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Summary

The human genome sequence has profoundly altered our understanding of biology, human 

diversity and disease. The path from the first draft sequence to our nascent era of personal 

genomes and genomic medicine has been made possible only because of the extraordinary 

advancements in DNA sequencing technologies over the past ten years. Here, we discuss 

commonly used high-throughput sequencing platforms, the growing array of sequencing assays 

developed around them as well as the challenges facing current sequencing platforms and their 

clinical application.
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Introduction

The human genome sequence was completed in draft form in 2001 (Lander et al., 2001; 

Venter et al., 2001). Shortly thereafter, the genome sequences of several model organisms 

were determined (Chinwalla et al., 2002; Gibbs et al., 2004; The Chimpanzee Sequencing 

and Analysis Consortium, 2005). These feats were accomplished with Sanger DNA 

sequencing, which was limited in throughput and high cost; indeed the first human genome 

sequence was estimated to cost 0.5–1 billion dollars. These limitations reduced the potential 

of DNA sequencing for other applications, such as personal genome sequencing. Following 

the release of the “finished” human genome (International Human Genome Sequencing 

Consortium, 2004), the National Human Genome Research Institute (NGHRI) created a 70 

million dollar DNA sequencing technology initiative aimed at achieving a $1000 human 

genome in ten years (Schloss, 2008), and a flurry of high-throughput sequencing (HTS) 

technologies emerged.

To put this initiative in perspective, improvements to traditional Sanger sequencing had 

decreased the per base cost by around 100-fold by the completion of the Human Genome 

Project (Schloss, 2008). To reach the $1000 dollar genome threshold, however, an additional 
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leap of 5 orders of magnitude was necessary. Much of this divide has been traversed—the 

cost of a genome sequence (without interpretation) is presently less than $2,000. The road to 

this milestone involved many commercial HTS platforms, which differ in their details but 

typically follow a similar general paradigm: template preparation, clonal amplification, 

followed by cyclical rounds of massively parallel sequencing. The specific strategy 

employed by each platform determines the quality, quantity and biases of the resulting 

sequence data and the platform’s usefulness for particular applications.

Several excellent reviews have covered HTS platform strategies in great depth (Metzker, 

2010; Morey et al., 2013). Many important platforms are not covered here, including Roche/

454’s pyrophosphate Genome Sequencer (Margulies, 2005), Helicos’ single molecule 

Heliscope sequencer (Harris et al., 2008) as well as the Polonator (Shendure et al., 2005), 

ABI’s SOLiD (Valouev et al., 2008) and Complete Genomics’ DNA nano-array sequencer 

(Drmanac et al., 2010). Instead, we focus on the most commonly used platforms today as 

well as more recent developments. We also provide an overview of the growing array of 

HTS applications and highlight their use by the genomics community to illuminate 

previously intractable topics in biology. Finally, we discuss the limitations of current 

platforms and challenges to clinical sequencing.

Overview of selected commercially available high-throughput sequencing 

platforms

Illumina

Illumina/Solexa released the Genome Analyzer II in 2006, and advances in Illumina’s 

technology over the intervening years have largely set the pace for the tremendous gains in 

output and reductions in cost (Figure 1). As a consequence, Illumina machines currently 

dominate the HTS market. The sequencing process involves clonal amplification of adaptor-

ligated DNA fragments on the surface of a glass slide (Bentley et al., 2008) (Figure 2A). 

Bases are read using a cyclic reversible termination strategy, which sequences the template 

strand one nucleotide at a time through progressive rounds of base incorporation, washing, 

imaging and cleavage. In this strategy, fluorescently-labeled 3´-O-azidomethyldNTPs are 

used to pause the polymerization reaction, enabling removal of unincorporated bases and 

fluorescent imaging to determine the added nucleotide (Guo et al., 2008). Following 

scanning of the flow cell with a coupled-charge device (CCD) camera, the fluorescent 

moiety and the 3´ block are removed, and the process is repeated. Across all Illumina 

models, the overall error rates are below 1%, and the most common type of error is 

substitutions (Dohm et al., 2008).

Illumina currently produces a suite of sequencers (MiSeq, NextSeq 500 and the HiSeq 

series) optimized for a variety of throughputs and turnaround times. The MiSeq and HiSeqs 

are the most established platforms. The MiSeq is designed as a fast, personal benchtop 

sequencer, with run times as low as 4 hours and outputs intended for targeted sequencing 

and sequencing of small genomes. The HiSeq 2500, on the other hand, is engineered for 

high-throughput applications, yielding current outputs of 1 Tb in 6 days. Unlike previous 
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HiSeq models, the HiSeq 2500 can also be run in rapid mode, which is less cost effective but 

can produce a 30x human genome in 27 hours.

In early 2014, Illumina introduced the NextSeq 500 as well as the HiSeq X Ten. Similar to 

the MiSeq, the NextSeq 500 is designed as a fast benchtop sequencer for individual labs. 

