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Abstract

A highly versatile nanoplatform that couples mesoporous silica nanoparticles (MSN) with an 

aerosol technology to achieve direct nanoscale delivery to the respiratory tract is described. This 

novel method can deposit MSN nanoparticles throughout the entire respiratory tract, including 

nasal, tracheobronchial and pulmonary regions using a water-based aerosol. This delivery method 

was successfully tested in mice by inhalation. The MSN nanoparticles used have the potential for 

carrying and delivering therapeutic agents to highly specific target sites of the respiratory tract. 

The approach provides a critical foundation for developing therapeutic treatment protocols for a 

wide range of diseases where aerosol delivery to the respiratory system would be desirable.
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Introduction

Multifunctional engineered silica nanocarriers can effectively transport a wide range of 

specific therapeutic agents to control delivery, timing, and precision of compounds to 

biological target sites1–7. However, their use via inhalation is currently limited by a general 

lack of technological development to deliver aerosolized nanoparticles that are inhalable and 

controllable for optimal delivery to selective sites throughout the respiratory tract. The need 

for efficiently designed nanocarrier systems is crucial to appropriately target a therapeutic 

compound and protect it so it could be released upon reaching the desired site8–11. This is 

especially true in the lung due to a complex airway geometry, variations in breathing 

patterns, specific cells at target sites and factors that affect particle deposition, including 

size, shape, charge and density.

Mesoporous silica nanoparticles (MSN) are inorganic-based nanocarriers developed for 

hydrophobic and hydrophilic drug molecules, as well as other therapeutic elements for 

controlled on-demand delivery in biological systems. MSN drug-carrier technology has 

advanced to the pre-clinical phase and shows significant potential for treating diseases by 

limiting side effects and controlling drug release12–15. To date, MSN delivery applications 

primarily use intravenous injection (IV). While IV is a well-established therapy for 

nanocarrier drug delivery, inhalation represents a highly desirable route of delivery to 

specifically target the respiratory system. Respiratory diseases also currently rank among the 

top ten causes of death globally16. Current research in MSN therapeutics has demonstrated 

that inhalation is a possible route of delivery, specifically for lung cancer17, as well as for 

novel applications for the treatment of tuberculosis13. Efficient and sustained delivery of 

therapeutic compounds carried and retained in the lungs for controlled release also 

represents a new approach for treatment.

The purpose of this study was to generate a functional aerosol containing unaggregated 

forms of MSN with the potential to be equipped with a broad-range of disease-targeting 

components15. The specific goals of the study were creation of suitable aerosolization 

conditions, verification of limited-to-no toxicity, while demonstrating MSN integrity to 

widely deliver nano bio-functional components to highly diverse regions of the respiratory 

tract. To optimize drug delivery and deposition in all areas of the respiratory tract, MSN was 

suspended in nanopure water and aerosolized in droplets in the respirable size range (0.1 to 

3.0 µm). A mouse-model was used to test the inhalability of MSN. The effectiveness of the 

design was evaluated on the basis of deposition in pulmonary tissues, as well as cells 

collected from the entire respiratory tract and imaged with fluorescent and electron 

microscopy. Toxicity at each level of the respiratory tract was evaluated to assess acute 

toxicity of the combined nano-aerosol delivery biotechnology. To our knowledge, this 

represents the first comprehensive safety profile of aerosolized MSN in an in vivo inhalation 

model.
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Methods

MSN Synthesis

The synthesis of 50 nm mesoporous silica nanoparticles was based on a previously 

published method15. Briefly, 250 mg cetyltrimethylammonium bromide (CTAB) and 220 

mg Pluronic F127 was mixed with 120 mL of H2O, to which 875 µL of 2M NaOH aqueous 

solution was added. The solution was kept at 80 °C before 1.2 mL of tetraethyl orthosilicate 

(TEOS). This was followed by an addition of 300 µL of trihydroxysiylpropyl 

methylphosphonate after 30 min. The resulting suspension was then stirred for 2 hr and the 

particles were collected by centrifugation. The particles were then resuspended in a solution 

of 60 mL methanol with 60 mL of H2O and mixed with 0.8 g of NH4NO3. After stirring for 

30 min at 60°C, the particles were centrifuged and washed with methanol.

