioning the configuration space into non-overlapping regions and

launching an independent thread for each partition. For peak performance, each thread runs

on a dedicated core. The impact of partitioning is that it localizes each thread’s operations

(e.g. random sampling and nearest neighbor searching) to a smaller portion of the

configuration space. This allows for more effective use of each core’s caches and

contributes in some cases to our method’s empirically observed superlinear performance.

A. PRRT Threads

The algorithm for each thread of PRRT is shown in Algorithm 2. PRRT is nearly identical to

the standard RRT algorithm except that (1) each thread only samples in its partition and (2)

PRRT uses a lock-free nearest-neighbor data structure (introduced in Sec. IV-B). We note

that although sampling is local to a partition, the nearest-neighbor data structure spans the

entire configuration space and is shared by all threads.

As in the standard RRT algorithm, the function PRRT creates a new node for qnew and sets

its parent pointer to the node of qnear (line 6) and then inserts the node into the lock-free kd-

tree (line 7). The ordering is important since PRRT must ensure that other threads only see

fully initialized nodes, and the new node will become visible as soon as it is inserted into the

kd-tree.

Complicating matters, modern CPUs and compilers may speculatively execute memory

reads and writes out-of-order as a performance optimization. These optimizations are done

in a manner that guarantees correctness from the view of a single thread, but out-of-order

writes may cause a thread executing concurrently on another core to see uninitialized or

partially initialized values, resulting in an incorrect operation. The solution to this problem is

to issue a memory barrier (also known as a memory fence) [25]. A memory barrier tells the

compiler and CPU that all preceding memory operations must complete before the barrier,

and similarly no memory operations may speculate ahead of the barrier until after the barrier

completes. For PRRT_Thread to operate correctly, it must ensure that a memory barrier is

issued before a new node becomes visible to another thread, which is done in the lock-free

kd-tree insertion algorithm described next.

B. Building a Lock-Free kd-Tree

The RRT algorithm requires an algorithm Nearest(τ, q) for computing the nearest neighbor

in τ to a configuration q in configuration space. Using a logarithmic nearest neighbor search

rather than a brute-force linear algorithm often results in a substantial performance gain

Ichnowski and Alterovitz Page 7

IEEE Trans Robot. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[26]. In PRRT, for nearest neighbor searches we use a variant of a kd-tree data structure [27]

that we adapt to allow for concurrent lock-free inserts using CAS.

Each node of the kd-tree is a k-dimensional point (i.e., a configuration in PRRT), where k =

d is the dimension of the configuration space. The kd-tree is a binary tree in which each non-

leaf node represents an axis-aligned splitting hyperplane that divides the space in two; points

on one side of this hyperplane are in the left subtree of that node and the other points are in

the right subtree. The axis associated with a node is based on its depth (i.e., level) in the tree.

For example, in 3D Euclidean space the hyperplane for a node in the first level of the kd-tree

is perpendicular to the x-axis based on that node’s x dimension value. For successive layers,

the splitting is perpendicular to the y-axis, then the z-axis, and then repeating x, y, z, x, y, z,

… down the tree.

To insert a node in the kd-tree for fast nearest neighbor searching, PRRT_Thread calls the

lock-free kd-tree insert function LockFreeKDInsert shown in Algorithm 3. It starts with a

pointer to the root (line 4), then traverses down the kd-tree by different dimensions (lines 5,

6) until it finds an empty branch (line 7). Once found, it generates and records the split (line

8), performs a memory barrier, and then a CAS (lines 9, 10) to change the pointer from null

to the new node that was allocated and initialized in line 1. If the CAS succeeds, the node is

inserted and the algorithm returns. If another thread already updated the pointer, the CAS

will fail, and the algorithm will continue to walk down the tree until it can attempt another

insert. The memory barrier before the CAS ensures that the node is fully initialized before it

is visible to other threads when the CAS succeeds.

In line 8, Split denotes a function that generates the hyperplane. The split is generated based

upon the bounds of the region of the node’s parent. The bounds are initialized in lines 2 and

3 and updated in lines 15 and 18. If the bounds are known and finite, Split forces a mid-

point split [28] by returning (qmin + qmax)/2. If the bounds are not known, as might happen

with the initial values at the root of the tree, Split returns qnew [a], causing the inserted value

to define the split.

The kd-tree handles most spaces relevant to motion planning in configuration spaces,

including Rn, T n, and combinations thereof with an appropriate distance metric [26]. For Rn

spaces, we consider Euclidean distance metrics. For T n spaces (with unbounded revolute

joints where θ = θ + 2nπ for any integer n) we consider distance metrics based on a circular

distance in the form distS1 (θ1, θ2) = min(|θ1 − θ2|, 2π − |θ1 − θ2|). For a combination of

these spaces, we consider the root sum of squares.

We augment the lock-free kd-tree to support SE(3) and SO(3) by defining splits based on the

approach of vantagepoint trees (vp-trees) [29]. The kd-tree defines a split on an SO(3)

Ichnowski and Alterovitz Page 8

IEEE Trans Robot. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

component using an orientation asplit in space and a pre-defined distance φ from the

orientation. The distance function is the shortest arc-length between two orientations and

thus ranges from 0 to π. Representing orientations using quaternions [30], distSO3(a1, a2) =

arccos |a1 · a2|. Orientations that are less than φ away from asplit are on one side of the split,

and orientations greater than φ away are on the other side. We preselect φ as sec 30°, as that

produces an even split on the orientations in SO(3). The Split function on the SO(3)

component generates a split orientation by rotating the orientation component anew of the

inserted point by φ about an arbitrary axis. This causes anew to lie exactly on the split. This

vp-tree-based approach enables the lock-free kd-tree to efficiently support the SE(3) and

SO(3) configuration spaces.

