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Abstract

Motivation: The 14-3-3 family of phosphoprotein-binding proteins regulates many cellular proc-

esses by docking onto pairs of phosphorylated Ser and Thr residues in a constellation of intracellu-

lar targets. Therefore, there is a pressing need to develop new prediction methods that use an

updated set of 14-3-3-binding motifs for the identification of new 14-3-3 targets and to prioritize the

downstream analysis of >2000 potential interactors identified in high-throughput experiments.

Results: Here, a comprehensive set of 14-3-3-binding targets from the literature was used to

develop 14-3-3-binding phosphosite predictors. Position-specific scoring matrix, support vector

machines (SVM) and artificial neural network (ANN) classification methods were trained to discrim-

inate experimentally determined 14-3-3-binding motifs from non-binding phosphopeptides.

ANN, position-specific scoring matrix and SVM methods showed best performance for a motif

window spanning from �6 to þ4 around the binding phosphosite, achieving Matthews correlation

coefficient of up to 0.60. Blind prediction showed that all three methods outperform two popular

14-3-3-binding site predictors, Scansite and ELM. The new methods were used for prediction of

14-3-3-binding phosphosites in the human proteome. Experimental analysis of high-scoring predic-

tions in the FAM122A and FAM122B proteins confirms the predictions and suggests the new 14-3-

3-predictors will be generally useful.

Availability and implementation: A standalone prediction web server is available at http://www.

compbio.dundee.ac.uk/1433pred. Human candidate 14-3-3-binding phosphosites were integrated

in ANIA: ANnotation and Integrated Analysis of the 14-3-3 interactome database.

Contact: cmackintosh@dundee.ac.uk or gjbarton@dundee.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The 14-3-3 phosphoprotein-binding proteins interact with many

intracellular targets. Changes in the engagement of 14-3-3s with

different sets of target phosphoproteins cause coordinated shifts in

cellular behaviour in response to growth factors and other stimuli

(Bridges and Moorhead, 2005; Johnson et al., 2010, 2011;

MacKintosh, 2004). 14-3-3s are boat-shaped dimers that dock onto

specific pairs of phosphorylated Ser and Thr residues (Obsil and

Obsilová, 2011). The phosphosite pairs are often located in tandem

on the same target protein and are typically >15 amino acid residues

apart to allow engagement with both docking sites in the central

groove of the 14-3-3 dimer (Yaffe, 2002; Yaffe et al., 1997; Zhu

et al., 2005). The 14-3-3s also have strong preferences with respect
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to the sequences immediately flanking the phosphorylated residues

(Yaffe, 2002; Yaffe et al., 1997; Zhu et al., 2005).

Early analyses of known 14-3-3-binding sites indicated

R(S)X1,2(pS)X(P) as a 14-3-3-binding motif (Muslin et al., 1996;

MacKintosh, 2004). Later screening of libraries for phosphopeptides

that displayed optimal binding to 14-3-3s identified two consensus

14-3-3-binding motifs, namely Mode I (RSX(pS/T)XP) and Mode II

(RX(F/Y)X(pS)XP), with subtle preferences and negative determin-

ants for the X residues (Yaffe, 2002; Yaffe et al., 1997; Obsilová

et al., 2008). These sequence motifs served as the basis for a pos-

ition-specific scoring matrix (PSSM) to predict potential 14-3-3-

binding phosphosites in Scansite (Obenauer, 2003). A more recent

survey showed that most experimentally determined 14-3-3-binding

sites (dubbed gold standards) conform to mode I motifs, having at

least one basic residue in the positions �3 to �5, relative to the

phosphoSer/Thr and never a þ1 proline. However, the proline at þ2

is found in fewer than 50% of cases and often the serine in the �2

position relative to the 14-3-3-binding phosphosite is a residue that

is annotated as phosphorylated (Johnson et al., 2010). Additionally,

Mode III sites, in which the phosphorylated residue is the penulti-

mate residue in the C-terminal tail of a protein target, have also

been reported (Coblitz et al., 2006; Panni et al., 2011).

Recently, a further striking pattern was identified in the human

14-3-3 interactome. The majority of well-defined human 14-3-3-

binding phosphoproteins were discovered to be 2R-ohnologues

(Tinti et al., 2012). This means that they belong to protein families

of two to four members that were generated by the two rounds of

whole-genome duplication (2R-WGD), which marked the evolution-

ary origins of the vertebrate animals �500 million years ago

(Huminiecki and Heldin, 2010; Makino and McLysaght, 2010).

