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Synopsis

Advances in understanding the biology of melanoma have provided great insights about the 

mechanisms of chemoresistance and its genetic heterogeneity in parallel with advances in drug 

design culminating in recent major treatment breakthroughs using small molecules inhibitors in 

metastatic melanoma (MM). While clinical benefit of targeted therapies has been unquestionable, 

future advances can only be possible if we better understand the interplay between genetic 

aberrations and role of other crucial non-genetic changes yet to be identified by such projects as 

the Cancer Genome Atlas Project (TCGA) in Melanoma. Combination therapies, either among 

small molecule inhibitors themselves and/or with immunotherapies may be the optimal strategy to 

prevent development of drug resistance that is inherently linked with such targeted therapies.
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1. Introduction

1.1. Historic Overview

Similar to those for other cancers, targeted therapies for MM have only been under 

investigation for a little more than a decade. Before 2010 treatment of MM had achieved 

minimal progress since the ‘70s when dacarbazine was approved, when a ‘one-size-fits-all’ 

approach with various chemotherapeutic approaches had been applied to nearly all cancers. 

In clinical trial after clinical trial, chemotherapies in MM were proved to be largely 

ineffective compared to dacarbazine1. In fact, the minimal clinical benefit from systemic 

treatments was so predictable that clinical efficacy benchmarks were built around the 

statistical design for future phase II clinical trials in MM2. During this frustrating era, few 
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immunotherapies were proved to be promising with durable clinical benefit in a small subset 

of patients with MM or high risk for relapse melanoma1. More than any other time from the 

past, treatment of MM is currently being shaped around targeted therapies administered in 

particular melanoma subgroups, given in precisely defined schedules, alone or in 

combination with other targeted therapies or various other immunotherapeutic approaches.

1.2 Better Understanding of the Biology of Melanoma was the Driving Force Behind 
Clinical Development of Targeted Therapies

It is becoming increasingly understood that cancers have distinct aberrations in particular 

cellular processes, in particular DNA repair pathways, which make them either relatively 

sensitive3 or refractory4 to systemic chemotherapies. Melanoma has one of the highest 

mutation frequencies5 and frequently shows elevated expression of DNA repair proteins6. 

Four important points are remarkable with respect to genetic aberrations in melanoma:

1. Only a handful of genes are more frequently mutated (Figure 1) or show gene copy 

number alterations (amplifications or deletions, Figure 2) than others7,8, whereas 

the clinical importance of most other genetic aberrations is currently unclear.

2. While most frequently mutated genes bear mutational ‘hotspots’ (‘canonical’ 

mutations), increasing evidence suggests the presence of non-canonical mutations 

(Figure 1) that can only be identified using NGS methodologies.

3. The most frequently mutated genes are components of two principal signaling 

pathways, the Ras-Raf-MEK-ERK and the PI3K-Akt-mTOR signaling pathway 

(Figure 3). The activation status of these kinases within each of these pathways are 

not independent from each other and dynamically adjust to environmental changes, 

including targeted treatments9.

4. The most frequently occurring mutations BRAF and RAS proteins are 

paradoxically not related to sun exposure, nor can they be found in early stages of 

melanoma, or even premalignant conditions10, and are retained during later stages 

of melanoma11.

5. More than one mutation and/or gene copy alteration can coexist within melanoma, 

which can have important clinical implications12 (Figures 1 and 2).

6. Response to immunotherapies is independent from mutational status13.

In preliminary analyses of mutations of more than 350 cutaneous melanoma specimens as 

part of the Cancer Genome Atlas (TCGA), cutaneous melanomas can be conventionally 

classified in 4 different mutational groups (Figure 1)8:

1. ‘Hotspot’ mutations in the BRAFV600 as well as immediately adjacent codons,

2. ‘Hotspot’ mutations of the RAS oncogenes (N-, K-, or H-RAS) with the 

predominance of those occurring in NRAS (>90%),

3. Mutations of the neurofibromatosis 1 gene (NF1), an inhibitor of RAS signaling 

(Figure 4) without any concurrent hotspot mutations in the BRAF and NRAS 

(approximately 10%),
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4. No mutations in any of the above described genes.