PRRT and PRRT* builds up the lock-free kd-tree on the fly by inserting randomly generated

configuration samples. The resulting tree remains relatively balanced. It can be shown that

the expected number of comparisons required to insert a random sample into a binary tree

generated with uniform random insertions is about 2 ln n [31, p. 430–431].

The kd-tree can be used for any number of dimensions, but may become inefficient in very

high dimensional spaces [26]. Even in such cases, kd-trees distribute random updates

throughout the tree, leading to low contention over insertion points. In brute-force

approaches based upon arrays or lists, inserts at a single insertion point (e.g. the tail of the

list/array) may result in contention.

C. Querying a Lock-Free kd-Tree

For a given query sample, Nearest and Near search the lock-free kd-tree for the sample

closest to it, or all samples within a radius of it, respectively. They successively compare the

query to each traversed node’s splitting hyperplane, and recurse down the side on which the

query sample lies (the “near” side). Recursion ends when encountering empty branches.

Upon return from the near side, the methods traverse the “far” side of the hyperplane only if

it is possible that points in that part of the tree would be closer than the closest found so far

(Nearest) or within the search radius (Near).

In practice PRRT can be used with other nearest-neighbor search approaches that allow for

non-blocking searches and low-contention updates, and provide partitioned locality

properties. The alternative of using a nearest-neighbor data structure with locks is also

possible, but as shown in the results in Sec. VI, unlike the lock-free kd-tree, a lock-based kd-

tree will result in sublinear speedup as different threads contend for access to the structure.

In our implementation, we consider two schemes for configuration space partitioning that

naturally align with the nearest neighbor search kd-tree: (1) an even subdivision created by

“slicing” along the first dimension of configuration space, and (2) a multi-dimensional grid

created by recursively partitioning along successive axes. While more sophisticated

partitioning approaches (e.g. [11], [16], [17]) might look for ways to focus sampling on

regions of difficulty (such as regions containing narrow passages), our motivation in

Ichnowski and Alterovitz Page 9

IEEE Trans Robot. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

partitioning is to create locality with sampling and nearest neighbor searches, and thus

improve CPU cache utilization. As seen in the results, the choice of partitioning scheme has

an impact on the overall performance of the motion planner depending on the scenario.

V. PRRT*

We present Parallel RRT* (PRRT*), a lock-free parallel extension of the RRT* algorithm.

The PRRT* algorithm shares across all threads the data structure for nearest neighbor

searching, the RRT* tree τ , the approximate iteration number, and the best path to the goal

found by any of the threads. PRRT*, shown in Algorithm 4, begins just like PRRT except it

launches threads of PRRT*_Thread(τ, s).

A. PRRT* Threads

PRRT* expands the motion planning tree much like PRRT except that it includes the

additional step of “rewiring” a small neighborhood of the tree to enable finding optimal

paths. PRRT*_Thread, shown in Algorithm 5, is the main loop of a thread of PRRT*.

At a high level, PRRT* works much like standard RRT*. In the outer loop, it randomly

samples a configuration, finds the sample’s nearest neighbor in the motion planning tree,

and computes a new configuration by steering from the nearest neighbor toward the sampled

configuration (lines 2–5). PRRT* then searches for all the configurations in a ball around the

new configuration (line 6) using the ball radius defined in [2]. PRRT* then connects the new

configuration to the configuration in the ball that produces the shortest path (lines 8–17), and

then inserts the newly connected configuration into the nearest neighbor structure (line 21).

Finally, it rewires any configuration in the ball radius that produces a shorter path to goal

through the newly added configuration.

The notable differences from standard RRT* are: (1) each thread samples within a partition

of the configuration space (line 2), (2) nearest neighbors are found using a lock-free kd-tree

(lines 3 and 6), (3) new configurations are added to the RRT* tree in a manner that accounts

for parallelism by fully initializing them before adding them to the nearest-neighbor

structure (lines 18–20), and (4) rewiring is accomplished entirely via lock-free operations.

B. PRRT* Rewiring

During the rewiring phase of RRT*, the algorithm considers paths to configurations nearby

the newly added configuration, and it rewires the RRT* tree if re-routing those paths

through the newly added configuration is both FEASIBLE and results in a shorter path.

Ichnowski and Alterovitz Page 10

IEEE Trans Robot. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Following the approach of prior implementations of RRT* [2], [5], we cache with each

RRT* node the the path cost to that node’s configuration and push updates down the tree

when a node is rewired.

PRRT* formulates rewiring (Algorithm 6) into a CAS operation that guarantees rewiring is

completed correctly, even if another thread is concurrently accessing or rewiring the same

node. If the CAS update fails, the assertion about the new trajectory being shorter may now

be incorrect. In that case, the update is re-evaluated and tried again if the rewiring would

still result in a shorter path.