However, the NextSeq is capable producing 120 Gb, or a single 30x genome, in less than 30 

hours. The NextSeq 500 system also employs a novel two-channel sequencing strategy. In 

this approach, cytosine is labeled red, thymine is labeled green, adenine is effectively yellow 

(labeled with a mixture of red and green) and guanine is unlabeled. In contrast to the four-

channel strategy used in the MiSeq and HiSeq platforms, two-channel sequencing requires 

only two images for nucleotide detection, reducing data processing times and increasing 

throughput. Despite the reduced complexity, the overall error rates (<1%) are similar to the 

more established HiSeq machines.

The HiSeq X Ten is a population-scale whole genome sequencing (WGS) system that was 

also released in 2014. It is capable of outputting 1.8T in 3 days or 18,000 genomes at 30x 

coverage per year. Currently, Illumina only supports WGS of human samples on HiSeq X 

Ten systems. In addition to enhanced optics and computing capacity, the HiSeq X Ten 

dramatically increases throughput by incorporating a new patterned flow cell technology 

that improves cluster generation chemistry. Patterned flow cells contain billions of 

nanowells that standardize cluster spacing and size, allowing higher cluster densities. 

Patterned flow cell technology is also used in the recently released HiSeq 3000/4000 

machines, which provide outputs and run times in between the HiSeq X Ten and the HiSeq 

2500.

Life Technologies/ThermoFisher/Ion Torrent

Life Technologies commercialized Ion Torrent’s semiconductor sequencing technology in 

2010 in the form of the benchtop Ion PGM sequencer. The template preparation and 

sequencing steps are conceptually similar to the Roche/454 pyrosequencing platform 

(Margulies, 2005). Namely, emulsion-PCR is used to clonally amplify adapter-ligated DNA 

fragments on the surface of beads. The beads are subsequently distributed into microwells 

where a sequencing-by-synthesis reaction occurs (Figure 2B). Unlike pyrosequencing, 

which couples base incorporation with luciferase-based light production, Ion Torrent’s 

semiconductor sequencing measures pH changes induced by the release of hydrogen ions 

during DNA extension (Rothberg et al., 2011). These pH changes are detected by a sensor 

positioned at the bottom of the microwell and converted into a voltage signal. The voltage 

signal is proportional to the number of bases incorporated, and the sequential addition of 

individual nucleotides during each sequencing cycle allows base discrimination. Moreover, 

Ion Torrent avoids optical scanning to distinguish nucleotides during cycles of sequencing, a 

difference that dramatically speeds sequencing runs and reduces costs.

Ion Torrent released a second machine in 2012, the Ion Proton, which increases output over 

the PGM by an order of magnitude (1Gb versus 10Gb). However, the Proton currently 

features a maximum of 200bp read lengths as opposed to 400bp for the PGM. Multiple chips 

are also available to tailor outputs for different applications. The PGM is most useful for 

targeted resequencing projects and small genome analysis, whereas the Proton is capable of 
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exome sequencing and whole-transcriptome analysis. The speed of sequencing, 2–8 hours 

depending on the machine and chip used, make these sequencers particularly useful for 

clinical applications (Mellmann et al., 2011). Insertions and deletions (indels) are the most 

common error types (Liu et al., 2012). Because the correlation between the number of bases 

incorporated and the subsequent voltage change does not perfectly scale, homopolymer 

repeats longer than 6 base pairs lead to increased error rates (Rothberg et al., 2011).

Pacific Biosciences

Single-molecule real-time (SMRT) sequencing was pioneered by Nanofluidics, Inc. and 

commercialized by Pacific Biosciences. Template preparation involves ligation of single-

stranded, hairpin adapters onto the ends of digested DNA or cDNA molecules, generating a 

capped template (SMRT-bell). By using a strand displacing polymerase, the original DNA 

molecule can be sequenced multiple times, thereby increasing accuracy (Travers et al., 

2010). Importantly, clonal amplification is avoided, allowing direct sequencing of native, 

and potentially modified, DNA. DNA synthesis occurs in zeptoliter-sized chambers, called 

zero-mode waveguides (ZMW), in which a single polymerase is immobilized at the bottom 

of the chamber (Levene et al., 2003) (Figure 3A). The physics of these chambers reduces 

background noise such that phosphate-labeled versions of all 4 nucleotides can be present 

simultaneously. Thus, polymerization occurs continuously, and the DNA sequence can be 

read in real-time from the fluorescent signals recorded in a video (Eid et al., 2009).

Released in 2010, the RS II remains Pacific Biosciences only commercially available 

machine. However, altering the chemistry and doubling the number of ZMWs to 150k per 

SMRT cell have greatly enhanced performance. Using the latest chemistry, each SMRT cell 

produces ~50k reads and up to 1Gb of data in 4 hours. The average read lengths are >14kb, 

but individual reads can be as long 60kb. As with most single molecule sequencing 

platforms, high error rates (~11%) are evident for single pass reads, and these errors are 

dominated by indels. Sequencing errors, however, are distributed randomly, allowing 

accurate consensus calls with increasing coverage or multiple passes around the same 

template, socalled circular consensus sequences (Carneiro et al., 2012; Koren et al., 2012). 