2. Treating Patients with MM in the Era of Small Molecule Inhibitors

The approach to a patient with MM has dramatically changed since 2010 with the advent of 

small inhibitor therapies, especially for BRAF-mutant patients. In addition to factors such as 

patient’s performance status, tumor doubling time, ability to perform metastatectomy, 

comorbid factors, AJCC staging system guidelines, knowledge about the mutation status for 

at least BRAF, NRAS and KIT, is becoming the standard of care for prognostic14 and 

treatment reasons. NGS methodologies with the ability to sequence several hundred cancer-

associated genes are increasingly being incorporated in standard therapeutic decisions and 

have so far revealed that the mutational landscape of melanoma is more complex than was 

originally thought15.

Metastatectomy remains the best treatment for patients who can become completely free of 

distant metastatic disease with surgery16. However, controversies exist with respect to the 

optimal sequencing of systemic therapies for patients with unresectable MM. Retrospective 

analysis of BRAF-mutant patients who participated in the European Ipilimumab Expanded 

Access program suggest that the overall survival (OS) of patients with BRAF-mutant 

melanoma who originally received a single-agent MAPK inhibitor (MAPKi) followed by 

ipilimumab was inferior to that of patients who received ipilimumab first, followed by 

MAPKi13. Current guidelines suggest that in the absence of a clinical trial, patients with 

relatively asymptomatic, slow tumor kinetics, M1a/M1b disease —all presumed surrogate 

factors of a relatively more functional host immune system— should be initially considered 

for an immunotherapy followed by targeted therapy, if available, or chemotherapy.

3. Treatment with Single-Agent Targeted Agents

3.1 All Three FDA-approved Targeted Therapies in Metastatic Melanoma are for Patients 
with BRAF-Mutant Melanoma

As of May 2013 there are three FDA-approved MAPKi for MM: the two BRAF inhibitors 

(BRAFi), vemurafenib and dabrafenib, and the first-in-class MEK inhibitor (MEKi), 

trametinib. Their approval was based on randomized phase III trials in which each of the 

investigational agents was compared against dacarbazine for patients with unresectable 

BRAFV600E(K)-mutant MM17-19. All important clinical endpoints were in favor of the 

investigational agents. Five key observations were remarkable:

1. Responses were seen early during treatment, suggesting direct antitumor effect. 

However, further investigation showed that BRAFi may actually have effects upon 

the tumor microenvironment, such as increased influx of effector CD8+ cells 

infiltrating the tumor20, upregulation of immune checkpoint proteins within the 

tumor21, and suppression of angiogenic molecules, such as VEGF22. These effects 

may be either secondary to suppression of downstream actions of BRAF oncogenic 

signaling within melanoma cells themselves, or secondary to paradoxical activation 

of BRAF signaling within immune cells23.
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2. Although antitumor responses have been impressive, the majority of responses 

were partial. Early studies using novel proteomic methods from analysis of the 

adaptive responses of the kinome in various melanoma cell lines following 

treatment with single-agent BRAFi or MEKi24 reveal incomplete suppression of 

the activity of all components of the RAF-MEK1/2-ERK pathway.25

3. Development of secondary resistance was seen in the majority of patients. 

Although general mechanisms of resistance will be described below, a surrogate 

clinical marker for durable responses to BRAFi was the ability to achieve complete 

antitumor response26,27.

4. All three treatments are orally administered and overall well tolerated with side 

effects similar to other previously FDA-approved tyrosine kinase inhibitors. The 

most interesting class-specific side effect was the small but significantly higher 

incidence of cutaneous squamous carcinomas, especially when pre-existing skin 

lesions bear KRAS or HRAS mutations28. Side effects from trametinib include 

high blood pressure, diarrhea, bleeding, coagulopathies, cardiomyopathy, and 

ocular toxicities.

5. All trials were conducted in patients with extracranial MM. Nevertheless, phase II 

trials using BRAFi in patients with active brain metastases showed considerable 

intracranial antitumor responses29,30. These results were somewhat unexpected in 

view of the fact that none of the three agents achieves significant drug levels within 

the CNS in preclinical studies (31 and references therein). The mechanism for such 

an antitumor effect within the brain is currently unknown, but it is reasonable to 

speculate that the blood-brain-barrier is, to a certain extent, compromised allowing 

for drug to enter the brain, a hypothesis that is currently being clinically tested 

(ClinicalTrials.gov Identifier NCT01978236).