CAS operations only work on single memory operands. The rewiring assertion however is

made about two pieces of information: the trajectory and the cost of that trajectory. We thus

modify the data structures to encapsulate both trajectory and cost into a single unit making it

suitable for a CAS. The data structures we define are nodes, representing reachable valid

configurations, and edges, representing trajectories from one node to another. The edges

form a linked tree structure that represents known trajectories to any nodes. To get from the

initial configuration to any node’s configuration, the edge structure is followed (in reverse)

from the node back to the root of the tree where the initial configuration is stored. An edge’s

path to root never changes, and thus its computed trajectory cost never changes. When

PRRT* finds a shorter path to a node, the node’s edge is CAS with the better edge. Here

again, we issue a memory barrier and ensure that the new edge is fully initialized before the

CAS. The old edge will still essentially be present in the edge tree, but is no longer

referenced from the node. We call an edge in this state “expired”, and detect it when

edge.node.edge ≠ edge. Expired edges can be garbage collected and their associated memory

reused, but care must be taken to avoid the “ABA” problem [3]. (The ABA problem occurs

when a thread reads ‘A’ from a shared memory location and, before it performs the CAS,

another thread modifies the shared location to ‘B’ and back to ‘A’, which causes the first

thread to treat the shared memory location as unmodified.)

By computing CAS operations around an edge, PRRT* guarantees that any update it makes

results in an equal or better path, a requirement for the solution to converge towards

optimality. After rewiring a node through a better path, the new shorter path is recursively

percolated to the nodes that link in to the rewired node. This update process (Algorithm 7)

Ichnowski and Alterovitz Page 11

IEEE Trans Robot. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

atomically replaces edges to the expired parent with shorter ones. It repeatedly removes the

old children one at a time (line 4) from a lock-free list structure (e.g. [32], [3]) until no more

children remain (line 5). It then creates the new child edge with the updated cost, and CAS it

into place (line 15). A memory barrier before the CAS ensures that the edge is fully

initialized before another thread can access it. Note that by using the lock-free list removal,

the algorithm ensures that only one thread is updating a particular child at any time. In the

case in which two threads are competing to update the same portion of the tree, the thread(s)

producing the longer update terminate early (lines 10, 13), and only the thread producing the

shorter update proceeds, thus providing work savings and improving speedup.

C. Asymptotic Optimality of PRRT*

In the case of single-threaded execution, PRRT* runs exactly like sequential RRT* and

hence is asymptotically optimal.

Next, let us consider PRRT* running with multiple threads and without partitioning. Each of

the p threads is operating independently on a shared RRT* graph. Each thread begins its

computation by observing the size nt of the current graph and ends an iteration adding a

configuration to the graph that is of size . When a single thread is running, . When

multiple threads are running concurrently, due to updates from other threads. Since

the ball radius used in iteration t is based on nt, as t increases and the ball radius shrinks,

each thread is operating with a ball radius greater than or equal to what is necessary for

asymptotic optimality according to the proofs from RRT* [2]. Thus it follows from the proof

of asymptotic optimality of RRT* [2] that PRRT* when running without partitioning is

asymptotically optimal.

Finally, let us consider PRRT* running with multiple threads and with partitioning. The

impact of partitioning on the sampling distribution is that (1) PRRT* samples uniformly in

independent static partitions rather than globally, and (2) each partition (due to the nature of

the underlying planning problem) may sample at a different rate. If all threads sample their

partition at the same rate, the sampling distribution of the entire space, in the limit, is

uniform. We will denote this RRT* graph resulting from these samples at iteration t as Gt. If

the sampling rate differs between threads, then we can consider Gt as the graph that results

from running all the threads at the sampling rate of the slowest thread. Samples added by the

threads with a faster sampling rate result in a graph that is a superset of Gt. The rewiring

step of PRRT* guarantees that the quality of plans found on are at least as good as the

plans found on Gt. If the ball radius of PRRT* is thus defined to guarantee asymptotic

optimality of the slowest thread’s partition, we guarantee asymptotic optimality of Gt as t

increases. The graph , as a superset, is thus also guaranteed to be asymptotically optimal

as t increases. Hence, PRRT* carries the same asymptotic optimality guarantee as RRT*.

VI. RESULTS

We evaluate our method with five scenarios: (1) PRRT on the Alpha Puzzle scenario, (2)

PRRT on a 10,000 random spheres scenario, (3) PRRT* on the Cubicles scenario, (4)

Ichnowski and Alterovitz Page 12

IEEE Trans Robot. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

PRRT* on a holonomic disc-shaped robot moving in a planar environment, and (5) PRRT*

on an Aldebaran Nao small humanoid robot performing a 2-handed task using 10 DOF.

Results are computed on a system with four Intel x7550 2.0GHz 8-core Nehalem-EX

processors for a total of 32 cores. Each processor has an 18MB shared L3 cache and each

core has a private 256KB L2 cache as well as 32KB L1 data and instruction caches.

A. PRRT on the Alpha Puzzle Scenario

The Alpha Puzzle scenario [33] is a motion planning problem containing a narrow passage

in the configuration space. The puzzle consists of two tubes, each twisted into an alpha

shape. The objective is to separate the intertwined tubes, where one tube is considered a

stationary obstacle and the other tube is the moving object (robot), as shown in Fig. 2. We

specifically use the Alpha 1.2 variant included in OMPL [5], where different variants scale

the size of the narrow passage (with smaller numbers being more difficult to solve).