By avoiding clonal amplification, SMRT sequencing is also much less sensitive to GC 

sequence content than other platforms (Loomis et al., 2013). This suite of characteristics 

makes SMRT sequencing particularly useful for projects involving de novo assembly of 

small bacterial and viral genomes as well as large genome finishing (English et al., 2012). 

Reconstructing structural variation in the genome (Chaisson et al., 2014) and isoform usage 

in the transcriptome (Sharon et al., 2013) are also key areas where SMRT sequencing has 

clear advantages over short read technologies. However, lower throughput and higher per 

base sequencing costs currently limit the scope of most genome-wide studies.

In addition to providing long, unbiased reads, another distinguishing characteristic of SMRT 

sequencing is that the polymerization reaction is monitored in real-time, allowing data 

pertaining to both base composition and enzymatic kinetics to be collected. Distinct kinetic 

profiles are produced as the polymerase encounters various types of DNA methylation 

(Flusberg et al., 2010). These kinetic signatures have been utilized to map sites of potential 

6-methyladenine and 5-methylcytosine genomewide in bacteria (Fang et al., 2012). It is 
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possible that these approaches will be extended to map other types of DNA modifications, 

including DNA damage induced in cancer cells. Moreover, SMRT sequencing instruments 

are not limited to studying DNA alone, as other molecules, such as ribosomes, can be 

tethered to the bottom of the ZMW and monitored at single molecule resolution (Uemura et 

al., 2010).

Oxford Nanopore Technologies

Nanopore-based sequencing is an emerging single molecule strategy that has made 

significant progress in recent years, with Oxford Nanopore Technologies leading the 

development and commercialization of this method. Nanopore sequencing can take a variety 

of forms, but principally relies on the transition of DNA or individual nucleotides through a 

small channel (Wang et al., 2015). In Oxford Nanopore’s current technology, a sequencing 

flow cell comprises hundreds of independent micro-wells, each containing a synthetic 

bilayer perforated by biologic nanopores. Sequencing is accomplished by measuring 

characteristic changes in current that are induced as the bases are threaded through the pore 

by a molecular motor protein (Figure 3B). Library preparation is minimal, involving 

fragmentation of DNA and ligation of adapters. Much like SMRT sequencing, this library 

preparation methodology can be done with or without PCR-amplification. The first adapter 

is bound with a propriety motor enzyme as well as a molecular tether, whereas the second 

adapter is a hairpin oligonucleotide that is bound by a second socalled HP motor protein 

(Quick et al., 2014). This library design allows sequencing of both strands of DNA from a 

single molecule, which increases accuracy (Ashton et al., 2014; Quick et al., 2014).

The first commercially available device for nanopore sequencing is the MinION, a USB-

powered, portable sequencer, which Oxford Nanopore Technologies released in early 2014 

as part of an early access program. A single 18 hour run can produce >90 Mbp of data from 

around 16,000 total reads, with median and maximum read lengths of ~6 kb and >60 kb, 

respectively (Ashton et al., 2014). As with all single molecule sequencing methodologies, 

error rates are high. Jain and colleagues most recently reported insertion, deletion and 

substitution rates of 4.9%, 7.8% and 5.1%, respectively (Jain et al., 2015). Presently, it also 

has a very high run failure rate. Despite the high error rates, MinION reads have been 

successfully used to determine the position and structure of a bacterial resistance island in 

combination with Illumina-derived reads (Ashton et al., 2014) and resolve an assembly gap 

on human Xq24 (Jain et al., 2015). Given the relatively high error rates and low throughput, 

nanopore sequencing is unlikely to overtake current sequencing platforms in the near future; 

however, the combination of size, speed, read lengths and machine cost hold promise for the 

future.

The development and use of HTS applications

As sequencing costs have fallen, HTS machines have become widely present in university 

core facilities and even individual labs. Decreasing costs and increased accessibility have 

enabled researchers to develop a rich catalog of HTS applications (Figure 4 and Table 1). 

Some of these technologies were initially developed using DNA microarrays, but many are 

enabled only by using sequencing. High-throughput sequencing offers many advantages 

over DNA microarrays. In particular, it is more precise and not subject to cross-
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hybridization, thereby providing higher accuracy and a larger dynamic range (>105 for DNA 

sequencing vs 102 for DNA microarrays) (Wang et al., 2009). Similar to microarrays, 

however, HTS-based applications can be biased by a number of variables, such as 

sequencing platform and library preparation method. The Sequencing Quality Control 

Consortium and similar initiatives are designed to study these biases and develop 

approaches to control for them, as has been recently demonstrated for RNA-seq (Su et al., 

2014).

As HTS-based applications have become more robust, they have not only enabled individual 

researchers but also a variety of consortia-based projects. These large-scale projects have 

both provided valuable resources to the community and also have addressed questions that 

would be difficult for individual labs to approach. Some of these projects are listed in Table 

2 and include efforts to characterize the human genome (ENCODE, Roadmap Epigenomics 

Project), study human genetic variation (1000 Genomes Project), analyze gene expression 

(GTEx), and discover the molecular underpinnings of human disease (many; see Table 2). 