Polymer Coating and Fluorescent Labeling

To perform polymer coating, 100 mg of particles were suspended in 10 mL of 2.5 mg/mL 

polyethyleneimine (PEI) ethanolic solution and the solution was stirred at room temperature 

for 30 min. The particles were collected by centrifugation and washed with ethanol. 20 mL 

of anhydrous dimethylformamide (DMF) was used to resuspend the PEI-treated particles, 

and 1 mg of fluorescein isothiocyanate (FITC) N-hydroxysuccinimide (NHS) ester was 

added into the solution. 12 hr later, 500 mg of activated m-polyethylene glycol (PEG) was 

added and the solution was stirred for another 12 hr. The resultant particles were centrifuged 

and washed with DMF, methanol and water. The final suspension of MSN for aerosolization 

and inhalation studies was in nanopure water.

Physiochemical Characterization

Images were taken using a JOEL 1200 transmission electron microscope. Nanoparticles 

were suspended into a 50 µg/mL methanol suspension. Approximately 20 µL of the solution 

was then used for sample preparation. Dynamic light scattering was performed on a 

ZetaSizer Nano (Malvern Instruments Ltd., Worcestershire, UK) using a 40 ug/mL aqueous 

suspension to determine the particle size.

MSN Aerosol Generation

A nanopure water droplet aerosol containing MSN nano-particles was delivered 

simultaneously to individual mice during 5 hours using a version of a multi-port exposure 

apparatus18. This aerosol was generated using a MiniHeart nebulizer19 (Westmed, Inc., 

Tuscon, AZ) operated at 39 psig with filtered compressed air. The nebulizer was placed in 

an ice-water bath at 0 °C to minimize evaporation. The output concentration of liquid 

aerosol was about 106 µL per minute (with only 1 or 2 µL per minute of water vapor with 

the nebulizer in an ice-water bath). The optimal concentration of the MSN nano-particles in 

the nebulizer to minimize foaming of the aerosol was found to be 4 mg/mL (4 µg/µL), and 

the nebulizer output of MSN was 424 µg/min in 2 L/min of air. Since there was no diluting 

air, the aerosol MSN concentration was 424 µg/min divided by 2 L/min of air at 212 µg/L. 

When entering the exposure chamber at ambient temperature of about 25 °C, the water 

droplet aerosol had a mass median aerodynamic diameter of about 1.8 µm.
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The mass of aerosolized particles deposited in the lungs of a mouse was estimated by 

multiplying the amount inhaled by the deposition fraction for the selected region of the 

respiratory tract20.

The droplet deposition in the mouse respiratory tract in this study can be calculated by: Dose 

deposited = fctv, where:

f = fraction deposited in respiratory tract region (function of particle size) given for the 

mouse pulmonary region as 0.08 for 1.8 µm diameter water droplets20.

c = aerosol MSN concentration (micrograms per liter of air): 212 µg/L.

t = time of aerosol treatment (minutes): 300 minutes.

v = inhaled minute volume of air for mice (0.03 L for a 35 g mouse)

The calculated total MSN deposition in mice was approximately 140 µg in the gas exchange 

pulmonary region of the lung, approximately 120 µg in the tracheal and bronchial regions, 

and approximately 720 µg in the head. About 40% of the inhaled aerosol was exhaled20.

