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ABSTRACT The problem of the fluctuations of the num-
ber n of particles adsorbed on surfaces through a random
sequential adsorption process isdied. Attention is paid, in
particular, to the effect of the size of the adsorbing surfaces
upon the variance a2(n) of this number. On the basis of
computer simulations, it is shown that o2(n) is not proportional
to the area a of the surface but can be written as a sum of three
contributions, which are proportional to a, al/2, and a0. A
theoretical estimate based on the relation between the radial
distribution function g(r) and the fluctuation is presented and
provides a basis for these findin. This analysis is of general
validity and can, in particular, also be applied to the equilib-
rium case (in the absence of a phase transition) and to the
ballistic deposition process.

Many adsorption (or adhesion) processes of large molecules
(or particles) on solid surfaces are irreversible in the sense
that, once adsorbed, the molecules neither diffuse on nor
desorb from the surface. Moreover, surface exclusion effects
play an important role during the adsorption mechanism. The
analysis of such irreversible processes has been widely
investigated from a theoretical point of view during the last
years, and different models have been proposed to describe
them. Among them, the most popular are the random se-
quential adsorption (RSA) model (1) and the ballistic model
(2). Attention has been focused mainly on the prediction of
the adsorption kinetics (3, 4) and on the behavior of the
systems at or near the "jamming limit" (5-8).
On the other hand, only a few experimental studies have

been performed to investigate the range of validity of these
models (9-13). Adsorption kinetics were analyzed in the case
of protein solutions (9, 11), and the radial distribution func-
tions were determined in the case of particle adhesion. The
later systems were studied by means of optical microscopy
(12, 13). The most recent experiments have shown that not
only does the radial distribution function contain information
about the adsorption mechanism but so does the fluctuation
of the number of particles in an assembly of small systems,
each corresponding to a portion of a larger surface upon
which particles were adsorbed (13). Understanding these
fluctuations is thus of great importance to the interpretation
of the experiments. Moreover, fluctuations also play an
important role in equilibrium statistical mechanics and are
thus of considerable interest to delineate the-common fea-
tures of both situations. Finally, the systems corresponding
to the pictures obtained via optical microscopy for the
purpose of determining the radial distribution functions were
small, in the sense that near thejamming limit, they typically
involved 500 particles. Border effects can thus play an

important role in the distribution function of such small
systems.

Despite the importance of the fluctuations, only two the-
oretical studies devoted to this problem are known to the
authors (13, 14). In their pioneering work on the RSA model,
Cohen and Reiss (14) have determined exactly the fluctuation
of the number of adsorbed dimers on lattice systems of any
size. This approach seems, however, not generalizable to
deposition processes on a plane. More recently, another
approach to this problem has been proposed in connection
with the experimental results already mentioned (13). A
master equation system was derived whose resolution al-
lowed the precise prediction of fluctuations up to a coverage
of 25% (thejamming limit coverage is of the order of 0.55 for
RSA and 0.61 for the ballistic model). Unfortunately, this
scheme is not easily extended to accurate predictions over
the full coverage range.

In this article, we therefore analyze the fluctuation of the
number of particles in small systems by means of computer
simulation using the RSA model. The problem of the influ-
ence of the size of the system on the fluctuation is addressed.
In particular, analytical expressions for the variance a2(n) of
the number n of adsorbed particles are derived such that
o-2(n) can be predicted for a system of any size. We also
propose, for the RSA model, an approximate expression for
the variance of systems in which edge effects can be ne-
glected (large systems). This expression is based on the
connection between the fluctuation and the radial distribution
function g(r), a connection used recently for large one-
dimensional systems for the RSA case (15).

Simulation Procedure

The simulation model is the usual RSA model describing the
deposition of particles on a collector (generally a flat surface
or a straight line) (1). This deposition occurs at a randomly
selected position subject only to the restriction that the
deposited particle does not overlap a previously adsorbed
one. If overlapping occurs, the particle is rejected and the
deposit of a new one is attempted. Once adsorbed, an object
is assumed to be permanently fixed in place. Periodic bound-
ary conditions are applied at the edges ofthe collector. In the
particular case of the square collectors studied here, each
deposited particle is replicated in the eight neighboring
squares. In this way one simulates an infinitely large area,
and edge effects are substantially reduced. At the jamming
limit-i.e., when no further particle can be added to the
surface-the coverage @(oo) is on the average equal to 0.547
for disks (1). It is also well known that large samples of
surfaces are necessary to obtain an accurate estimate of this
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limiting coverage, since K(o) varies from one small surface to
another.