These coordinated efforts produce foundational resources that are of high utility to the 

scientific community by depositing the data into easily accessible public databases. 

Moreover, consortia often implement robust experimental and computational standards (e.g., 

Landt et al., 2012), ensuring high quality data. Use of HTS applications by both individual 

laboratories and the large consortia have enabled researchers to illuminate previously 

intractable topics in biology, some of which are discussed below.

Genome sequencing and variation

The utility of HTS technologies for determining genome sequences de novo was first 

demonstrated by sequencing the genome of Acinetobacter baumannii (Smith et al., 2007). 

As the technologies and throughput improved, they were applied to "resequencing" human 

genomes and exomes, which was accomplished by first mapping reads to a reference 

genome and then identifying variants that differ between the sample genome and the 

reference (Wheeler et al., 2008). The different genome sequencing projects have since 

revealed that individuals typically harbor 3.5–4 million single nucleotide variants (SNVs) in 

total and several hundred thousand short indels relative to the reference genome. 

Importantly, these variants include hundreds of loss of function alterations in genes (The 

1000 Genomes Project Consortium, 2010).

HTS has also been used to globally characterize structural variation (SV) in the human 

genome. SVs include large (>1kb) segments of the genome that have been duplicated, 

deleted or rearranged. The short read lengths of most HTS platforms make determining SVs 

and indels more challenging than SNVs (Snyder et al., 2010). Typically, at least four 

independent approaches are utilized to identify SVs in a genome. These approaches include 

depth of read coverage (Abyzov et al., 2011), mapping of paired end reads that are 

discordant from the reference genome (Korbel et al., 2007), identifying split reads (Zhang et 

al., 2011) and mapping of breakpoint junctions (Kidd et al., 2010). Although each method 

has shortcomings, the improvement in resolution over array-based approaches has greatly 

enhanced our understanding of the prevalence of SVs throughout the genome and their 

contribution to disease. However, because no method or combination of them is 
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comprehensive, SVs are never characterized in their entirety, if at all, in most sequencing 

projects.

In addition to identifying variants, it is also useful to assign them to paternal and maternal 

alleles, or “phase” them. Similar to SVs, current read lengths hinder our ability to phase 

genomes. This limitation can be circumvented by several methods, including sequencing 

parents, sequencing proximity ligated fragments (Selvaraj et al., 2013) or dilution and 

barcoding strategies during template preparation to allow long read assembly (Kuleshov et 

al., 2014; Voskoboynik et al., 2013). With approximately 30 Gbp of additional sequence 

data, ~99% of the SNVs identified in a 50x genome can be phased into blocks that are 0.2–

1Mb in length (Kuleshov et al., 2014). Understanding the phase of variants can have 

important clinical implications when determining if multiple damaging variants affect both 

copies of a gene or only one copy. To date, HTS has been applied to many thousands of 

genomes and many tens of thousands of exomes, yielding tremendous insight into human 

diversity and disease.

Mapping regulatory information of the genome

HTS has applications beyond simply sequencing genomes. Perhaps one of the highest 

impact areas is the genome-wide mapping of DNA regulatory elements at high-resolution. 

The first of these technologies was ChIP-Seq in which DNA associated with a transcription 

factor (TF) or chromatin modification is immuno-selected and then sequenced using HTS 

(Johnson et al., 2007). Mapping the sequences back to the genome reveals the location of 

bound regions or chromatin modifications. A more general method for discovering many 

putative regulatory regions is to map “open” regions of the genome using DNase I digestion, 

followed by DNA sequencing of the ends of the fragments (Crawford et al., 2006). This 

method identifies approximately 50% of regions that are TF-bound as measured by ChIP-

Seq (Cheng et al., 2014). DNase-Seq, however, is quickly being replaced by Assay for 

Transposon Accessible Chromatin-Seq (ATAC-Seq) in which transposon-based insertion is 

used to map open chromatin regions with approximately 50 million mapped reads 

(Buenrostro et al., 2013). The ATAC-seq protocol is also simpler and can be applied to 

small numbers of cells, even single cells.

Regulatory information is especially revealing when compared across many individual 

genomes or within a single genome across many cell or tissue types. Large-scale application 

of these methods by the ENCODE project has provided a wealth of invaluable information 

regarding transcription factor binding networks (The ENCODE Project Consortium, 2012), 

epigenetic maps (Thurman et al., 2012) and transcript annotations (Djebali et al., 2012). 

Moreover, recent studies have found more than 3.5 million regulatory elements located 

throughout the genome in different cell types (Roadmap Epigenomics Consortium et al., 

2015). One of the most striking findings from these studies as a whole, however, was the 

higher than expected portion of the genome that appears to be functional. The exact 

percentage is a source of significant debate (Doolittle, 2013), highlighting the importance of 

further experimental evidence to assign function to genomic elements. Genome targeting 

techniques, such as CRISPR-Cas9 (Gilbert et al., 2014) as well as high-throughput enhancer 

assays (Kheradpour et al., 2013) provide researchers with new tools to interrogate putative 
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regulatory elements. Nonetheless, a variety of lines of evidence (GWAS, ENCODE) suggest 

that the total amount of regulatory regions is likely greater than that of protein coding 

regions (Kellis et al., 2014).