Most of the new genes were negatively selected and lost. However,

those that were retained in families of two to four members are

highly enriched in signalling proteins that bind to 14-3-3s

(Huminiecki and Heldin, 2010; Tinti et al., 2012). In case studies,

protein families were identified whose members share one 14-3-3

binding site in common (termed the ‘lynchpin’). Lynchpins also align

with a serine or threonine residue in the pro-orthologue proteins

from the pre-2R-WGD invertebrate chordates, Branchiostoma

(amphioxus, lancelet) and Ciona (tunicates, sea squirts). In contrast,

the second sites may differ on different family members and may be

phosphorylated by different protein kinases. These findings led to

the proposal that 14-3-3 dimers may have played a mechanistic role

in the regulatory divergence of 2R-ohnologue families: The lynchpin

hypothesis proposes that conservation of one ‘lynchpin’ 14-3-3-

binding site gave the freedom for the second site to change and

perhaps become a consensus site for phosphorylation by a different

protein kinase (Johnson et al., 2011). The resulting protein families

therefore operate as ‘signal multiplexing’ systems that are regulated

by a wider array of protein kinases than would be possible if the

function were performed by only a single protein.

Currently, the Scansite 14-3-3 predictor (Obenauer, 2003) is the

most commonly used software tool to identify potential 14-3-3-

binding phosphosites. Scansite was trained on peptide libraries

derived from a limited number of experimentally defined 14-3-3-

binding sites, but these training datasets no longer accommodate the

diversity of known 14-3-3-binding phosphopeptides. Another source

of information on 14-3-3-binding sites is the ‘eukaryotic linear

motif’ database ELM (Puntervoll, 2003). ELM uses regular expres-

sions and context-based filtering to derive pattern probabilities

based on a few dozen Mode I, Mode II and non-consensus motifs.

There are now >2000 phosphoproteins that have been found

to display affinity for 14-3-3 in high-throughput proteomics

experiments (Jin et al., 2004; Nishioka et al., 2012; Pozuelo Rubio

et al., 2004). Accordingly, there is a need to extend predictors to

include 14-3-3 binding sites that do not conform to Mode I binding

and to test the signal multiplexing hypothesis. A more comprehen-

sive picture of potential 14-3-3 binding sites would help to define

how the complete 14-3-3-interactome system works. The ANIA

(ANnotation and Integrated Analysis of the 14-3-3 interactome)

web service and database (Tinti et al., 2014) integrates multiple

datasets on 14-3-3-binding phosphoproteins and provides an up-

to-date gold-standard dataset of experimentally determined 14-3-3-

binding phosphosites of all known Modes. In this article, three new

classifiers of 14-3-3-binding sites are described that have been

trained on the ANIA gold-standard dataset. The new predictors

are compared with Scansite and ELM, predictions for the human

phosphoproteome performed and a couple of high-scoring sites

experimentally tested.

2 Methods

2.1 Data collection and preprocessing
The human proteome was retrieved from the UniProt database

(June 2013 release) and all Ser/Thr residues located in every protein

sequence. A collection of annotated phosphoSer/Thr sites (phospho-

proteome) was gathered from PhosphoSitePlus (October 2013

release) (Hornbeck et al., 2004).

A list of 300 experimentally determined 14-3-3-binding phos-

phosites was collected from ANIA (Tinti et al., 2014) and further

extended from the literature to give 322 gold-standard 14-3-3-

binding sites (POS) (Supplementary Table S1). A negative dataset

(NEG) (Supplementary Table S2) was assembled from the literature

cited in Johnson et al. (2010), resulting in 93 phosphosites. To pre-

pare balanced sets of POS and NEG examples, 230 additional likely

non-binding sites were randomly selected from a subset of proteins

for which two 14-3-3-binding sites had been experimentally defined.

Although the likely NEG sites are located in 14-3-3-binding pro-

teins, these sites are thought unlikely to bind 14-3-3s since there is

currently no evidence of proteins that bind 14-3-3 through multiple

pairs of phosphosites. The resulting POS and NEG datasets com-

prised balanced numbers of phosphopeptides that were further

processed for training of the classifiers.

To explore motif patterns that are in agreement with the modes

of binding previously proposed, five non-symmetrical motif win-

dows around the phosphoSer/Thr site were defined, including

[�3:1], [�4:2], [�5:3], [�6:4] and [�7:5]. These motif windows

ranged from 4 to 12 residues in width not including the central

phosphoSer/Thr residue. The peptides in the POS and NEG datasets

were also filtered for sequence redundancy at a range of identity

thresholds for all pairwise peptide comparisons. When working

with small peptides, a single amino acid difference can be critical for

determining specificity. Thus, determining redundancy in short pep-

tides is not straightforward. In this article, redundancy is defined by

differences of 1 . . . k/2 amino acids, where k is length of the peptide.