Aerosol Sampling

MSN size distribution during mouse inhalation exposure was measured using a cascade 

impactor (CI) connected to the nose-only exposure chamber. The CI was used as an aerosol 

sampling device containing 8 stages that measured aerosol sizes (mass median aerodynamic 

diameter) ranging from 0 – 4.66 µm. Three sets of CI samples were collected during the 

mice inhalation exposure process. Each CI filter sample was taken at 1 L/min flow-rate for a 

30 minute duration. The mass of MSN collected on the filters from the CI was used 

determine MSN water droplet aerosol size distributions. Each filter (25 mm Pallflex) (VWR, 

Westchester, PA) was pre and post-weighed to determine the mass of aerosolized materials 

collected on the filter. Filters were analyzed using scanning electron microscopy (SEM) 

(FEI/Philips XL30 SFEG) to determine surface morphology. Composition was analyzed 

with an EDAX x-ray detector for energy-dispersive x-ray spectroscopy (EDS). Point-to-

plane electrostatic precipitator samples were collected to study aerosol morphology using 

transmission electron microscopy (TEM).

Animals

Thirty-two 8-week old male CD-1 mice (33–40 g) (Harlan, Livermore, CA) free of 

respiratory disease were used throughout this study. The mice were assigned by random 

selection into 4 groups of equal size, consisting of two treatment groups (filtered and MSN-

exposed) and two time-points (1 and 7 days post-exposure) (n = 8/group). Animals were 

handled in accordance with the U.S. Animal Welfare Acts as set forth in the National 

Institutes of Health guidelines, and the study was reviewed and approved by the UC Davis 

Institutional Animal Care and Use Committee. Mice were housed in plastic cages with TEK-

Chip pelleted bedding. Water and feed (LabDiet 5001 rodent diet, Labdiet, Brentwood, MO) 

were accessible ad libitum except during the exposure period.
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MSN Treatment in Mice

Mice (n=8) per time-point (1 and 7 days) were exposed in the nose-only exposure system for 

5 hours continuously. The exposed animals were treated with aerosolized MSN in nanopure 

water droplets. The control animals (n=8) per time-point, were also housed in nose-only 

exposure housing and received filtered air only. Animals were examined 1 day or 7 days 

post-exposure. The necropsy times were selected to measure acute responses to approximate 

the immediate and 1 week post effects of receiving the aerosolized version of the MSN 

nano-carrier.

Collection of Bronchoalveolar Lavage

One and 7 days after exposure to aerosolized MSN or filtered air, mice were euthanized by 

intraperitoneal injection of pentobarbital (120 mg/kg body weight). The trachea was 

cannulated, and the lungs were lavaged with Ca2+/Mg2+-free phosphate-buffered saline 

(PBS; pH 7.4). Three in-and-out (1 mL amounts) lavages were performed using the same 

aliquot to maximize recovery of cells. Bronchoalveolar lavage fluid (BALF) was centrifuged 

at 2000 rpm for 10 min at 4°C. The cell pellet was resuspended in 1.0 mL 0.9% saline and 

100 µL was used to determine total cell count and viability. Cell viability was measured by 

exclusion of trypan blue, an indicator of irreversible loss of plasma membrane integrity.

Preparation of Bronchoalveolar Lavage Fluid (BALF) for Confocal Imaging

The BALF was centrifuged using a Shandon Cytospin (Thermo Shandon, Inc., Pittsburgh, 

PA) to form a cell pellet, then subsequently resuspended in PBS to prepare cytospin slides. 

BALF cytospin slides were stained with DAPI (Molecular Probes, Eugene OR), a blue 

nuclear counterstain used for multicolor fluorescent techniques and coverslipped with 

AquaPoly/Mount (Polysciences, Inc., Warrington, PA), a water-soluble non-fluorescing 

mounting medium that retains and enhances fluorescent stains. BALF cytospin slides were 

analyzed for MSN uptake with confocal microscopy (Zeiss LSM 710, Jena, Germany, Plan 

Apochromat 20×/0.8 NA objective).