Mapping the three-dimensional organization of the genome

Our understanding of the global organization and compartmentalization of chromosomes has 

been profoundly advanced by HTS technologies. 3D chromatin interactions can be studied 

using a variety of HTS assays, such as ChIA-PET (chromatin interaction analysis by paired-

end tag sequencing) and Hi-C (Fullwood et al., 2009; Lieberman-Aiden et al., 2009). Each 

of these assays relies upon proximity-based ligation of cross-linked, sheared chromatin 

followed by sequencing to derive contact maps. Hi-C was the first technique to allow 

unbiased, genome-wide interrogation of chromatin organization and revealed that the 

genome broadly partitions into open and closed chromatin states (Lieberman-Aiden et al., 

2009). Hi-C also demonstrated that the genome is organized into topological associating 

domains (TADs), which show high amounts of intra-domain interactions but exhibit 

infrequent interactions across domain boundaries (Dixon et al., 2012). Interestingly, TAD 

organization is stable across cell types and evolutionarily conserved across species. The 

boundaries between TADs were also enriched for housekeeping genes and binding sites for 

the insulator protein CTCF, raising the possibility that the distribution of TADs is 

chromosomally encoded (Dixon et al., 2012).

Recent advancements to the Hi-C technique combined with extremely deep sequencing 

(billions of reads per sample) have produced much higher resolution contact maps (~1kb), 

which refine TAD domain size from 1 Mb to less than 200 kbp (Rao et al., 2014). These 

new Hi-C maps demonstrated intrachromosomal looping events, often containing promoter-

to-enhancer contacts that were associated with gene activation. Most loops were anchored 

with directionally-oriented CTCF binding sites, suggesting a mechanistic role for CTCF in 

establishing stable loops. Strikingly, fewer than 10,000 looping events were observed 

genome-wide, which is far smaller than previous estimates (Jin et al., 2013). Modeling of 

Hi-C data has also suggested a fractal globule chromatin state, a conformation that both 

maximizes packing while preserving the flexibility to access any genomic locus (Lieberman-

Aiden et al., 2009).

Characterizing the transcriptome

Our appreciation for the diverse cellular roles of RNA has been greatly enhanced by the 

advent of high-throughput sequencing. Much of this evolution in thought has been a direct 

result of the many HTS applications designed to systematically identify various classes of 

RNA as well as to characterize RNA structure, RNA-protein interactions and genomic 

localization. Cap analysis of gene expression (CAGE) and RNA-seq have been utilized to 

great effect to deeply characterize transcriptomes, providing precise, comprehensive 

measurements for message abundance, isoform usage, RNA-editing and allele-specific 

expression. Deep sequencing of RNA has suggested that roughly three-quarters of the 

human genome is transcribed (Djebali et al., 2012). Most of this transcription covers introns 

or is very low, non-coding and of unclear biologic significance. However, many interesting 

species of non-coding RNA, including lncRNAs (long, non-coding), snoRNAs (small, 

Reuter et al. Page 8

Mol Cell. Author manuscript; available in PMC 2016 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nucleolar) and microRNAs, have been systematically described with RNA-seq and 

derivative techniques. A subset of lncRNAs, for example, have been revealed by overlaying 

RNA-seq data with ChIP-seq profiles characteristic of expressed genes (Guttman et al., 

2009). Building upon earlier cDNA sequencing and tiling array experiments, these HTS 

approaches expanded the list to include more than a thousand mammalian lncRNAs. 

Analogous expansions have occurred for many aspects of RNA biology, such as the number 

of sites undergoing RNA editing (Li et al., 2009).

Understanding the structure and biology of these newly discovered transcripts has led to the 

development of additional HTS applications. For instance, microRNA-target discovery has 

been facilitated by sequencing signatures of miRNA-mediated mRNA decay, using parallel 

analysis of RNA ends (PARE) (German et al., 2008). Furthermore, RNA 

immunoprecipitation chip (RIP-chip) and subsequently RIP-seq were utilized to show that 

approximately 20% of the lncRNAs associate with polycomb repressor complex 2 (PRC2), a 

chromatin-modifying complex (Khalil et al., 2009; Zhao et al., 2010). Given these links to 

chromatin, methods analogous to ChIP-seq were developed, such as chromatin isolation by 

RNA purification (ChIRP-seq), to determine the genomic localization of lncRNAs (Chu et 

al., 2011). HTS applications have also made it possible to determine transcript structure both 

in vitro (parallel analysis of RNA sequencing; PARS) and in vivo (Structure-seq), providing 

insight into the effects of various structural features on translation efficiency, splicing and 

polyadenylation (Ding et al., 2014; Kertesz et al., 2010). More recently, systematic 

interrogation of sequence-function relationships for RNA-protein interactions has been made 

possible using a high-throughput biochemical assay called RNA on a massively parallel 

array (RNA-MaP) (Buenrostro et al., 2014). The use of these assays, and many others, have 

enabled researchers to study RNA biology both comprehensively and with great detail, 

thereby enhancing our appreciation for the varied roles RNA plays in normal cellular 

homeostasis as well as human disease.