3.2 Non-FDA-Approved but Promising Therapies for Patients with MM: More MAPK 
Pathway Inhibitors, Other Pathways, and Effects on Other Melanoma Subtypes

3.2.1 Do other BRAF inhibitors have a role in BRAF-mutant melanoma?—
Encorafenib (LGX818) is the third BRAFi in advanced stages of clinical development. In 

contrast to other BRAFi, it has an extremely long dissociation half-life (30 hours versus 2 

and 0.5 hours for dabrafenib and vemurafenib, respectively), a property that makes 

encorafenib extremely potent. In line with these preclinical data, a phase I trial of single-

agent encorafenib in patients with BRAF-mutant MM showed that antitumor responses were 

also seen among patients who have previously received BRAFi32, suggesting that prolonged 

inhibition of the target may further improve therapeutic benefit.

3.2.2. Treatment of Patients with NRAS-Mutant Melanoma—NRAS-mutant 

melanomas have an overall worse prognosis than the more abundant BRAF-mutant 

melanomas14. This is attributed to the relative ‘promiscuity’ of the RAS family of proteins 

to signal through multiple signaling pathways, including the MAPK and the PI3K/Akt 

pathway, as opposed to RAF proteins that are relatively more committed to signal through 

the MAPK pathway (Figure 3)33. Due to difficulties in developing direct RAS inhibitors, 

current efforts focus on inhibiting druggable downstream effectors of RAS proteins, such as 
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MEK. A phase II trial of binimetinib (MEK162), a highly specific MEK inhibitor, in 

patients with NRAS-mutant melanoma showed an approximately 20% partial response34, a 

promising result that is currently being investigated in a large randomized phase III trial 

(NCT01763164). Of note, no responses were seen with trametinib35.

3.2.3 Targeting Mutations in Rare Melanomas—cKIT is a type III transmembrane 

receptor tyrosine kinase that mediates signaling via various pathways and plays an important 

physiologic role for the development and maintenance of various cells, including 

melanocytes. A number of genetic aberrations of the cKIT gene have been observed in 

melanoma from both cutaneous (acral and chronically sun-damaged skin) and mucosal 

primary, including mutations in particular exons (e.g. 11 and 13) and gene amplifications36. 

Recently reported trials using various cKIT inhibitors focusing on melanomas that bear 

cKIT genetic aberrations are proof-of-principle that melanomas driven by constitutively 

active proto-oncogenes can be successfully targeted by small molecule inhibitor therapies. 

These trials show that antitumor responses can occur particularly in patients with activating 

mutations, as opposed to gene amplifications, and can occasionally be durable36.

Over the last few years, significant advances have been made towards understanding the 

biology of ocular melanoma. Primary ocular melanomas frequently bear activating, mutually 

exclusive hotspot mutations in two of the guanine nucleotide-binding proteins for Aq and 

A11 (GNAQ and GNA11)37 which lead to constitutive activation of phospholipase C (PLC) 

β and MAPK. In addition, approximately half of primary uveal melanomas bear inactivating 

mutations in the BRCA1 associated protein 1 (BAP1), a genetic event that usually follows 

that of GNAQ/GNA11, and is associated with propensity for distant metastases38. Early 

clinical trials suggest that targeting ocular melanomas with MEKi is associated with better 

clinical benefit compared to standard chemotherapy39, a result that is currently being 

confirmed in a large phase III trial (NCT01974752). A phase I clinical trial of a novel PLCβ 

inhibitor, AEB071, in patients with ocular melanoma showed early promising safety and 

efficacy results40. The role of other targeted treatments against ocular melanoma with BAP1 

mutation is currently under investigation (NCT01587352).

4. Therapies Using Combinations of Small Molecule Inhibitors

4.1. Combinations Among Small Molecule Inhibitors

Concurrent suppression of BRAF plus MEK results in more potent and sustained 

suppression of ERK signaling, presumably due to incomplete suppression of the MAPK 

pathway by either agent alone25. In fact, treatment of patients with BRAFV600E,K-mutant 

MM with dabrafenib and trametinib (D+T) led to a higher incidence of complete antitumor 

responses41. In line with this, the combination of D+T was associated with more prolonged 

progression-free survival compared to dabrafenib alone in a randomized phase III trial, 

COMBI-d42. In this trial, D+T was overall well tolerated with lower frequency of 

keratoacanthomas and squamous cell carcinomas, although significant pyrexia, more 

frequent dose reductions, interruptions, and permanent discontinuations were observed in 

the D+T compared to dabrafenib alone arm. Nevertheless, the safety and efficacy data led to 

the FDA approval of D+T as a frontline therapy for patients with BRAFV600E,K-mutant 
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melanoma. Randomized phase III trials testing the efficacy of concurrent BRAF plus MEK 

inhibition with other BRAFi+MEKi are underway43,44.