Preparation of BALF for Cell Differential Analysis

BALF cytospin slides were stained with Dippkwik (American Mastertech Scientific, Lodi, 

CA) and were quantitatively analyzed for cell type. Macrophages, neutrophils, eosinophils, 

and lymophocytes were counted using light microscopy (500 cells per sample).

Preparation of BALF for TEM Imaging

BALF cell pellet was resuspended in 2% agarose was fixed in ¼ strength Karnovsky’s 

fixative for TEM imaging. Alveolar macrophages were prefixed with 2.5% glutaraldehyde 

and postfixed in 1% osmium tetroxide. Specimens were embedded in Epon 812 after 

dehydration, and the ultrathin sections were stained with uranyl acetate and lead citrate for 

examination by transmission electron microscopy (TEM).

Lung Tissues Sections

The left lung was inflation-fixed with 4% paraformaldehyde at 30 cm of water pressure for 1 

hr. The lung was sliced into pieces and placed into cassettes. The lung pieces were then 
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dehydrated in a series of graded ethanol and embedded in paraffin. Paraffin-embedded lung 

tissue was cut into 5 µm thick sections.

Confocal Imaging in Lung Tissue

Lung tissue sections were mounted on slides using aquapolymount and a #1.5 coverslip. The 

presence of MSN particles in tissues was detected by confocal microscopy (Zeiss LSM 710, 

Jena, Germany, Plan Apochromat 20×/0.8 NA objective) using appropriate excitation 

(488nm laser) and a spectral emission range (500–600nm). To differentiate between the 

520nm peak of the FITC probe and the tissue autofluorescence, linear unmixing was 

performed by collecting spectral data from 500nm to 600nm in 9nm steps. The characteristic 

curve of the FITC fluorophore can easily be separated from the broader emission curve of 

the autofluorescence using linear unmixing21, which applies a linear algebra routine to every 

pixel in the image and assigns the percentage of each component to a separate channel. 

Thus, the autofluorescence can be “subtracted” out of the FITC signal.

Histopathology in Lung Tissue

Lung tissue sections were stained with hematoxylin and eosin (H&E) and coverslipped with 

Clearmount. Airways and lung parenchyma were examined for the presence of cellular 

changes and inflammation with light microscopy. Lung tissue sections were stained with 

alcian blue and period acid Schiff (AB-PAS) (American Mastertech, Lodi, CA), and 

analyzed for the presence of mucin proliferation with light microscopy as a possible 

indication of airway epithelial cell irritation and mucosubstance production.

Nose Tissue Sections for Histopathology

The nasal cavity was fixed in 4% paraformaldehyde, decalcified, and embedded in paraffin. 

Nasal tissue sections were stained with ABPAS and analyzed for mucin production.

Cell Differentials to Assess Possible Toxicity

Three hundred cells from prepared cytospin slides for each animal were counted and 

categorized as macrophage, neutrophil, lymphocyte or eosinophil using light microscopy 

and a cell counter.

Statistical Analysis

All numerical data were calculated as the mean and standard deviation. Analysis of variance 

was performed between treatment and control groups. Comparisons were considered 

significant if a value of p < 0.05. Statistical analysis was performed with JMP (SAS 

Institute, Inc., Cary, NC).

Results

MSN platform design and characterization

To make feasible delivery of a broad-based MSN complex over a wide range of target sites 

within the respiratory tract without compromising safety features or changing other 

structures in a nano-platform, a unique formulation of MSN was chosen that consisted of the 

Li et al. Page 6

Nanomedicine. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



following: 50 nm silica cores with 2 nm mesopores and PEI-PEG copolymer coatings to 

ensure their aqueous stability and dispersibility. The hydrodynamic size of these 

nanoparticles was approximately 70 nm, which is believed optimal for a variety of 

biomedical applications. The nanoparticles were functionalized with a fluorescence tag, 

fluorescein isothiocyanate (FITC) N-hydroxysuccinimide (NHS), for ready detection 

following deposition in the respiratory tract.