Using the Alpha 1.2 scenario, we evaluate PRRT’s ability to speed up computation as the

number of available CPU cores rises. We note that there has been much work on developing

sampling strategies that improve RRT’s ability to solve the Alpha Puzzle scenario quickly—

we however used the standard uniform sampling (with and without partitioning) to

demonstrate the multicore performance of PRRT. As with other RRT variants, customized

sampling strategies could be used with PRRT (with and without partitioning) to obtain

results even more quickly. We evaluated PRRT (for both slice and grid-based partitioning)

on different numbers of processor cores up to 32. For each core count, we ran 500 trials. We

also consider PRRT with lock-free data structures but without partition-based sampling. We

plot the median computation times and speedups in Fig. 3(a) and (b), respectively. For

comparison, we include results from multi-threaded locked variants of RRT in which each

thread independently samples and computes feasibility, but the shared kd-tree is locked

either at the tree level (“coarse-grain locking”) or at the node level (“fine-grain locking”).

We also compare to the multi-tree OR parallel RRT in which each thread creates its own

tree and all threads stop as soon any find a solution [8].

As shown in Fig. 3, PRRT achieves a superlinear speedup for the Alpha 1.2 scenario for all

processor counts. PRRT’s speedup for 32 cores was 39.4x. PRRT without partitioning

achieves sublinear speedup, but due to the lock-free data structures still scales well as the

number of cores rises. In contrast, RRT with a locked nearest neighbor data structure scales

poorly; lock contention is very high due to the large number of configuration samples

necessary to solve this motion planning problem. PRRT’s use of lock-free data structures

and partitioning enable a superlinear speedup for the Alpha 1.2 scenario on the multicore

computer. OR parallel RRT performs best on this scenario, which requires creating samples

inside a short, narrow passage. We hypothesize that the independence of the RRT’s in OR

parallel RRT facilitates landing the critical samples inside the short, narrow passage, and

hence is better for this scenario than an approach that accelerates construction of a single

RRT.

Ichnowski and Alterovitz Page 13

IEEE Trans Robot. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

B. PRRT on 6-DOF, 10,000 Random Spheres

We apply PRRT and related methods to a random spheres scenario in which a holonomic

spherical robot must navigate through an obstacle course of 10,000 randomly placed spheres

in 6-dimensional C-space. The objective for the robot is to navigate from the center of the C-

space to a corner while avoiding collision with the obstacles. The problem does not have a

single difficult narrow passage like the Alpha problem, but the problem is still difficult

because solutions necessarily have many segments.

In the random spheres scenario, OR parallel RRT does not perform as well as in the Alpha

Puzzle scenario, likely because this scenario does not include a short, narrow passage

requiring a “lucky” few samples to solve. In contrast, PRRT scales well with additional

cores, which allow it to rapidly generate configuration samples and make progress towards

the goal. The results are plotted in Fig. 4.

C. PRRT* on the Cubicles Scenario

The Cubicles scenario, included in OMPL [5], is a motion planning problem in which an

“L”-shaped robot must move in SE(3) through a 2-story office-like environment. As shown

in Fig. 5, to move from the start pose to the goal pose, the robot must find a path through

SE(3) that includes traveling through a different floor. For computing path cost, we use

OMPL’s configuration space distance metric that sums the weighted spatial and orientation

components. The objective is to compute a feasible path from the start pose to the goal pose

that minimizes path cost.

Using the Cubicles scenario, we evaluate PRRT*’s ability to speed up computation as the

number of available CPU cores rises. We evaluated PRRT* with and without partition-based

sampling on different numbers of processor cores up to 32. For each core count, we ran 100

trials of each method, generating trees with 50,000 configurations in each trial. We plot the

median computation times and speedups in Fig. 6(a) and (b), respectively. For comparison,

as with RRT, we compare against multi-threaded locked variants of RRT*. In the locked-

RRT* fine-grain variant, access to the kd-tree and the rewiring updates of the tree are locked

at the node (i.e. configuration) level—at most times multiple locks must be acquired to

guarantee only one thread is updating a portion of the graph at any given moment, and locks

are always acquired in the same order to avoid deadlock. We also compare against a multi-

threaded “OR” parallel RRT*, in which each thread computes an independent RRT* graph,

and the final computed path is the one with the minimum cost selected from all graphs.

PRRT* with slice partitioning and PRRT* without partitioning achieve superlinear speedup

on the Cubicles scenario. On 32 cores, PRRT* with slice partitioning achieves a speedup of

36.6x and PRRT* without partitioning achieves a speedup of 38.9x. All methods achieved

median solution path costs that are within 1% of one another, indicating that parallelization

and partitioning do not significantly affect path quality when the size of the tree (50,000

configurations in this case) is held constant. In this scenario, PRRT* with grid partitioning

does not perform as well as other PRRT* variants because some of the threads sample in

partitions that are unreachable (i.e., the space on the left of Fig. 5(c)) from the start and goal

configurations. At 32 cores, grid partitioning allocates 8 cores to partitions entirely in the

Ichnowski and Alterovitz Page 14

IEEE Trans Robot. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

unreachable space. PRRT* performs substantially better than RRT* with a locked kd-tree

for nearest neighbor searching, which achieved sublinear speedup for both fine and coarse

grain locking due to lock overhead and contention.