Microbiome sequencing

Advances in HTS have enabled extensive cataloging of metagenomic samples, providing 

insight into the diversity of microbial species from a wide variety of sources, including the 

ocean, soil and the human body. These studies use both 16S rRNA gene sequencing to 

determine phylogenetic relationships as well as more comprehensive shotgun sequencing to 

predict detailed species and gene composition. In particular, much attention has been paid to 

characterizing the diverse microbes resident to healthy human populations (The Human 

Microbiome Project Consortium, 2012). These studies found extensive variation in both 

body site habitat and among different individuals, giving rise to the concept of a “personal 

microbiome”. Microbial diversity, or the number and abundance distribution of 

microorganisms in a given niche, also correlates with several human diseases. For instance, 

an increase in diversity is associated with bacterial vaginosis (Fredricks et al., 2005), 

whereas obesity and inflammatory bowel disease exhibit a decrease in the diversity of gut 

microbes (Qin et al., 2010; Turnbaugh et al., 2009). Although transplant studies in mice 

have demonstrated a direct link between the gut microbiome, energy metabolism and obesity 

(Turnbaugh et al., 2006), causal relationships for the majority of human diseases are not 

well-established. A deeper understanding will require more detailed characterizations of the 
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dynamics of microbiomes across health states as well as more integrative studies to 

investigate the functional interplay between the microbiota, the host and the environment.

Genome sequencing of rare diseases

The capacity to sequence genomes, exomes and transcriptomes has profoundly influenced 

our understanding of the genetics of human disease, especially for rare Mendelian disorders 

and cancer. According to the Online Mendelian Inheritance in Man database, there are more 

than 7800 Mendelian disorders, but the causative gene for less than one half of these are 

known. By sequencing unrelated patients or affected and unaffected family members, early 

exome studies demonstrated the ability to identify causal alleles for a variety of inherited 

diseases (Bilgüvar et al., 2010; Ng et al., 2010). In rare cases, sequencing of patient samples 

has suggested specific clinical interventions that have dramatically altered patient outlook. 

In one early example, exome sequencing of a child with severe inflammatory bowel disease 

uncovered a mutation in an important regulator of inflammation, X-lined inhibitor of 

apoptosis (XIAP). Based on the severity of the child’s symptoms as well as the molecular 

diagnosis, a bone marrow transplant was given to the patient, which subsequently alleviated 

his symptoms (Worthey et al., 2011). Despite the power of HTS for disease gene discovery, 

however, exome sequencing currently identifies the genetic defect in only 25% of cases 

(Yang et al., 2013).

Cancer genome sequencing

Cancer is another important arena where HTS has been applied to great effect. The Cancer 

Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) have 

performed genome and exome sequencing on thousands of tumor-normal pairs. These 

studies have described the mutational landscapes for over 20 cancer types, demonstrating 

that tumors can vary dramatically in both the type and quantity of mutations (Chang et al., 

2013; Lawrence et al., 2014). These global descriptions have been integral to the 

development of background mutation rates that are necessary for the detection of cancer 

driver genes. For example, replication timing and gene expression were both found to be 

important covariates when determining if a gene is mutated at a rate higher than expected 

(Chang et al., 2013). Using these background models, TCGA-led projects discovered several 

novel cancer drivers, known drivers in new cancer types and commonly disrupted pathways 

(Lawrence et al., 2014). Moreover, WGS of cancer samples has also identified high-

frequency, non-coding mutations, such as activating mutations in the TERT promoter 

(Huang et al., 2013), a poorly characterized but highly relevant class of somatic variants.

The scale and sensitivity of HTS has also enabled global descriptions of tumor 

heterogeneity, clonal evolution and the mechanisms underlying drug resistance. By tracking 

copy number aberrations in primary breast cancer cells using single-cell sequencing 

techniques, Navin and colleagues demonstrated that copy number rearrangements can occur 

in bursts, followed by persistent clonal expansion (Navin et al., 2011). Point mutations, in 

contrast, appear to accumulate more slowly over time, giving rise to more extensive clonal 

diversity, which may enable the tumor to adapt to diverse selective pressures (Wang et al., 

2014). In addition to examining clonal diversity, HTS has also been used to compare 

primary tumors with relapse lesions, allowing characterization of the effects of 
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chemotherapy as well as the molecular mechanisms underlying resistance to therapy (Van 

Allen et al., 2014; Ding et al., 2012). Together, these molecular portraits of cancer are 

forming the foundation of new paradigms for the diagnosis and treatment of cancer.