Large square surfaces were filled with disks up to a
coverage of about 0.5. Coverages ranging from 0.5 to 0(oo)
were not investigated due to prohibitive computer time. The
center of a disk coincides with the node ofa fine-mesh square
grid whose periodicity is arbitrarily taken as the unit of
length. Throughout this article, all distances are expressed in
this arbitrary unit. The large surfaces of area A were subdi-
vided virtually into v smaller square subsystems of area
a=A/v. At the border of the subsystems no periodic bound-
ary conditions apply. A particle in the vicinity of the border
of a subsystem has thus the same environment as all the other
particles of the large system (Fig. 1). During the filling
procedure, the number ni of disk centers located in the ith
subsystem was determined as a function of the average
coverage 0. The variance or2(n), which is a priori a function
of A, v, and 0, is then defined by

r.2(nl)=_z - (- ).a'(=V i=l
i

vi=l
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Simulation Results

A first set of results was obtained on the basis of square
surfaces of sideA 1/2 = 1024, 2048, 4096, 8192, 16,384,32,768,
and 65,536 covered by disks of radii R = 50, and subdivided
into v = 64 small subsystems each. Samples of 1000 and 500
surfaces were accumulated for A 1/2 < 16,384 and for A"2 =
32,768 and 65,536, respectively.
For a very low coverage (i.e., for a very small number N

of particles deposited on a surface of area A), the probability
of finding n disks on one of the v subsystems essentially
follows a binomial law. The corresponding variance ao(n) is
given by

AO v-1 a0 v- 1
O'(n) = ~ =- , ([2]virR2 v TRv2v

where the subscript "b" refers to binomial. The variances
derived from the simulations were therefore multiplied by
virR2/(v - 1)a, leading to reduced variances, denotedy in the
following:

VxrR2
Y= (V 1)

ar2(n). [3]
=(v-1l)a

The reduced variances obtained in this way are shown in Fig.
2 for different values of the area a of the subsystem. It is
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FIG. 1. Schematic representation of a large system, including a
small subsystem (not drawn to scale), covered with disks or spheres.
Periodic boundary conditions apply at the perimeter of the large
system; in contrast, the subsystem is not surrounded by walls.

FIG. 2. Reduced variance y as a function of the coverage 0. Each
curve corresponds to a large square surface ofareaA subdivided into
v = 64 small square surfaces. From top to bottom: A 1/2 = 1024, 2048,
4096, 8192, 16,384, 32,768, and 65,536. The solid lines represent their
fit by y = yo + y' (a/irR2)-1/2 + y2(a/7rR2)'1, where yo, Y1, and Y2
are the polynomials drawn in Fig. 4 and given by Eqs. 14, 18, and 19.

clearly apparent that y does indeed behave as 0 as the
coverage tends to 0, confirming the prediction of a binomial
law at low coverage. More interesting is the variation of y
with the surface area a of the subsystems (or, in this case,
with the area A of the large system). This variation proves
that o-2(n) is not proportional to the area a (or A) as might be
expected at first thought. Indeed, if this were the case, the
curves corresponding to the seven values of a (or A) would
merge into a single curve. Furthermore, it should be indicated
that y does not vanish as 0 approaches the jamming limit,
0(X0). This stems from the fact that the v subsystems do not
all saturate at the same coverage. 0(X0) is the average of the
individual jamming coverages and is not a common limit for
all subsystems.
To verify whether it is the large system or the subsystem

that is responsible for the dependence ofvariance on size, the
simulations were repeated for A1/2 = 2048, 4096, 8192,
16,384, 32,768, and 65,536 and v = 256. These results were
compared to the preceding simulations. For example, the
normalized variance y corresponding to (A1/2 = 16,384, v =
256) was compared to y corresponding to (A 1/2 = 8192, v =
64). No difference in y could be detected when the size a of
the subsystem remained constant, although the areaA of the
large system was varied by a factor of 4.