D. PRRT* for a 2D Holonomic Disc-shaped Robot

We executed PRRT* for a 2D holonomic disc-shaped robot that must move to the goal in

the environment shown in Fig. 1(a). We executed RRT* on 1 core and PRRT* on 4 and 32

cores for 10 ms of wall clock time. The quality of paths is shown visually in Fig. 1 and

quantitatively in Fig. 7. With more cores, the size of the constructed tree in the 10 ms

increases substantially, visibly improving the quality of the computed motion plan. More

space is explored and more narrow passages are discovered.

As stated in section I, the focus of PRRT and PRRT* is on challenging scenarios requiring

tens or hundreds of thousands of samples, and this 10 ms scenario does not fall into that

category. In Fig. 7, we see that as we add more cores above 12, PRRT* begins to show a

diminishing return on samples generated and quality of solution due to several factors: (1)

the PRRT* tree grows faster thus causing the per-query time for nearest neighbor to also

increase, (2) PRRT* is rapidly converging towards the optimal solution, and (3) 10 ms is a

short enough interval that we observe the overhead of startup. In the early growth of the

roadmap, where the number of samples n is small, as we add more cores p, the expected

contention rises (limp→∞ O(p/n) = ∞). As we show in Sec. VI-E, the PRRT* startup

overhead quickly disappears with additional computation time. We also note that this 10 ms

scenario performs well for current readily available multicore systems (typically in the range

of 2–12 cores), producing the significant and visible improvements shown in Fig. 1.

E. PRRT* for a 2-handed Aldebaran Nao 10 DOF Task

We evaluated PRRT* on an Aldebaran Nao small humanoid robot [34] with the task of

dropping an object held in one hand into a cup held in the other hand while avoiding

obstacles. Each arm of the Nao robot has 5 degrees of freedom (shoulder pitch/roll, elbow

yaw/roll and wrist yaw), resulting in a 10 dimensional configuration space for this problem.

All joints are bounded revolute joints, and we define COST as a Euclidean distance in

configuration space. The robot must avoid obstacles on the table in front of it while keeping

the cup upright throughout its motion—i.e. the function FEASIBLE tests if the robot will

collide with objects in the environment and also tests if the robot’s joint angles will result in

the cup being upright subject to a tolerance. We define GOAL to return true for

configurations that satisfy the following constraints within a tolerance: (1) the (x, y)

coordinates for the left hand and the right hand are the same, (2) the left hand’s z coordinate

is higher than the right hand, (3) the object in the left hand is pointing down, and (4) the cup

in the right hand is held upright. We show the Nao robot using PRRT* successfully

performing the task in Fig. 8.

To demonstrate PRRT*’s ability to compute high quality solutions faster on multiple cores,

we executed the Nao 10 DOF task for n = 100, 000 configurations with varying core counts

and averaging over 10 runs. As shown in Fig. 9, we observe superlinear speedup with

PRRT*. Executing PRRT* on 1 core (thus making it equivalent to standard RRT*) requires

Ichnowski and Alterovitz Page 15

IEEE Trans Robot. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

420 seconds. On 32 cores, PRRT* required only 11.6 seconds for the same number of

samples. PRRT* was 36x faster with no significant difference in the quality of the computed

paths.

The use of lock-free data structures and partitioning in PRRT* both have an impact on

performance. PRRT* without partition-based sampling performed slightly worse than

PRRT*, achieving approximately a linear speedup as shown in Fig. 9. We also executed

RRT* parallelized by locking the kd-tree. At 100,000 configurations, nearest neighbor

searches dominate the computation time, so threads spend most of their time waiting for

access to the kd-tree when using locks. Consequently, the lock-based approach cannot

exceed 4x speedup.

In Fig. 10, we plot the average time for PRRT* and RRT* variants to reach a prespecified

target path cost. In this experiment we see that PRRT* with and without partitioned

sampling consistently outperforms the lock-based and OR parallel RRT* versions by at least

a factor of 1.7x.

We note that the relative performance of motion planning using lock-free and lock-based

nearest neighbor searching varies with the size of the motion planning tree τ . When the size

of the tree τ is smaller, collision-detection dominates computation time and the lock-based

approach achieves a more reasonable speedup. At 2,000 samples on 32 cores, we observe a

16.4x speedup with locked kd-trees, although PRRT* still outperforms with a 28.9x

speedup. The locked version’s speedup diminishes as more samples are added, as shown in

Fig. 11. In contrast, the lock-free PRRT* overcomes thread startup overhead and reaches

32x speedup by the 20,000th configuration before increasing to 36x speedup by 100,000

configurations.

To demonstrate how PRRT* can be used to produce better results per unit time, we also ran

the Nao 10 DOF task 50 times for 3 seconds at various processor core counts. As shown in

Fig. 12, increasing the number of processor cores enables us to build trees with more

samples per second and find better solutions. The path cost from the initial configuration to

the goal shows convergence to an optimal solution as the number of samples increases, as

expected with RRT*. In contrast to the 10 ms runs for the holonomic disc-shaped robot, in

these 3-second runs for the Nao robot the impact of startup overhead is no longer significant

and we see the number of samples generated scale well with the number of cores. We also

observed that RRT* would find paths to the goal in only 80% of the 3-second runs on 1

core. With 2 cores, PRRT* found solutions in 98% of the runs. At higher core counts,

PRRT* found solutions in all runs.