MSN aerosol generation

Because the fraction of inhaled aerosol deposited in each region of the mouse respiratory 

tract is a function of nanopure water aerosol droplet size distribution, a 1.8 µm mass median 

aerodynamic diameter aerosol size distribution was chosen to optimize lung deposition 

fractions to insure detectable amounts at various levels of the respiratory tract20. The total 

amount deposited in each region of the respiratory tract was calculated as a function of 

deposition fraction, concentration, exposure duration, and inhaled minute volume of air. 

Given an 8% pulmonary deposition fraction for a 1.8 µm mass median aerodynamic 

diameter (MMAD) droplet aerosol, factors of concentration and exposure duration were 

optimized in order to create enough capacity for a delivery system. The total volumetric rate 

of aerosol provided an air-flow-rate suitable for mouse respiration. The inhalation process 

involved a 2 L/min flowrate with a 4 mg/mL input MSN suspension concentration for 5 

hours for the mouse study. An input concentration administered to mice that inspire about 

30L/min for a total duration of 5 hours at an 8% deposition fraction yielded about an 

average 140 µg of MSN in the pulmonary region of each mouse.

Applying this strategy with an optimal concentration of 4 mg/mL of MSN in suspension to 

minimize foaming due to PEI-PEG copolymer coating of MSN, resulted in MSN aerosol 

droplets with a wide size distribution (Figure 1). These droplets were in respirable range, 

and inhaled MSN congregates were found present in the gas-exchange region at both 1 and 7 

days postexposure.

In-vivo evidence that intact MSN aerosol reaches respiratory regions important for disease 
targeting

To determine whether aerosolized MSN reached and were retained in the respiratory tract, 

necropsies of mice 1 and 7 days were performed after receiving nose-only delivery of 

aerosolized MSN via the procedure as described above. Bronchoalveolar lavage fluid 

(BALF) cells were composed of more than 98% alveolar macrophages, many of which 

contained MSN at both 1 and 7 days post-inhalation (Figure 2) within alveolar macrophages. 

Using TEM imaging of BAL cytospin pellets, alveolar macrophages were confirmed to 

contain MSN fluorescentpositive inclusions at 1 day and 7 days (Figure 3). Intact MSN were 

found compartmentalized in phago-lysozomes at 1 day (Figure 3a, b) and 7 days (Figure 3c, 

d).

These results suggest that nanopure aerosol water droplet delivery of MSN effectively 

reaches the bronchial tree and gas exchange regions of the respiratory tract. Such regions are 

important targets for disease applications that require airway and alveolar lung penetration 

to achieve target site delivery, as well as systemic delivery via a very large surface area for 
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uptake and translocation to the underlying capillary bed. Such applications can be 

advantageous by bypassing gastrointestinal tract adsorption and/or liver metabolism.

Alveolar macrophage uptake of MSNs may also represent a critical step to target respiratory 

inflammatory diseases via macrophage-directed nanoparticle delivery system pathways. 

Phagolysozomes, an essential organelle of the macrophage, are ideal sub-cellular targets for 

MSN facilitated drug delivery. Chemical stimuli, such as pH, activate the mechanized 

controlled release systems utilized in MSN delivery systems. It has been shown that acidic 

phagolysozomes can protonate and activate accessible MSN surface groups. This “proton 

sponge effect” allows particles to escape endosomes and enables membrane impermeable 

payloads, such as nucleic acids and hydrophilic drugs, to be released from the membrane-

bound compartments and travel to their effective sites1. Thus, aerosol droplet MSN delivery 

into phago-lysozomes without damage to MSN structures is consistent with this bypass of 

the endosome and suggests that MSN controlled-release drug delivery mechanisms can be 

directly applied to diseases affecting the respiratory system via inhalation.