Limitations of current HTS technologies

It is becoming increasingly clear that while the technologies of today may be capable of 

providing population-level sequencing to both researchers and clinicians, key limitations 

remain. From a technological perspective, accuracy and coverage across the genome are still 

problematic, particularly for GC-rich regions and long homopolymer stretches (Ross et al., 

2013). In addition, the short read lengths produced by most current platforms severely limit 

our ability to accurately characterize large repeat regions, many indels and structural 

variation, leaving significant portions of the genome opaque or inaccurate (Snyder et al., 

2010). The establishment of a gold standard genome, as envisioned by the Genome in a 

Bottle Consortium (Zook and Salit, 2011) as well as standards for data processing, variant 

calling and reporting as set out in the CLARITY Challenge (Brownstein et al., 2014), will be 

valuable for comparing and reporting the accuracy of different platforms and studies. Given 

the limitations and biases of different platforms, it is also likely that accurate genome 

sequencing will use a combination of technologies.

In addition to genomes, quantitative analysis of complete transcriptomes, with individual 

allelic and spliced isoforms, is hindered by short reads as well as the cost and throughput of 

current long-read technologies. Improvements to current long read technologies, such as 

Pacific Biosciences and Oxford Nanopore Technologies, as well as the use of “synthetic 

long read methods” in which longer fragments can be sequenced and assembled from short 

reads will help overcome these limitations (Tilgner et al., 2015). Although both the research 

and medical communities are pressing forward with current technologies, these limitations 

will also continue to drive the innovation of new sequencing platforms (reviewed by Schadt 

et al., 2010).

HTS in the coming era of personalized medicine

To date, clinical HTS has most often been employed on focused regions of the genome or in 

the context of small pathogen identification. For instance, prenatal tests designed to non-

invasively detect chromosomal abnormalities in cell-free DNA from maternal blood are 

clinically available (e.g., Ariosa Diagnostics’ Harmony Test and BGI’s NIFTY Test). 

Similarly, targeted HTS of clinically actionable mutations is being utilized to guide the 

diagnosis and treatment of cancer (e.g., Foundation Medicine’s FoundationONE test). HTS 

has also been employed in clinical contexts to monitor pathogen outbreaks, such as 

methicillin-resistant S. aureus infections (Köser et al., 2012). The development and use of 

these focused assays will continue to expand, but the full promise of personalized medicine 

relies upon the routine clinical application of more comprehensive techniques, such as 

WGS, which still faces significant challenges.

In order for large-scale genomics to become fully integrated into the clinic, we need to 

reduce the costs and timescales associated with storage and interpretation of genome data. 

Most importantly, however, we must improve our ability to understand the biological and 
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clinical consequences of variants of unknown significance. This class of alterations is the 

most common in personal genome sequences and includes novel variants that affect the 

coding sequence of known disease-causing genes but can also refer to variants in genes 

previously unlinked to disease or in regulatory regions of the genome. Interpretation of these 

variants will benefit from additional genome sequencing as well as the data provided by 

large-scale genomics projects, such as ENCODE and GTEx, which enable the generation of 

more complete reference databases. Open access projects, such as the Personal Genomes 

Project and integrative Personal Omics Profiling (iPOP) will also provide valuable 

community resources for linking phenotypes to sequences (Chen et al., 2012; Church, 2005). 

The incorporation of high-throughput biochemical measurements of novel variation and 

detailed health records along with open data sharing will maximize our ability to both 

interpret personal genomes and better understand human health and disease.
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Figure 1. Timeline and comparison of commercial HTS instruments
Plot of commercial release dates versus machine outputs per run are shown. For the 

MinION, outputs from an 18 hour run were used (Ashton et al., 2014). Numbers inside data 

points denote current read lengths. Sequencing platforms are color-coded.
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Figure 2. Clonal amplification-based sequencing platforms
(A) Illumina’s four-color reversible termination sequencing method. DNA templates are first 

clonally amplified on the surface of a glass flow cell. Sequencing occurs via successive 

rounds of base incorporation, washing and imaging. A cleavage step after image acquisition 

removes the fluorescent dye and regenerates the 3´OH for the next cycle. Analysis of four-

color images is used to determine base composition. (B) Ion Torrent’s semiconductor 

sequencing method. Emulsion-PCR is used to clonally amplify DNA templates on the 

surface of beads, which are subsequently placed into microwells. pH changes induced by the 

release of hydrogen ions during DNA extension are detected by a sensor positioned at the 

bottom of the microwell. These pH changes are converted into a voltage signal, which is 

proportional to the number of nucleotides added by the polymerase.
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Figure 3. Single molecule sequencing platforms
(A) Pacific Bioscience’s SMRT sequencing. A single polymerase is positioned at the bottom 

of a zero-mode waveguide (ZMW). Phosphate-labeled versions of all 4 nucleotides are 

present, allowing continuous polymerization of a DNA template. Base incorporation 

increases the residence time of the nucleotide in the ZMW, resulting in a detectable 

fluorescent signal that is captured in a video. (B) Oxford Nanopore’s sequencing strategy. 