Thus, redundancy thresholds ranged from a minimum of one residue

difference up to half of the size of the motif window (equivalent to

50% redundancy level). For example, for motif window [�6:4] that

comprises 10 residues, five levels of redundancy were investigated

with a minimum number of differences ranging from one to five.

Since the number of redundancy thresholds investigated depends

on the size of the motif window in analysis, all combinations of win-

dows and redundancy thresholds were tested in model training

and testing.
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To reduce the risk of bias, the resulting pairs of balanced POS

and NEG datasets from different combinations of motif windows

and redundancy thresholds were further split into two independent

training and testing subsets. This gave 240 (75%) and 78 (25%)

peptides for training and testing, respectively. After selecting the

best overall models in training and testing, final methods were

trained using the full non-redundant training and testing subsets,

comprising 318 POS and 318 NEG peptide examples in total

(100%) (Supplementary Tables S1 and S2). An additional independ-

ent and ‘blind’ test dataset (BLIND) comprising 38 experimentally

defined 14-3-3-binding sites was collected from the literature

(Supplementary Table S3). Following the same strategy used for pre-

paring the training datasets, 32 likely non-binding phosphosites

were selected as BLIND negatives (Supplementary Table S4).

2.2 Classification methods
2.2.1 Artificial neural network

Artificial neural network (ANN) models were trained using the R

package RSNNS (Bergmeir and Benı́tez, 2012) and the Stuttgart

Neural Network Simulator (SNNS; http://www.ra.cs.uni-tuebingen.

de/SNNS). For ANN training, each of the 20 different amino acids

was encoded as a binary vector of length 20. For example, Ala was

encoded as [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], whereas Arg

was encoded as [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]. This

pattern was followed for all 20 amino acids, whereas gaps or other

ambiguous amino acids were encoded as [0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0]. Accordingly, phosphopeptides of length k

(4�k�12) were encoded by vectors of length 20k. The final ANN

model had 20 input nodes, a single hidden layer with 20 nodes

and one output layer with one output node. Training was per-

formed by the backpropagation algorithm with momentum term

(‘Backpropmomentum’), learning parameter g¼0.2 and momentum

term m¼0.05.

2.2.2 Position-specific scoring matrix

PSSMs were implemented in Python (http://www.python.org) and

assembled by adapting the procedure described by Ferrari et al.

(2011). Amino acid frequency matrices were derived from POS and

NEG datasets and from a background (BGD) dataset, made up of

all peptides that have annotated phosphoSer/Thr sites (phosphopro-

teome). For each motif window of length k of the alignment

(4�k�12), a PSSM was assembled with 21 rows [20 amino acids

plus gaps or ambiguous (X), AA¼ (A, R, N, D, C, Q, E, G, H, I, L,

K, M, F, P, S, T, W, Y, V, X)] and k columns, where the values rep-

resent the frequency of amino acid i {i 2 AA} at the jth position

{j¼1 . . . k} in the multiple alignment of all peptides. Equation (1)

defines the final score S(p) assigned to each queried phosphopeptide

p, which is calculated by adding up the scores for all the positions,

where

SðpÞ ¼
Xk

j

POSi;j �NEGi;j

BGDi;j
(1)

POSi,j, NEGi,j and BGDi,j are the frequency values for amino acid i

at position j, in the POS, NEG and BGD matrices, respectively.

2.2.3 Support vector machines

Support vector machine (SVM) models were trained and parameter-

ized using the Python module PyML (http://pyml.sourceforge.net),

which contains a set of non-linear kernels specifically developed

for training and classification of biological sequences (Ben-Hur

et al., 2008). The final SVM model employed the weighed-degree

kernel (Sonnenburg et al., 2005), with soft margin constant C,

which specifies the degree of separation between the two training

classes of support vectors in the hyperplane was set to one. Lastly,

the cosine kernel was applied to normalize the kernel values.

2.3 Feature selection for the ANN models
Two independent alphabet reduction systems were tried. Both meth-

ods grouped the 20 amino acids in 10 classes according their physi-

cochemical properties and were encoded as an orthogonal 10-length

binary (Li et al., 2003; Livingstone and Barton, 1993).

Further features were also explored as inputs to the ANN model.

Protein secondary structure predictions and solvent accessibility

were computed by Jpred (Cole et al., 2008), which provides predic-

tions of a-helix, b-strand, random coil and solvent accessible or

buried. In addition to the 20-length binary vector of amino acid

encodings, every residue position including the central Ser/Thr was

encoded as a 5-length binary vector or alternatively encoded as a

vector of raw Jpred prediction scores [0.0:1.0], resulting in a vector

of length 20kþ5(kþ1). Similarly, three methods for predicting na-

tively unstructured/disordered regions in proteins (Dosztányi et al.,

2005; Linding, 2003; Linding et al., 2003) were computed using the

JABAWS package (Troshin et al., 2011). Peptide motifs were classi-

fied as disordered or structured by four methods and were encoded

as a binary vector of length 2, which resulted in an encoding vector

of length 20kþ2(4). IUPred prediction scores �0.5 were used to de-

fine disordered regions, whereas for GlobPlot, the Dydx algorithm

with a threshold of �0.0 was used. Regions predicted by both

DisEMBL algorithms: HOTLOOPS and REM465 were considered

for disorder classification.