In-vivo evidence that acute inhalation of MSN aerosol droplets is safe

Possible toxicity of MSN was evaluated using tissue sections and collected cell samples 

from control and exposed mice 1 and 7 days post-exposure. No changes in the anatomy or 

epithelial cell composition were noted for the nasal cavity, bronchial airways or alveolar 

lung parenchyma following in mice exposed to MSN compared to control mice exposed to 

filtered air.

Histopathological analysis of lung tissues demonstrated normal centriacinar regions devoid 

of inflammatory cells in either sham control or MSN-exposed groups 1 and 7 days post 

exposure (Figure 4), although it should be noted these images were taken after lung lavage 

had been performed.

In-vivo cytotoxicity assessment was also performed. A quantitative assay was used to assess 

airway inflammation. Differential cell counts (macrophages, neutrophils, lymphocytes and 

eosinophils) were evaluated in BALF cells. BAL cells were found to be almost exclusively 

alveolar macrophages in mice exposed to MSN. The number of BAL cells recovered from 

the lungs was not significantly different in control mice or mice exposed to MSN, 

suggesting little-to-no evidence of MSN-induced inflammation or toxicity following a single 

5-hour exposure 1 or 7 days following post-exposure (Figure 5). Macrophages were the 

predominant (>98%) cell type recovered by BAL. The lack of neutrophils, eosinophils, and 

lymphocytes in BAL are consistent with the absence of an acute inflammatory response to 

MSN exposure. Of interest, by 7 days post-exposure, all mice (n=8) which had been exposed 

to MSN continued to demonstrate a high frequency of fluorescently-tagged MSN inclusions 

in alveolar macrophages recovered by BAL (Figure 6).

Discussion

We demonstrate in this study that PEI-PEG coated 50 nm MSN and suspended in nanopure 

water can be effectively aerosolized in a standard medical nebulizer. Aerosolization does not 

disrupt the mesoporous structure, which suggests that this method is an appropriate way to 
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administer MSN without damaging its unique nanoscale features. Moreover, MSN 

compatibility in a standard medical nebulizer indicates that this particular form of MSN 

administration may be easily applied to clinical settings. Surface coating is an important 

physiochemical parameter that determines the fate, biological effects, and toxicology of 

nanoparticles. PEI-PEG coated MSN behaved as single particles in nanopure water prior to 

nebulization due to the coating’s electrostatic repulsion and suggests that MSN remained 

suspended as single particles in the nanopure water droplets during aerosol generation. 

However, water evaporated for imaging purposes results in MSN agglomeration and thus, 

the TEM image of aerosolized MSN only provides information on the number of MSN 

particles suspended in each droplet.

The purpose of this study was to generate a functional aerosol form of MSN with the 

potential to be equipped with a broad-range of disease targeting components. Using MSN 

with appropriate aerosol generating conditions, we accomplished non-toxic delivery of these 

unaggregated structures to all regions of the respiratory tract. In addition, the MSN were 

stable and present one-week post inhalation. These findings create an excellent collective 

framework to expand MSN platforms to a wide range of respiratory therapeutics and a more 

efficient and reliable delivery for existing therapies with current state-of-the art MSN-based 

inhalation nanobiotechnology.

To ensure the optimal MSN inhalation delivery, a complete inhalation procedure was 

designed that includes calculations of MSN input liquid concentration, nebulized MSN 

output aerosol droplet concentration, aerosol droplet size distribution, mouse inspiration 

rate, mouse lung volume, aerosol flow-rate, respiratory tract deposition efficiency, 

temperature manipulations, sample timing and exposure duration. Moreover, the mass of 

aerosolized particles deposited in the mouse lung was estimated by multiplying the total 

amount inhaled by the deposition fraction for the selected region of the respiratory tract20. 

The five hour exposure duration provided sufficient time to collect aerosol mass and size 

distribution data to evaluate the delivery effectiveness, stability, and structural integrity of 

the nano-aerosol technology for applications in a biological system. This protocol provides a 

long-lasting delivery capability to further expand the in-vivo MSN delivery strategies for 

therapeutic pulmonary disease treatment.