VII. CONCLUSION

We presented PRRT (Parallel RRT) and PRRT* (Parallel RRT*), single-tree sampling-

based methods for feasible and optimal motion planning that are tailored to execute on

modern multicore CPUs. Using atomic updates and lock-free data structures, PRRT and

PRRT* remove barriers to scaling to higher processor core counts. We further observe that

using a non-overlapping partition-based sampling strategy increases cache efficiency by

Ichnowski and Alterovitz Page 16

IEEE Trans Robot. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

localizing each thread’s computation to a region of memory. While not guaranteed, we

empirically observed that these contributions enable PRRT and PRRT* in some scenarios to

achieve superlinear speedup.

Our method is best suited for challenging motion planning problems in which a large

number of samples is required to find a feasible or near optimal solution. As the number of

samples increases, computation time gradually changes from being dominated by collision

detection to being dominated by nearest neighbor search. PRRT and PRRT* parallelize the

entire computation of the motion planning tree and thus maintain speedup ratios regardless

of which portion of the computation is dominating. We demonstrated fast performance and

significant speedups in 5 scenarios including the Alpha Puzzle and Cubicles scenarios and

an Aldebaran Nao small humanoid robot performing a 2-handed, 10 DOF task.

In ongoing and future work we would like to adapt PRRT and PRRT* to other commonly-

available hardware architectures and new applications. Some computing architectures

provide hardware support for simultaneous multithreading (SMT)—running two or more

threads simultaneously within each core by sharing cache and execution units within the

core. Additional speedups may be achievable by scheduling such threads in a manner that

coordinates with the partitioning scheme. The static partitioning in our implementation,

while having an impact on many real-world level problems, does not produces a sustainable

cache-locality in the limit. Eventually, the cache-benefit of the static partitioned locality will

run out. Other work in the field of cache-aware and cacheoblivious algorithms (e.g. [35],

[36]) has shown how to create a sustained cache-based performance improvement,

regardless of problem size. More sophisticated partitioning approaches, such as approaches

that focus sampling on regions of difficulty, could potentially by used with PRRT and

PRRT* to provide both the benefits of improved partitioned sampling and of localizing

computations to better fit in a core’s cache. We also plan to investigate adapting the

algorithmic approaches of PRRT and PRRT* to applications in dynamic environments and

other challenging scenarios. Included in this investigation will be reducing the overhead

associated with startup to allow PRRT and PRRT* to make more effective use of additional

cores in shorter time periods. The speedups gained through utilizing existing and readily

available multicore concurrency in conjunction with lock-free data structures could enable

new robotic applications in scenarios that are currently considered too computationally

expensive when run in a single thread or using lock-based data structures.

ACKNOWLEDGMENT

The authors thank Allan Porterfield at the North Carolina Renaissance Computing Institute (RENCI) for providing
access to computation hardware, Jan Prins and Stephen Olivier for their input on parallel algorithms and platforms,
and Diptorup Deb for help in running experiments. This research was supported in part by the National Science
Foundation (NSF) through awards IIS-0905344, IIS-1117127, and IIS-1149965 and by the National Institutes of
Health (NIH) under awards R21EB011628, R01EB017467, and R21EB017952.

Ichnowski and Alterovitz Page 17

IEEE Trans Robot. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Biographies

Jeffrey Ichnowski received his B.A. degrees in Computer Science and Asian Studies with

honors from the University of California, Berkeley, CA in 1998. He since has had a

successful career as a founder, engineer, architect, and technical advisor in software-as-a-

service (SaaS) startups and enterprises. He has received several patents related to SaaS

architecture, and is an active contributor to open-source projects. In 2010, he joined the

Department of Computer Science at the University of North Carolina at Chapel Hill, NC,

where, as a Ph.D. candidate, his research focus is on high-performance computing in robot

motion planning algorithms.

Ron Alterovitz received his B.S. degree with Honors from Caltech, Pasadena, CA in 2001

and the Ph.D. degree in Industrial Engineering and Operations Research at the University of

California, Berkeley, CA in 2006.

In 2009, he joined the faculty of the Department of Computer Science at the University of

North Carolina at Chapel Hill, NC, where he leads the Computational Robotics Research

Group. His research focuses on motion planning for medical and assistive robots. Prof.

Alterovitz has co-authored a book on Motion Planning in Medicine, was awarded a patent

for a medical device, has received multiple best paper finalist awards at IEEE robotics

conferences, and is the recipient of the NIH Ruth L. Kirschstein National Research Service

Award and the NSF CAREER Award.

REFERENCES

[1]. LaValle, SM. Planning Algorithms. Cambridge University Press; Cambridge, U.K.: 2006.

[2]. Karaman S, Frazzoli E. Sampling-based algorithms for optimal motion planning. Int. J. Robotics
Research. Jun.2011 30(7):846–894.

[3]. Valois, JD. Lock-free linked lists using compare-and-swap. Proc. ACM Symp. Principles of
Distributed Computing; 1995. p. 214-222.

[4]. ROS.org. Robot Operating System (ROS). 2012 http://ros.org.

Ichnowski and Alterovitz Page 18

IEEE Trans Robot. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ros.org

[5]. Sucan IA, Moll M, Kavraki LE. The Open Motion Planning Library. IEEE Robotics and
Automation Magazine. Dec.2012 19(4):72–82. [Online]. Available: http://ompl.kavrakilab.org.

[6]. Ichnowski, J.; Alterovitz, R. Parallel sampling-based motion planning with superlinear speedup.
Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS); Oct.. 2012 p. 1206-1212.

[7]. Amato, NM.; Dale, LK. Probabilistic roadmap methods are embarrassingly parallel. Proc. IEEE
Int. Conf. Robotics and Automation (ICRA); May. 1999 p. 688-694.