2.4 Evaluation methods
The performance of each classifier was evaluated by Jackknife

(leave-one-out cross-validation) on the training and testing data, be-

fore a final test on the BLIND dataset. The performance of each

method was assessed by receiver operating characteristic (ROC)

curves, which were plotted at various thresholds (Fawcett, 2004).

The area under the ROC curve (AUC) (Sonego et al., 2008) was

used as the primary performance measure. Additional standard

metrics were calculated for each method including sensitivity (SN,

equivalent to recall) (Equation 1), specificity (SP) (Equation 2),

positive predictive value (PPV, equivalent to precision) (Equation 3),

accuracy (ACC) (Equation 4) and Matthews correlation coefficient

(MCC) (Equation 5), where TP, FP, TN, FN denote the number

of true positives, false positives, true negatives and false negatives,

respectively.

SN ¼ TP

TPþ FN
(1)

SP ¼ TN

TNþ FP
(2)

PPV ¼ TP

TPþ FP
(3)

ACC ¼ TPþ TN

ðTPþ TNþ FPþ FNÞ (4)

MCC ¼ TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ

p (5)
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Evaluation and statistical analysis was performed in the R statis-

tical language (http://www.r-project.org) and ROCR package

(Sing et al., 2005). Sample correlation analysis was performed by

the Pearson correlation coefficient (r). For two-sample paired tests,

the Wilcoxon–Mann–Whitney test and the Student’s t-test were

performed. The null hypothesis was inferred at a 95% level of

confidence.

2.5 Biochemical methods
The cDNA encoding human FAM122A (Q96E09) was amplified

from IMAGE consortium EST clone 6182641 (coding for

NM_138333.3 CDS) and FAM122B (Q7Z309) was from IMAGE

consortium EST clone 3841054 (coding for NM_145284.3 CDS).

Three isoforms of FAM122C (Q6P4D5) were cloned: NP_620174.1

amplified from IMAGE clone 4699951 (152 residues); Q6P4D5.1,

amplified from IMAGE clone 5229041 (195 residues) and

AAH65225.1, amplified from IMAGE clone 5724414 (96 residues).

cDNAs were cloned as BamHI/NotI inserts into the multiple cloning

site of pcDNA5 FRT/TO that adds a C-terminal GFP tag to the ex-

pressed protein. Mutants were made using polymerase chain reac-

tion mutagenesis and DNA sequencing was performed by The

Sequencing Service, University of Dundee (www.dnaseq.co.uk).

Plasmids are available from the MRC-PPU reagents website

(mrcppureagents.dundee.ac.uk).

Proteins were isolated using GFP-TrapVR (ChromoTek) from lys-

ates of transfected human embryonic kidney 293 (HEK293) cells,

using a lysis buffer that preserves their in vivo phosphorylation status.

The isolated proteins were tested for retention of co-purified endogen-

ous 14-3-3 proteins (K19 pan-14-3-3 antibody, Santa Cruz Biotech)

and for their ability to bind directly to 14-3-3s in Far-Western over-

lays, as described in Tinti et al. (2014). Where indicated, isolated pro-

teins were dephosphorylated, or not, as described in Tinti et al.

(2014) prior to analysis of their interaction with 14-3-3.

3 Results and discussion

3.1 Development and evaluation of 14-3-3 classifiers
Three new 14-3-3 classifiers were developed in this work. Data

preprocessing was performed, so that all combinations of motif win-

dow length and redundancy thresholds were evaluated in model

training and model testing. The comparison of the AUC scores

by Jackknife for the resulting classifiers showed that the highest

performance was achieved at a redundancy threshold of at least one

residue difference (sequence identity <90%), for a motif region

spanning from �6 to 4. A motif window [�6:4] agrees with

observed 14-3-3-binding modes (Johnson et al., 2010) and per-

formed better in this study than [�7:7], which has been previously

selected for this kind of classification task (Miller et al., 2008;

Obenauer, 2003).