MSN have been demonstrated to be stable in aqueous solution and suitable for IV 

injection15. However, traditional aerosolization processes have not produced appropriate 

MSN aerosols because the PEI-PEG copolymer coating disrupts the aerosolization process 

by foaming the input solution and rendering it unable to further generate aerosols. We 

overcame this problem by optimizing the concentration of coated MSN in suspension using 

the methods described in the Experimental Section (Polymer Coating and Fluorescent 

Labeling and MSN Aerosol Generation). Since the fraction of inhaled aerosol droplet 

deposited in each region of the mouse respiratory tract is a function of aerosol particle size 

distribution20, the utilized set of MSN aerosol droplets caused them to reach different depths 

and sites of the pulmonary tract. Hence, the potential exists for delivery targeting for a wide 

range of pulmonary diseases.
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Mice are compulsive nose breathers having very shallow inhalation volumes per breath and 

numerous breaths per minute since oxygen diffusion is a major factor in their lung 

ventilation. Deposition of aerosol droplets in the deep lung in mice is less than 10% for 1 

micrometer water droplets and close to zero for droplets larger than 3 micrometer20.

In sharp contrast, people can be treated trans-orally with a tidal volume of 750 mL at 15 

breaths per minute with larger droplets up to 10 micrometer containing much larger numbers 

of nanoparticles and depositing up to 50% of droplets in the pulmonary alveolar region of 

the lungs. Therefore, the 300-minute aerosol nasal treatment with mice in this study can be 

equated to a 3-minute trans-oral treatment in humans.

Our analyses indicate that delivery of MSN carriers to the respiratory system via inhalation 

does not result in acute toxicity. The cellular internalization of MSN after inhalation 

suggests that the aerosol droplet form of MSN carriers can be directed to both the lung tissue 

and lung macrophages. Macrophages have been used as suitable vehicles to carry 

nanoparticles and drugs to target inflammatory diseases13, 22–25. Aerosolized MSN 

compatibility with pulmonary macrophages expands the utility of such a system for 

treatment of diseases caused by intracellular pathogens in the lung. The MSN in this study 

concentrated in macrophage phagolysozome compartments, which was expected. Some 

studies demonstrated that MSNs derivatized with pH-responsive nanovalves release their 

cargo molecules in acidic lysosomal environments3. Targeting alveolar macrophages is a 

critical cell type that takes up MSN following short-term inhalation.

Both qualitative and quantitative toxicity analyses provided evidence that short-term MSN 

inhalation treatment did not cause acute pulmonary inflammation. Other studies show that 

solgel synthesized MSN is safe, and the addition of polymer coatings further screens surface 

silanols from interacting with cell membranes, preventing membranolysis26. The lack of 

acute toxicity in this coated MSN aerosol model is agreement with in vivo studies that 

demonstrate polymer coated MSN delivered through other routes of exposure produce no 

toxicity. This suggests that the MSN aerosol based delivery technology may be a promising 

form of inhalation nanobiotechnology compatible with the entire respiratory tract for 

therapeutic purposes. Delivering nano-carriers to the alveolar airspaces can provide a route 

to target the deep lung and numerous alveolar macrophages. An inhalable nano-carrier that 

can reach alveolar macrophages can facilitate drug delivery for a wide variety of 

inflammatory and infectious diseases of the lung. Delivering nano-carriers to the nasal 

cavity may also provide direct nose to brain transport via the olfactory nerve, which could 

facilitate drug delivery for diseases affecting the central nervous system. Therefore, the 

developed inhalation-based delivery system that delivers an aerosol carrier with a 

multifunctional MSN platform to the entire respiratory tract is beneficial.