Given the high incidence of NRAS mutations that coexist with CDKN2A locus genetic 

aberrations7,8 and the strong preclinical rationale to combine MEK plus CDK inhibitors in 

NRAS-driven genetically engineered mouse models45, a clinical trial of combined MEKi 

and CDK inhibition using binimetinib plus LEE011 is underway. Preliminary results suggest 

that this treatment combination induces antitumor responses in approximately 1/3 of the 

analyzed patients, although dosing schedules in relation to toxicity and tolerability are 

currently being addressed46.

4.2. Combinations of Small Molecule Inhibitors and Immunotherapies

It is becoming increasingly understood that small molecule inhibitor therapies and 

immunotherapies have complementary strengths and limitations47 and various preclinical 

models have suggested a synergistic mechanism of action between these two treatment 

modalities23,48,49. Current treatment combinations are being tested in BRAF-mutant 

patients, given the lack of effective targeted therapies in other groups. Scheduling of these 

treatments —concurrent versus sequential— as well as selection of optimal drug 

combinations is important not only to minimize toxicity, but also to avoid potential small 

molecule inhibitor-mediated immunosuppression50, and optimize treatment effect granted 

by each drug. Despite early concerns that this combination could be associated with 

considerable toxicity, early results from subsequent ongoing trials suggest that the observed 

toxicities may not be only drug-class effect, but also related with the particular drug 

combination tested51. As these and more other trials (NCT01656642 and NCT01988896) 

mature, and even evolve into large randomized studies in the near future, we will be able to 

better assess durability of responses, a clinical benefit that is infrequently shared among 

targeted therapies.

5. Treatment Resistance

Based on the history of targeted therapies in other malignancies, resistance to targeted 

therapies in melanoma was highly expected. Several excellent reviews have been written for 

this important topic52. In the case of BRAF-mutant melanoma, the most extensively studied 

subtype with respect to drug resistance, these mechanisms may or may not involve 

reactivation of the ERK signaling pathway. In fact, on most occasions BRAF-mutant, 

MAPKi-resistant melanoma remain ‘addicted’ to MAPK signaling, which explains why the 

OS of patients who continue to be treated beyond disease progression with MAPKi is 

significantly longer compared to those who switch to non-MAPKi-based treatments53. 

Another important aspect is the role of PI3K/Akt signaling in primary as well as secondary 

drug resistance, either via acquired genetic alteration or secondary activation of the pathway 

by endogenous (RAS) or environmental factors54,55. So far, approaches to overcome 

resistance after it is developed have been challenging, and current efforts focus upon 

prevention of drug resistance. It is anticipated that small molecule inhibitors with superior 

pharmacodynamic properties (e.g. encorafenib), and/or addition of a third targeted therapy 

to the BRAF/MEKi backbone may overcome the challenge of turning the drugs’ cell 

inhibitory effect to an actual cell killing one. While trials testing combinations of three small 
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molecule inhibitors are underway (e.g. NCT02110355), toxicity and tolerability will be a 

significant concern, in addition to efficacy. This is a particular concern when MAPKi were 

previously combined with inhibitors of the PI3K/Akt pathway56.

6. Summary/Discussion

While great progress has been achieved towards finding effective treatments for patients 

with BRAF-mutant melanoma, therapeutic advances are only beginning to occur in RAS-

mutant melanoma. The biology of melanomas that bear no oncogenic mutations for 

BRAF/RAS has only recently begun to be systematically investigated57, but the subgroup 

that bears NF1 mutations, which is negative inhibitor of RAS signaling58, suggests that an 

even greater proportion of melanomas than what was originally thought may actually be 

addicted to RAS or RAF/MEK signaling. Clearly, targeted therapies provide a clinical 

benefit that is only durable in a small subset of patients. Nevertheless, the remarkable ability 

of small molecule inhibitors to suppress tumor growth leads to a better functioning immune 

system dysfunction, which, even if only temporary, may pave the way for better and more 

durable responses using immunotherapies. The tremendous efficacy of such targeted 

therapies in distant MM is already being investigated in earlier stages of disease where risk 

of relapse is high (NCT1682083 and 01667419). It is actually the administration of such 

treatments at an earlier stage that is expected to significantly change the natural history of 

disease over the next decade, especially the development of challenging future 

complications that are inherently difficult to treat (e.g. brain metastases).