[8]. Carpin, S.; Pagello, E. On parallel RRTs for multi-robot systems. Proc. 8th Conf. Italian
Association for Artificial Intelligence; 2002. p. 834-841.

[9]. Devaurs D, Siméon T, Cortés J. Parallelizing RRT on large-scale distributed-memory
architectures. IEEE Trans. Robotics. Apr.2013 29(2):767–770.

[10]. Jacobs, SA.; Stradford, N.; Rodriguez, C.; Thomas, S.; Amato, NM. A scalable distributed RRT
for motion planning. Proc. IEEE Int. Conf. Robotics and Automation (ICRA); May 2013. p.
5073-5080.

[11]. Şucan I, Kavraki LE. A sampling-based tree planner for systems with complex dynamics. IEEE
Trans. Robotics. 2012; 28(1):116–131.

[12]. Plaku, E.; Kavraki, LE. Distributed sampling-based roadmap of trees for large-scale motion
planning. Proc. IEEE Int. Conf. Robotics and Automation (ICRA); Apr. 2005 p. 3879-3884.

[13]. Otte M, Correll N. Path planning with forests of random trees: Parallelization with super linear
speedup. Department of Computer Science University of Colorado at Boulder. Apr.2011 Tech.
Rep. CU-CS 1079-11.

[14]. Bialkowski, JJ.; Karaman, S.; Frazzoli, E. Massively parallelizing the RRT and the RRT*. Proc.
IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS); San Francisco, CA. Sep.. 2011 p.
3513-3518.

[15]. Hennessy, JL.; Patterson, DA. Computer Architecture: A Quantitative Approach. 3rd. Morgan
Kaufmann; 2003.

[16]. Rosell, J.; Vázquez, C.; Pérez, A. C-space decomposition using deterministic sampling and
distance. Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS). IEEE; 2007. p.
15-20.

[17]. Morales M, Tapia L, Pearce R, Rodriguez S, Amato NM. A machine learning approach for
feature-sensitive motion planning. Algorithmic Foundations of Robotics VI. 2005:361–376.

[18]. Yoon S-E, Manocha D. Cache-efficient layouts of bounding volume hierarchies. Computer
Graphics Forum. 2006; 25(3):507–516.

[19]. Pan J, Lauterbach C, Manocha D. g-Planner: Real-time motion planning and global navigation
using GPUs. AAAI Conference on Artificial Intelligence (AAAI-10). Jul.2010 :1245–1251.

[20]. Lengyel, J.; Reichert, M.; Donald, BR.; Greenberg, DP. Real-time robot motion planning using
rasterizing computer graphics hardware. Proc. ACM SIGGRAPH; 1990. p. 327-335.

[21]. Kenneth, CP.; Hoff, K., III; Lin, MC.; Manocha, D. Randomized path planning for a rigid body
based on hardware accelerated Voronoi sampling. Proc. Workshop on the Algorithmic
Foundations of Robotics (WAFR); 2000.

[22]. Foskey, M.; Garber, M.; Lin, MC.; Manocha, D. A Voronoi-based hybrid motion planner. Proc.
IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS); Oct.. 2001 p. 55-60.

[23]. Kider, JT., Jr.; Henderson, M.; Likhachev, M.; Safonova, A. High-dimensional planning on the
GPU. Proc. IEEE Int. Conf. Robotics and Automation (ICRA); 2010. p. 2515-2522.

[24]. Hwu W. GPU Computing Gems Jade Edition, ser. Applications of GPU Computing Series.
Elsevier Science & Technology. 2011

[25]. McKenney PE. Memory barriers: a hardware view for software hackers. Linux Technology
Center. 2010 IBM Beaverton.

[26]. Yershova A, LaValle SM. Improving motion planning algorithms by efficient nearest-neighbor
searching. IEEE Trans. Robotics. Feb.2007 23(1):151–157.

[27]. Bentley JL. Multidimensional binary search trees used for associative searching. Commun.
ACM. Sep.1975 18(9):509–517.

[28]. Maneewongvatana S, Mount DM. It’s okay to be skinny, if your friends are fat. Center for
Geometric Computing 4th Annual Workshop on Computational Geometry. 1999

Ichnowski and Alterovitz Page 19

IEEE Trans Robot. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://Available:http://ompl.kavrakilab.org

[29]. Yianilos, PN. Data structures and algorithms for nearest neighbor search in general metric spaces.
Proceedings of the fourth annual ACM-SIAM Symposium on Discrete algorithms. Society for
Industrial and Applied Mathematics; 1993. p. 311-321.

[30]. Hamilton WR. On quaternions; or on a new system of imaginaries in algebra. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science. :1844–1850.

[31]. Knuth, DE. The art of computer programming, volume 3: (2nd ed.) sorting and searching.
Addison Wesley Longman Publishing Co., Inc.; Redwood City, CA, USA: 1998.

[32]. Michael, MM.; Scott, ML. Simple, fast, and practical non-blocking and blocking concurrent
queue algorithms. Proceedings of the fifteenth annual ACM symposium on Principles of
distributed computing. ACM; 1996. p. 267-275.

[33]. Yamrom B. Alpha puzzle. https://parasol.tamu.edu/dsmft/benchmarks/mp/, GE Corporate
Research & Development Center.