Our results indicate that aerosol droplet delivery of MSN effectively reaches the bronchial 

tree and gas exchange regions of the respiratory tract. These regions are important targets for 

disease applications that require airway and alveolar lung penetration to achieve target site 

delivery, as well as systemic delivery via a very large surface area for uptake and 

translocation to the underlying capillary bed. These applications have the advantage of 

bypassing gastrointestinal tract adsorption and/or liver metabolism.
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In conclusion, a novel nanocarrier aerosol droplet delivery strategy was developed and 

implemented. We used a MSN inhalation platform without modification of nanocarrier 

architecture. Our work provides the first demonstration of an aerosol delivery method that 

maintains the structural integrity of MSNs following aerosolization. The capacity to broadly 

apply drug-carrier inhalation nanotechnology to the various regions of the respiratory tract 

from the nasal passages to the airways and alveoli may potentially be of great benefit to 

treating a broad range of diseases including allergies, lower respiratory infections, and 

chronic obstructive pulmonary disease27, 28. Our work provides the basis for further human 

study of the appropriate MSN aerosol dosage, stability, structural integrity, pressure, and 

timing for respiratory therapy.
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Figure 1. 
Functionalized mesoporous silica nanoparticles (MSN) aerosol generation for inhalation. (a) 

Pre-aerosolized MSN by transmission electron microscopy (TEM) demonstrating single 

MSN that had been suspended in aqueous solution (scale bar: 0.2 µm). (b) TEM image of 

dried aerosol droplets of different sizes containing different quantities of nanoparticles due 

to water droplets of variable size following nebulization (scale bar: 0.2 µm). (c) A wide 

range of MSN aerosol droplet size distribution was observed to enhance particle deposition 

throughout the entire respiratory tract as measured by gravimetrics.
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Figure 2. 
Confocal imaging of fluorescently labeled MSN (yellow) in alveolar macrophages recovered 

from bronchoalveolar lavage fluid (BALF) at 1 (a) and 7 (b) days post-inhalation (scale bar: 

10 µm). Cell nuclei are stained blue. (c) MSN present in an alveolar macrophage found in an 

alveolar airspace in the gas exchange region of the lungs (scale bar: 0.5 µm). Arrow points 

to fluorescent MSN inclusion in an alveolar macrophage. Mice: n=8 / time-point.
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Figure 3. 
Transmission electron micrographs of MSN internalization in alveolar macrophages 

recovered from lungs at 1 day (a,b) and 7 days (c,d) post-inhalation. The arrows point to the 

position of the MSN complexes within phagolysosomes of the cell (scale bar: 2 µm: a,c) 

(scale bar: 0.5 µm, b,d). Mice: n=8 / time-point.
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Figure 4. 
Bright-field microscope images of the bronchiole-alveolar duct (centriacinar) regions of the 

lung at 1 day (a, b) and 7 days (c, d) post-inhalation for sham control animals (a, c) and 

MSN-exposed mice (b, d). All groups demonstrate normal histology of the lungs and the 

absence of inflammatory cells within the bronchial, centriacinar or more distal alveolar 

regions of the lungs. However, it should be noted these images were taken after BAL had 

been performed. Scale bar: 100 µm. Control mice: n=8 / time-point; MSN mice: n=8 / time-

point.
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Figure 5. 
Total cell number recovered by BAL from the lungs (#/ml). Greater than 98% of the cells 

recovered by BAL were alveolar macrophages. There was no significant difference in total 

cell numbers between control (open bars) and MSN-exposed mice (closed bars). Numerous 

macrophages were found to contain fluorescent-labelled MSN at both 1 and 7 days 

following inhalation. No obvious injury was observed with all BAL samples having greater 

than 95% cell viability in both control and MSN-exposed mice. Control mice: n=8 / time-

point; MSN mice: n=8 / time-point.
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Figure 6. 
Low magnification light micrograph of cells recovered by bronchoalveolar lavage 7 days 

post-inhalation. Virtually all cells contain to some degree fluorescently-tagged MSN (scale 

bar: 20 µm). MSN mice: n=8 / time-point.
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