As shown in Figure 1A, all three methods performed similarly

well in model training and model testing, with AUC scores ranging

from 0.84 (for the SVM in model training) to 0.87 (for PSSM and

SVM in model testing). Figure 1B shows the performance of the final

models trained using balanced and non-redundant POS and NEG

datasets (318 POS and 318 NEG peptide examples), generated by

combining non-redundant training and testing sub-sets. ANN and

PSSM showed an AUC of 0.86, whereas the SVM showed an AUC

of 0.85. Although globally the performance of the final methods is

not significantly different, the ANN presented the highest MCC

score of 0.59 6 0.01 (SD), accuracy (ACC) of 79.6 6 0.6% and a

PPV of 79.8 6 1.6%.
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Fig. 1. Performance of the classifiers tested by Jackknife. ROC curves and the

AUC scores for (A) model training (bold line) and model testing (dotted line);

(B) final models and (C) comparison to Netphorest Scansite on the BLIND

dataset. ANN, PSSM and SVM models were trained at the redundancy level

of at least one residue difference and for a [�6:4] motif window
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Since phosphorylated Ser/Thr usually lie at the protein surfaces

enabling kinase/phosphatase activity, as well as regulation by the 14-

3-3s (Vandermarliere and Martens, 2013), additional features such as

secondary structure, solvent accessibility, and protein disorder were

tested to see their effect on performance, as was feature-selection by

amino acid alphabet reduction. Although these approaches have

proved useful in a number of classification tasks (e.g. Aytuna et al.,

2005; McDowall et al., 2009), here they added complexity but did

not give a significant improvement in the performance of the methods

developed here (data not shown).

3.2 Comparison with other predictors
The performance of the new classification methods developed here

was compared with Scansite (Obenauer, 2003) and ELM

(Puntervoll, 2003), using an additional dataset (the BLIND set) that

was not used for training the methods. The BLIND dataset com-

prises 38 experimentally defined 14-3-3-binding phosphopeptides

and 32 non-14-3-3-binding sites. Raw Scansite prediction scores

were obtained by querying Netphorest (Miller et al., 2008) that fully

implements the original Scansite PSSM. Categorical classification

scores were also obtained for each BLIND phosphoprotein, from

the Scansite2 (Obenauer, 2003), Scansite3 (unpublished work by

T.Ehrenberger, 2012) and ELM web servers (Dinkel et al., 2013).

Scansite2 provides prediction scores based on 14-3-3 Mode I motifs

that fall into three stringency levels: high, medium and low.

Scansite3, a Java implementation of Scansite2, enables search for

a fourth stringency level: minimum. ELM uses context-based filter-

ing and text mining to improve the accuracy of assigned pattern-

matching probabilities based on Mode I and Mode II 14-3-3-binding

as well as non-consensus 14-3-3-binding. Overall, any phosphoSer/

Thr site for which a prediction score was provided (at a particular

stringency level, in the case of Scansite) was considered to be classi-

fied as 14-3-3-binding. All the remaining sites were classified as

non-14-3-3-binding. Although other methods exist to predict 14-3-3

binding sites (Chan et al., 2011; Panni et al., 2011), no software

or pre-computed predictions were available for comparison to the

methods developed here.

As listed in Table 1, all three methods developed here

showed higher MCC scores (up to 0.60 for ANN and PSSM),

when compared Netphorest Scansite, Scansite2 and Scansite3 at

different stringency levels and ELM (up to 0.52 for Scansite2 low

and ELM). Indeed, the new methods present the best accuracy

(ACC of 80.0% for the ANN and 78.6% for PSSM and SVM),

compared with accuracies of the other predictors, which are gener-

ally lower than 75.7% (obtained for Scansite2 low). The perform-

ance scores of the new methods agree with the performance

observed in model training and testing (Fig. 1). However, the PPV

observed for the BLIND dataset is higher (from 79.8% for the

final models compared with �85.3% PPV for the BLIND dataset),

which might be an outcome of the unbalanced composition of the

BLIND dataset. A consensus predictor achieved 0.61 MCC and

80.0% ACC by averaging the scores from the three methods. Both

Scansite2 and Scansite3 high stringency showed 100% PPV and

100% specificity (SP). This results from the fact that both methods

incorrectly classify most sites as non-14-3-3 binding and give small

numbers of TP and FP (zero FP in this particular case) but high FN.

In terms of sensitivity (SN), the best method was Scansite3 min-

imum with 84.2% SN, compared with the ANN that showed

76.3% SN. Here, Scansite3 minimum correctly predicted 32 out of

38 POS examples, whereas the ANN correctly predicted 29/38.

Although Scansite predictors show higher SN and SP, the new pre-

dictors show a better balance between these two metrics, which

leads to superior ACC and MCC scores.