[34]. Aldebaran Robotics. Aldebaran Robotics NAO for education. 2010 http://www.aldebaran-
robotics.com/en/naoeducation.

[35]. Frigo M, Leiserson CE, Prokop H, Ramachandran S. Cacheoblivious algorithms. Foundations of
Computer Science, 1999. 40th Annual Symposium on. IEEE. 1999:285–297.

[36]. Elmroth E, Gustavson F, Jonsson I, Kågström B. Recursive blocked algorithms and hybrid data
structures for dense matrix library software. SIAM review. 2004; 46(1):3–45.

Ichnowski and Alterovitz Page 20

IEEE Trans Robot. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://https://parasol.tamu.edu/dsmft/benchmarks/mp/
http://www.aldebaran-robotics.com/en/naoeducation
http://www.aldebaran-robotics.com/en/naoeducation

Fig. 1.
We ran PRRT* for a 2D holonomic motion planning problem for a disc-shaped robot for 10

ms on 1, 4, and 32 processor cores. The red line shows the optimal path found. With the

same wall clock time, adding more processor cores increases the size of the tree, enabling

fast computation of higher quality motion plans on modern multicore computers.

Ichnowski and Alterovitz Page 21

IEEE Trans Robot. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
The Alpha 1.2 scenario. The yellow alpha is the obstacle, and the red alpha is the robot in

SE(3). The robot must move from inside the obstacle (a) to outside the obstacle (b) by

sliding through the narrow passage at an appropriate orientation.

Ichnowski and Alterovitz Page 22

IEEE Trans Robot. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
Performance of PRRT and related methods run on the Alpha Puzzle scenario. PRRT finds a

solution with superlinear speedup with respect to the number of processor cores. PRRT

without partition-based sampling finds solutions with a slightly sublinear speedup but good

scalability. In contrast, RRT using a locked kd-tree does not scale as well. Coarse-grain

locking causes too much lock-contention, and fine-grain avoids some lock-contention but

adds the overhead of repeated locking. For this scenario, the multi-tree OR parallel RRT

acheives greater speedups than accelerating the construction of a single tree.

Ichnowski and Alterovitz Page 23

IEEE Trans Robot. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.
PRRT and related methods run on the 6-DOF random spheres scenario. PRRT scales well

with additional cores, which allow it to rapidly generate configuration samples and make

progress towards the goal.

Ichnowski and Alterovitz Page 24

IEEE Trans Robot. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.
We evaluate PRRT* on the Cubicles scenario. The “L”-shaped robot must move from its

start pose on one side of a wall to the goal pose on the other side of the wall by moving

through a lower floor (a). We illustrate an example path produced with 50,000

configurations (b, c).

Ichnowski and Alterovitz Page 25

IEEE Trans Robot. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6.
Performance of PRRT* and related methods run to 50,000 configurations on the Cubicles

scenario. PRRT* without partitioning and with slice partitioning both achieve superlinear

speedups with respect to the number of processor cores. PRRT* with grid partitioning

suffers in performance as some cores are confined to sampling inside partitions that are

disconnected by obstacles from the start and goal. RRT* with a locked kd-tree nearest

neighbor data structure scales poorly due to lock contention.

Ichnowski and Alterovitz Page 26

IEEE Trans Robot. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 7.
PRRT* run for 10 ms on the 2D holonomic disc-shape robot scenario. PRRT* generates

more samples, and produces a better quality solution with more cores, even in this short time

interval.

Ichnowski and Alterovitz Page 27

IEEE Trans Robot. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 8.
An example PRRT* motion plan created for the Aldebaran Nao robot. The robot carries an

effervescent antacid in one hand and places it over a glass of water held in the other hand, all

while avoiding the bottles on the table and not spilling the water (i.e. FEASIBLE is

constrained to keep the glass mostly level). In the last frame, after the robot reaches the goal

configuration, it drops the antacid into the water.

Ichnowski and Alterovitz Page 28

IEEE Trans Robot. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 9.
Performance of PRRT* and related methods run on the Nao 10 DOF task for 100,000

configurations. PRRT* achieves superlinear speedups with respect to the number of

processor cores. In contrast, RRT* with a course-grain locked kd-tree nearest neighbor data

structure cannot exceed 4x speedup due to lock contention.

Ichnowski and Alterovitz Page 29

IEEE Trans Robot. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 10.
We give PRRT* and RRT* variants a specified target path cost and show the time it takes to

reach the target in the Nao scenario. In this graph we also include OR parallel RRT*, a

multi-tree RRT* in which 32 RRT* trees are built in parallel and the best result is chosen

from among them. For target path cost 6.8, OR parallel RRT* exceeded the allotted time and

is plotted only to 100 seconds. We do not include the coarse-grained locking in this graph—

in all cases it exceeded the allotted time.

Ichnowski and Alterovitz Page 30

IEEE Trans Robot. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 11.
PRRT* running on 32 cores overcomes startup overhead and speedup increases as the

number of configurations increases. In contrast, using a locked nearest neighbor structure

shows good speedup initially, but as the number of configurations increases, contention over

locked data structures slows the algorithm down.

Ichnowski and Alterovitz Page 31

IEEE Trans Robot. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 12.
PRRT* run for 3 seconds on the Nao 10 DOF task. Increasing the number of processor cores

results in samples being generated at a higher rate and better quality solutions.

Ichnowski and Alterovitz Page 32

IEEE Trans Robot. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