Finally, the fact that subsystems derived from the same
large system could have a common border might be respon-
sible for the observed size dependence. To show that this was
not the case, the variance corresponding to the preceding
simulations was redetermined using only half of the v = 256
subsystems, the selected ones being located on the large
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FIG. 3. Reduced variance y as a function of(a/ R2)-1/2; the large
surfaces of area A, covered by disks of radius R, are subdivided into
64 subsystems of area a. Each curve corresponds to a fixed value of
the coverage 9 selected among the 66 values recorded between 7.49
x 10-3 up to 0.4943: 8 0.0749 (o), 0.105 (e), 0.202 (v), 0.307 (v),
0.404 (o), 0.494 (a). The solid lines are the least-squares fits of y -
yo + yi(a/arR2)-1/2 + y2(a/rR2)-l to the data.

system as the squares qf one color on a chessboard. Again,
y remained unaltered. Thu§, the size effect on the variance is
not due to the common border shared by different sub-
systems.
The variance cr2(n) is thus a function of the coverage 0 and

the size of the subsystem a (or A/vP). The same holds for the
reduced variance y. Instead of representing y as a function of
0 for various values of A or a, it is more convenient to
represent y as a function of the size of the subsystem for
selected values of Obetween zero and -0.5 (Fig. 3). The most
natural variable is the square root of the "packing fraction"
(a/wrR2)-1/2 rather than a itself, since y equals 0 and is
independent of this fraction at low coverage. As 0 increases,
however, an evident departure from 0 can be observed, and
y carries over into a quadratic function of (a/irR2)-1/2. As the
data suggest, and as we make plausible later, y can be written
as the sum of three contributions:

Y = Yo + yl(a/irR2)-1/2 + Y2(alrR2)-l [41

Extrapolation to infinitely large surfaces leads to y(a = a) =
yo. The functions yo, Yl, and Y2 of 0 (Fig. 4) can be accurately
represented by polynomials of the fifth degree fitted by a
least-squares method applied to the data of Fig. 3. However,
several fitting parameters can be estimated theoretically, as
explained in the following section.

Theoretical Considerations

FIG. 4. Variation of the parameters yo (0), Yi (v), and Y2 (o) (see
also Fig. 3) with the coverage 9, together with the respective
fifth-degree polynomial fits (Eqs. 14, 18, and 19; solid lines). The
dashed line represents the theoretical third-order approximation ofyo
(Eq. 13).

the mean density p of the particles adsorbed on the sub-
system. Following Landau and Lifchitz (16), we also have

(n2) = (p(rl)p(r2'drdr2, [5]

where "sub" refers to the subsystem. (p(rl)p(r2)) = p8(r1 -
r2) + p2g(2)(rl, r2), where g(2)(r1, r2) is the pair correlation
function (17), so that Eq. 5 combined with (n) = pa leads to

(n2) - (n)2 = pa + p2f f (gl2 (rl, r2) - 1)drldr2.

A3 A2 A3

A2 A1 A2

A3 A2 A3

[61

L

We present a theory for the dependence ofy on the size ofthe
subsystem. We denote by p(r) the density of particle centers,
in a particular subsystem at r. The notation ( ) indicates an
average taken over an ensemble of subsystems. (p(r)) is thus

FIG. 5. Schematic representation of a small square subsystem of
area a, subdivided into three types of regions: "core" (Al), "mar-
gins" (A2), and "corners" (A3); each of them has a specific contri-
bution to the observed variance of the number of particles deposited
on the subsystem.
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Assume, as it is commonly observed, that g(2)(rl, r2) tends to
1 when IJr - roI becomes of the order of a distance L (usually
a few particle diameters). One can then divide the area of
each subsystem into three domains A,, A2, and A3, as defined
in Fig. 5. The integral in Eq. 6 can then be written as a sum
of three terms:

Lub I.f~b (g(2)(rl, r2) - 1)drldr2

= JIri sub (g(2)(rl, r12) - 1)drl2

+ I srub (g2)(rl, r12) - 1)drl2
A2 su

+ drs (g(2)(rl, r12) - 1)dr12 [7]
A3 su

In the integral over Al, all the positions r, are statistically
equivalent by definition of Al. Thus this term may be ex-
pressed by

fdrnf (g(2)(rl, r12) - 1)dr12
A1 sub

= (\- - 2L)2f (g(2)(r) - 1)dr = zs(\-a - 2L)2CO(6), [8]

which defines the function CO(6). In the second and third
integrals, integrated respectively over A2 and A3, all the
positions of r, are not statistically equivalent. It is easily
verified, however, that the second integral takes the form
4(Na- - 2L)C1(6, L), where C1(6, L) is a function of 6 and L
but not ofthe size ofthe subsystem, and that the third integral
may also be expressed as a function C2(0, L) of 6 and L alone
as well. The variance takes then the general form:

(n2) - (n)2 = pa + p2(Va_- 2L)2CO(@)
+ p24(V'a - 2L)C1(6, L) + p2C2(0, L). [9]

This result provides the basis for the form of the reduced
variance y postulated previously (Eq. 4).
For the RSA case, g(2)(r) is known as a diagrammatic

expansion in the density p (18). Out to the first order in the
density, it is given by

g2(r)=1 + -pB2(r), for r-d [10]
I(2)(r) = 0, for r < d,

where B2(r) is the common area of two disks of radii d = 2R
separated by a distance r. One then gets

f (g(2k(r) - 1)2ir rdr -wd2 +- p B2(r)2ir rdr.

[11]

From ref. 3, one obtains directly

f 2 12V3 (rd2 2
J B2(r)2v rdr=

If 4 , [121

and this leads to

Yo 6a_ 462 +
24

3 + 0(64).irV3-
[13]

Fig. 4 exhibits yo both derived from simulation together with
the third-order expression, Eq. 13. Clearly, this approxima-
tion is accurate up to 6 0.38. Higher order terms could be
obtained by using the same procedure, but the values of
diagrams out to order 4 would be needed. Instead, we used
a fitting procedure to determine the higher order terms. This
leads to

yo = 6- 462 +
24

3+ 0.82399204 - 2.282790'.
lrV3- [14]

Eq. 14 is a convenient and accurate means (Fig. 4) to
represent the reduced variance in the asymptotic regime (a -3
oc).
The same kind of analysis can be performed in order to

estimate the contribution of the areas A2 to the variance. The
relevant integral is

[15]I2 = (g2"(rl, r2) 1)drldr2.
A2 sub

From elementary geometric considerations, it can be shown
that this integral takes the form

12 = 4(V'a - 2L) f { f (g(2)(r) - 1)27r rdr

+ 2f (g(2)(r) - 1)(r - arccos(-) ) rdr}dx. [16]

These integrals can be performed analytically to the lowest
order in the density p. After a tedious but straightforward
calculation one obtains

64
=3 + °(o )=i3-- 3/262+06) [17]

Additional terms can be evaluated by numerical integration of
more complicated expressions. On the other hand, using a
polynomial fitting procedure provides a good approximation
of these terms. In this way, yi may be estimated to the fifth
order by (Fig. 4):

Y1 = 3.3/2 62 - 7.135660' - 2.2236404 + 9.7588165. [18]

Finally, the best polynomial fit to Y2 leads to (Fig. 4):

Y2 = -0.77708862 + 3.7168403 - 8.4800604 + 6.0669705. [19]

It may be noted that since y must behave as Oat low coverage,
no 6 term was included in Y2. The fitting parameters were
otherwise free. Inserting the polynomials from Eqs. 14, 18,
and 19 into Eq. 4 leads to an analytical expression for y
containing both 6 and a. The solid curves in Fig. 2 demon-
strate that the accuracy of this analytical expression of y is
remarkable and thus attests the accuracy of the hypothesis
that, for a given coverage, y can be approximated by a
polynomial of second degree in (a/irR2)-1/2.

Finally, it can also be pointed out that the first terms in yo
and Yi are equivalent for all the deposition processes of hard
spheres on surfaces and also for equilibrium systems in the
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absence of a phase transition. It thus constitutes a general
result that goes far beyond the RSA case.

Conclusions

We have examined the problem of the fluctuation of the
number of particles on a small subsystem of a large system
generated through an RSA algorithm. Both computer simu-
lation and theoretical estimate indicate that the variance of
the number of particles adsorbed on a subsystem is the sum
of three contributions: one proportional to the size a of the
subsystem, another proportional to al/2, and still another that
is constant. This result appears to be applicable not only to
the RSA case but for most two-dimensional systems. Con-
tributions to these different terms were estimated, by means
of theory, for the RSA case. The theory is well defined and
is confirmed by simulation. However, it is questionable under
the conditions of phase transition. Expressions obtained by
fitting empirical functions to the simulation results are also
given so that for the RSA case, the variance for any system
can be predicted.
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