Two-sample sequence analysis of the final POS and NEG data-

sets revealed that Mode I is indeed the most common, accounting

for �46% enrichment of Arg at position �3 and �31% enrichment

of Pro at þ2 position. Additionally, poorer enrichment of Ser and

Leu at positions �2 and þ1, respectively, as well as depletion of Pro

at þ1, is also observed. A similar profile is observed for the BLIND

dataset, which might explain why Scansite low and minimum

Table 1. Comparison of the predictors developed in this study with Scansite and ELM, for an external BLIND dataset comprising 38 litera-

ture-curated 14-3-3-binding sites and 32 non-binding sites

Predictor TP FP TN FN SN (%) SP (%) PPV (%) ACC (%) MCC *

Consensusa,b 28 4 28 10 73.7 87.5 87.5 80.0 0.61

ANNa 29 5 27 9 76.3 84.4 85.3 80.0 0.60

PSSMa 26 3 29 12 68.4 90.6 89.7 78.6 0.60

SVMa 27 4 28 11 71.1 87.5 87.1 78.6 0.59

Netphorest Scansitec 28 7 25 10 73.7 78.1 80.0 75.7 0.52

Scansite2 lowd 28 7 25 10 73.7 78.1 80.0 75.7 0.52

ELMd 24 4 28 14 63.2 87.5 85.7 74.3 0.52

Scansite3 lowd 27 7 25 11 71.1 78.1 79.4 74.3 0.49

Scansite3 minimumd 32 13 19 6 84.2 59.4 71.1 72.9 0.45

Scansite2 highd 12 0 32 26 31.6 100.0 100.0 62.9 0.42

Scansite2 mediumd 17 4 28 21 44.7 87.5 81.0 64.3 0.35

Scansite3 highd 9 0 32 29 23.7 100.0 100.0 58.6 0.35

Scansite3 mediumd 17 4 28 21 44.7 87.5 81.0 64.3 0.35

SN, sensitivity; SP, specificity; NPV, negative predictive value; ACC, accuracy. The table is sorted by MCC score.
aThe results shown were calculated based on optimal thresholds derived from accuracy/cut-off plots for the final models. The cut-offs are 0.55, 0.80, 0.25 and

0.50, for ANN, PSSM, SVN and Consensus, respectively.
bThe consensus predictor averages the scores obtained by the three methods: ANN, PSSM and SVM.
cScansite PSSM prediction scores were obtained by querying Netphorest. An optimal cut-off of 0.15 resulted in the balanced performance observed for

Scansite2 low.
dBased on categorical classification of the queried phosphoproteins.

*The significance level of each method’s MCC score was assessed against the MCC score of the consensus predictor by computing a distribution of MCC scores

for 100 bootstrap replicates with replacement, randomly selecting examples from the BLIND dataset. Underlined MCC scores indicate that the method is signifi-

cantly worse than the consensus predictor (P< 0.05), whereas double underline indicates high significance (P< 0.001).
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correctly classifies POS examples equally well as the consensus pre-

dictor. However, non-consensus binding motifs are better covered

by the methods introduced here since the consensus motifs I and II

represent less than 30% of POS in both training and blind datasets.

The correlation between the consensus predictor and Netphorest

Scansite scores, for prediction of 14-3-3-binding phosphopeptides

in the human proteome (Section 3.3), is only r¼0.65 (P<0.001),

indicating that a fair number of peptides produce discordant predic-

tions by Scansite and the methods developed here.

Overall, based on the performance measures and benchmark re-

sults listed in Table 1 and Figure 1C, all methods introduced in this

study outperform the previous predictors with Scansite2 low and

ELM the closest rivals. The consensus predictor is significantly bet-

ter than all the Scansite predictors and ELM, based on the MCC

scores obtained for the BLIND dataset (P<0.05). As the exact pep-

tide datasets used for training Scansite are not known, it is likely

that the real performance of Scansite will be lower, as some of the

tested examples could have been used for its training. Similarly,

ELM adds literature annotation for known 14-3-3-binding phospho-

sites when available, so its prediction performance is perhaps over

optimistic. In fact, �60% (15/24) TP were annotated from the lit-

erature, making this benchmark evaluation moderately biased in

favour of ELM. Intriguingly, Scansite2 and Scansite3 presented

some classification differences at high and low stringency levels.

Whether this difference is the result of the new implementation of

Scansite3, potentially setting new underlying stringency thresholds,

or due to the addition of a minimum stringency level is not clear.

3.3 Prediction and experimental testing of 14-3-3-

binding phosphosites in the human proteome
All 1 543 965 Ser/Thr residues in the 20 245 proteins of the human

proteome as released in June 2013 were considered as potential

14-3-3 sites and ranked according to the methods developed here.