Finally, the notion of ‘targeted’ therapies may likely be further expanded in the near future, 

thanks to projects such as TCGA. As part of this project, clinicopathologically well-

annotated, snap-frozen tumors undergo profiling across multiple molecular data platforms 

for downstream integrative bioinformatics analysis (DNA and RNA sequencing as well as 

microRNA, methylation and proteomic profiling). This high-order investigation will most 

likely identify important non-genetic ‘targets’ amenable to therapeutic manipulation8.
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Key Points

• Although melanoma bears one of the highest number of mutations per given 

DNA length among other malignancies, the most abundant mutations primarily 

affect two major signaling pathways.

• Next generation sequencing methodologies (NGS) targeting a panel of cancer-

related genes may better capture heterogeneity of melanoma and assist in 

treatment decisions.

• Several genetic aberrations (mutations, copy number aberrations) can coexist 

within a particular melanoma, which may be of prognostic and therapeutic 

significance.

• Although BRAF mutant melanomas have been the most successful melanoma 

subset for targeted therapies, progress is ongoing for other melanoma subtypes 

as well (e.g. RAS-mutant, ocular).

• Treatment strategies are more successful in preventing, as opposed to treating, 

secondary drug resistance; combination treatments among targeted therapies 

and/or with immunotherapies may be more successful than single-agent 

approaches.
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Figure 1. 
Frequency of somatic mutations that were previously identified in the work presented in the 

Hodis et al. Cell 2012 and applied in the publicly available cohort of cutaneous melanoma 

samples that has been collected as part of the Cancer Genome Atlas Project. Only 257 out of 

the so far (August 17, 2014) analyzed 375 samples that bear mutations (green dots) in any of 

these genes are shown. NF1, HRAS, and KRAS are also presented to emphasize the 4 

emerging subgroups on the basis of BRAF, RAS, NF1 mutations, versus no mutation (triple-

wild type group). Mutations highlighted with red border signify non-canonical mutations. 

Most genes, highlighted in red, are components of the BRAF/MEK/ERK, or PI3K/Akt 

signaling (see Figure 3 for further details). Analysis was performed using the cBioportal for 
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Cancer Genomics (www.cbioportal.org) in compliance with early publication of results from 

the website, ad per Cerami et al. Cancer Discov 2012 and Gao et al. Sci Signal. 2013.
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Figure 2. 
Frequency of gene copy number alterations that were previously identified in the work 

presented in the Hodis et al. Cell 2012 and applied in the publicly available cohort of 

cutaneous melanoma samples that has been collected as part of the Cancer Genome Atlas 

Project. Only 145 out of the so far (Aug 17, 2014) analyzed 375 sample that bear gene 

amplifications (red bars), or gene deletions (blue bars) in any of these genes are shown. 

Samples with BRAF (red dots), RAS (green dots), or NF1 (purple dots) are also shown for 

associations. Analysis was performed using the cBioportal for Cancer Genomics 

(www.cbioportal.org) in compliance with early publication of results from the website, ad 

per Cerami et al. Cancer Discov 2012 and Gao et al. Sci Signal. 2013.
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Figure 3. 
Cellular processes disrupted in melanoma as a result of genetic aberrations (mutations or 

gene copy number alterations). See Figure 1 and 2 for details regarding the type and 

frequency of genetic aberrations. Red lines indicate inhibition, blue and blank indicate 

activation.
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Figure 4. 
Simplified diagram on the regulation of the RAS superfamilty of small GTPases and the role 

of NF1. RAS proteins become active versus inactive if bound to GTP and GDP, 

respectively. Extracellular growth factor signals (red circle) are transmitted through growth 

factor receptors (light blue) to guanine nucleotide exchange factors (GEF), which activate 

RAS (red) by exchanging GDP for GTP. In contrast, GTPase activating proteins, including 

NF1, tend to keep RAS proteins in their inactive state (light blue). Please note the 

promiscuity of RAS signaling which activate several signaling pathways, including the 

MAPK as well as the PI3K-Akt pathway.
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