DNA templates are ligated with two adapters. The first adapter is bound with a motor 

enzyme as well as a tether, whereas the second adapter is a hairpin oligo that is bound by the 

HP motor protein. Changes in current that are induced as the nucleotides pass through the 

pore are used to discriminate bases. The library design allows sequencing of both strands of 

DNA from a single molecule (2-direction reads).
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Figure 4. Broad overview of HTS applications
Publication date of a founding article describing a method versus the number of citations 

that the article received. Methods are colored by category, and the size of the data point is 

proportional to publication rate (citations/months). The inset indicates the color key as well 

the proportion of methods in each group. For clarity, Seq has omitted from the labels.
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Table 1

Selected HTS methods

Method Purpose Reference

RNA-Seq Transcript analysis (Nagalakshmi, U., et al., 2008)

Global run-on sequencing (GRO-Seq) Transcription (Core, L. J., et al., 2008)

Nascent-Seq Transcription (Khodor, Y.L., et al., 2011)

Native elongating transcript sequencing (NET-Seq) Transcription (Churchman, L., et al., 2011)

Ribo-Seq Translation (Ingolia, N.T., et al., 2009)

Replication sequencing (Repli-Seq) Replication (Hansen, R.S., et al., 2010)

Hi-C Chromatin conformation (Lieberman-Aiden, E., et al., 2009)

Chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) Chromatin conformation (Fullwood, M.J., et al., 2009)

5-C-Seq Chromatin conformation (Dotsie, J., et al., 2006)

Chromatin isolation by RNA purification sequencing (ChIRP-Seq) Genome localization (Chu, C., et al., 2011)

Reduced representation bisulphite sequencing (RRBS-Seq) Genome methylation (Meissner, A., et al., 2008)

Bisulfite sequencing (BS-Seq) Genome methylation (Cokus, S.J., et al., 2008)

DNAse-Seq Open chromatin (Crawford, G.E., et al., 2006)

Assay for transposase-accessible chromatin using sequencing (ATAC-
Seq)

Open chromatin (Buenrostro, J.D., et al., 2013)

Parallel Analysis of RNA structure (PARS) RNA structure (Wan, Y., et al., 2012)

Structure-Seq RNA structure (Ding, Y., et al., 2014)

RNA on a massively parallel array (RNA-MaP) RNA-protein interactions (Buenrostro, J.D., et al., 2014)

RNA immunoprecipitation sequencing (RIP-Seq) RNA-protein interactions (Sephton, C.F., et al., 2010)

Parallel analysis of RNA ends sequencing (PARE-Seq) microRNA target discovery (German, M.A., et al., 2008)

Massively parallel functional dissection sequencing (MPFD) Enhancer assay (Patwardhan, R.P., et al., 2012)
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Table 2

Examples of consortia-based projects

Initiative Purpose Website

1000 Genomes Project Cataloging normal variation in diverse human 
populations.

www.1000genomes.org

The Encyclopedia of DNA Elements Identifying functional genomic elements in 
the human genome.

www.encodeproject.org

Roadmap Epigenomics Project Catalogue human epigenomic data with the 
goal of advancing basic biology and disease-
oriented research.

www.roadmapepigenomics.org

Human Microbiome Project Comprehensive characterization of the human 
microbiome and analysis of its role in human 
health and disease.

www.hmpdacc.org

Genotype-Tissue Expression Program Characterizing gene expression and regulation 
in many human tissues and correlating with 
genetic variation and disease.

www.commonfund.nih.gov/GTEx/index

Human Immunology Project Consortium Characterizing the diverse states of the human 
immune system following infection, 
vaccination or treatment.

http://www.immuneprofiling.org

Grand Opportunity Exome Sequencing Project Discovery of novel genes and mechanisms 
contributing to heart, lung and blood 
disorders.

https://esp.gs.washington.edu/drupal

The Cancer Genome Atlas Understanding the molecular basis of cancer. www.cancergenome.nih.gov

International Cancer Genome Consortium Describing the genomic, transcriptomic and 
epigenomic changes in 50 different tumor 
types.

www.icgc.org

Clinical Sequencing Exploratory Research 
Program

Develop methods as well as the legal and 
ethical frameworks necessary to integrate 
sequencing into the clinic.

www.genome.gov/27546194

Centers for Mendelian Genomics Discovering the genes and genetic variants 
underlying human Mendelian disorders.

www.mendelian.org

Undiagnosed Diseases Network Promoting the use of genomic data to 
elucidate the mechanisms underlying the 
diseases of unknown etiology.

www.commonfund.nih.gov/Diseases/index

Newborn Sequencing in Genomic Medicine 
and Public Health

Exploring the challenges and opportunities 
associated with using genomic sequence 
information in the newborn period.

www.genome.gov/27558493

The Pediatric Cardiac Genomics Consortium Determining the genes responsible for 
congenital heart disease.

www.benchtobassinet.com

Alzheimer's Disease Sequencing Project Identifying genes contributing to risk of 
developing Alzheimer's disease in multiethnic 
populations.

www.niagads.org/adsp
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