The consensus classifier predicted a total of 75 891 potential binding

sites in 17 214 proteins. This corresponds to 4.9% of all Ser/Thr

sites with an average of four sites per protein. Considering only the

set of 117 640 proteins for which phosphoSer/Thr sites have already

been annotated, the number of predicted sites falls to 10 881 in

5483 proteins. This corresponds to 9.2% of all Ser/Thr sites in the

phosphoproteome and an average of two candidate phosphosites

per protein, which reduces the potential number of FP, since pro-

teins known to be phosphorylated potentially bind to 14-3-3 dimers.

This approach makes it more amenable for prioritizing experimental

investigation. As shown below, two high-ranking ANN predictions

were further tested by experiment.

Table 2 lists the top 20 high-scoring candidates’ sites predicted

by the three methods on the phosphoproteome. Predicted proteins

include sperm-specific antigen 2 (3rd); sorbin and SH3 domain-

containing protein 1 (5th); negative elongation factor E (6th); E3

ubiquitin-protein ligase HUWE1 (17th); E3 ubiquitin-protein ligase

UBR4 (18th) and Centrosomal protein of 170 kDa (19th): all of

which had been previously detected in 14-3-3-binding capture

experiments (Tinti et al., 2014; Wang et al., 2011) but whose 14-3-

3-binding sites remained elusive. High-scoring predictions by the

consensus predictor support that these proteins partner with 14-3-

3s; however, further experiments have to be performed to validate

these candidate binding sites.

Two of the predicted sites, ranked at 2nd and 11th with consen-

sus scores of 1.88 and 1.67, are for family with sequence similarity

122A and 122B (FAM122A and FAM122B). FAM122 is a family

of three uncharacterized proteins (A, B and C). FAM122A and

FAM122B is a pair of 2R-ohnologues, whereas FAM122C evolved

by tandem duplication of FAM122B in mammals (adjacent genes

at Xq26.3). Such tandem duplication of 2R-ohnologues is rare

(Makino and McLysaght, 2010).

Consistent with the 14-3-3-Pred results (Table 2), all three

FAM122 family members displayed phosphorylation-dependent

Table 2. Top 20 high scoring predictions and their respective scores

Rank Protein Description Site Motif Consensusa

1 PPP1R3G Protein phosphatase 1 regulatory subunit 3G 86 CRARSFSLPAD 1.97

2 FAM122Ab,c Family with sequence similarity 122A 37 GLRRSNSAPLI 1.88

3 SSFA2b Sperm-specific antigen 2 739 PLRRSQSLPTT 1.87

4 ALOX12c Arachidonate 12-lipoxygenase, 12S-type 246 LLRRSTSLPSR 1.83

5 SORBS2b Sorbin and SH3 domain-containing protein 2 259 FRKRRKSEPAV 1.77

6 NELFEb Negative elongation factor E 251 PFRRSDSFPER 1.75

7 ANKRD63 Ankyrin repeat domain-containing protein 63 332 GLRRRSTAPDI 1.74

8 SECISBP2Lc Selenocysteine insertion sequence-binding protein 2-like 251 GRRRRASHPTA 1.72

9 FAM13Ac Family with sequence similarity 13A 741 MRQRSNTLPKS 1.72

10 FAM189A2c Family with sequence similarity 189A2 275 LRTRSKSDPVL 1.71

11 FAM122Bb,c Family with sequence similarity 122B 25 TLRRSSSAPLI 1.67

12 TRAK2c Trafficking kinesin-binding protein 2 420 TRGRSISFPAL 1.67

13 CEP57c Centrosomal protein of 57 kDa 55 DLRRSPSKPTL 1.66

14 GOLGA5 Golgin subfamily A member 5 116 FVRRKKSEPDD 1.66

15 CISD2c CDGSH iron-sulphur domain-containing protein 2 106 RCWRSKTFPAC 1.66

16 TBC1D22Ac TBC1 domain family member 22A 167 PLQRSQSLPHS 1.65

17 HUWE1b E3 ubiquitin-protein ligase HUWE1 649 MRRRRSSDPLG 1.65

18 UBR4b E3 ubiquitin-protein ligase UBR4 2715 NKRRHVTLPSS 1.62

19 CEP170b Centrosomal protein of 170 kDa 644 GERRRRTLPQL 1.60

20 TMEM40 Transmembrane protein 40 137 GLRRRGSDPAS 1.59

Proteins that have shown affinity to 14-3-3 in high-throughput experiments and 2R-ohnologue members were identified by querying ANIA. FAM122A and

FAM122B were experimentally verified to bind 14-3-3 in this study.
aThe consensus predictor averages the scores obtained by the three methods: ANN, PSSM and SVM.
bProteins that have shown affinity to 14-3-3 in high-throughput experiments.
cProtein members of 2R-ohnologue families.
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binding to 14-3-3 proteins when isolated from transfected cells

(Fig. 2A). The binding of 14-3-3 to FAM122A was abolished

by its dephosphorylation (Fig. 2B) and by substitution of Ser37 of

FAM122A with alanine (Fig. 2C). Although phosphoSer62 and

phosphoThr64 of FAM122A also had relatively high 14-3-3-Pred

scores (0.614 and 1.076, respectively), mutation of these residues

did not affect 14-3-3 binding to FAM122A isolated from cells cul-

tured in standard serum-containing medium (Fig. 2C). However, in

the absence of Ser37, stimulating cells with the adenylate cyclase

activator forskolin caused a marked increase in 14-3-3 binding

to FAM122A, which was abolished when Ser62 was also mutated

to alanine and when cells were pre-treated with H89, which is a

non-specific cAMP-dependent protein kinase (PKA) inhibitor

(Fig. 2D). These data indicate that a 14-3-3 dimer binds to both

phosphoSer37 and phosphoSer62 on FAM122A, the latter likely

phosphorylated by PKA. Similar experiments showed that 14-3-3

binds to phosphoSer25 and forskolin-regulated phosphoSer50 of

FAM122B and to phosphoSer29 (ILRRVNSAPLI) of FAM122C.

Thus, this is an example of a 2R-ohnologue family for which protein

members share a conserved 14-3-3-binding ‘lynchpin’. In fact, half

of the top 20 candidate proteins (10/20) belong to 2R-ohnologue

families.

The benchmark results for the BLIND dataset, as well as predic-

tion of 14-3-3-binding sites in the human proteome and the analysis

of top high-scoring predictions, suggests the new classifiers

developed in this study will be generally useful for identifying

potential 14-3-3 sites. Although the methods developed here were

not specifically developed to predict pairs of 14-3-3-binding sites

due the limited set of proteins for which two binding sites are

known, the example of the FAM122 2R-ohnologue family illustrates

its use to investigate both primary and secondary 14-3-3-binding

phosphosites.

A standalone web server providing a simple yet useful interface

to the new methods to score potential Ser/Thr centred motifs for like-

lihood of binding 14-3-3 proteins is freely available at http://www.

compbio.dundee.ac.uk/1433pred. The predictions described here

were also integrated in the ANIA database. ANIA adds a functional

layer to the peptide-based predictions, by looking for pairs of sites

>15 residues apart and by the analysis of sequence alignments of

2R-ohnologue families to identify potential lynchpins (Tinti et al.,

2012, 2014). In addition to the human proteome, predictions on

proteomes of model organisms, such as Arabidopsis thaliana, where

several 14-3-3-binding targets have been identified (de Boer et al.,

2013; Ferl, 1996), will be performed and added to ANIA in the

future.

Fig. 2. Regulated binding of 14-3-3 proteins to FAM122-GFP proteins.

(A) HEK293 cells growing in media containing 10% (v/v) serum were trans-

fected to express FAM122A-GFP, FAM122B-GFP and FAM122C-GFP proteins

(the latter as 152 and 196 residue isoforms, respectively, excluding the GFP).

GFP-tagged proteins isolated from cell lysates (120 mg) with GFP-TrapVR

were tested for their ability to bind directly to 14-3-3s in Far-Western assays

(overlay) and by coimmunoprecipitation of endogenous 14-3-3s (14-3-3s)

using the K19 pan-14-3-3 antibody. Anti-GFP signals show levels of the

tagged proteins in the immunoprecipitates. (B) FAM122A-GFP bound to

GFPTrapVR was dephosphorylated with lambda phosphatase or not when

the phosphatase was inhibited with EDTA. The immunoprecipitates were

washed and FAM122A-GFP analyzed for its ability to bind directly to 14-3-3s

(overlay) and for retention of co-purified endogenous 14-3-3 proteins (14-3-

3s). Cells had been grown in standard medium (serum), with 100 nM calyculin

A (a protein phosphatase inhibitor) added for approximately 5 min before

lysis, as indicated. (C) Wild-type FAM122A-GFP and the indicated serine/

threonine-to-alanine mutant proteins were isolated from transfected cells

and tested for direct binding to 14-3-3s and for co-immunoprecipitating en-

dogenous 14-3-3s. (D) HEK293 cells were transfected to express Ser37Ala/

Ser62Ala- FAM122A-GFP and Ser37Ala/Thr64Ala-FAM122A-GFP, as indi-

cated. Cells were serum starved for 10 h, then stimulated with serum (10%

(v/v) for 30 min) or forskolin (20mM for 30 min) with or without H89 pre-

treatment (30mM for 30 min), as indicated. Proteins immunoprecipitated from

lysates were tested for 14-3-3 binding (overlay) and coimmunoprecipitation

of endogenous 14-3-3 (14-3-3)
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