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Abstract

Motivation: The analysis of differential abundance for features (e.g. species or genes) can provide

us with a better understanding of microbial communities, thus increasing our comprehension and

understanding of the behaviors of microbial communities. However, it could also mislead us about

the characteristics of microbial communities if the abundances or counts of features on different

scales are not properly normalized within and between communities, prior to the analysis of differ-

ential abundance. Normalization methods used in the differential analysis typically try to adjust

counts on different scales to a common scale using the total sum, mean or median of representa-

tive features across all samples. These methods often yield undesirable results when the difference

in total counts of differentially abundant features (DAFs) across different conditions is large.

Results: We develop a novel method, Ratio Approach for Identifying Differential Abundance

(RAIDA), which utilizes the ratio between features in a modified zero-inflated lognormal model.

RAIDA removes possible problems associated with counts on different scales within and between

conditions. As a result, its performance is not affected by the amount of difference in total abun-

dances of DAFs across different conditions. Through comprehensive simulation studies, the

performance of our method is consistently powerful, and under some situations, RAIDA greatly

surpasses other existing methods. We also apply RAIDA on real datasets of type II diabetes and

find interesting results consistent with previous reports.

Availability and implementation: An R package for RAIDA can be accessed from http://cals.arizona.

edu/%7Eanling/sbg/software.htm.

Contact: anling@email.arizona.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Metagenomics is the study of microbes by analyzing the entire

genomic sequences directly obtained from environment samples,

bypassing the need for prior cloning and culturing of individual

microbes (Thomas et al., 2012). This has been a tumultuous obs-

tacle to overcome for the purposes of studying the structural entir-

ety of a microbial community, primarily because more than 99%

of microbes cannot be isolated and independently cultured in labo-

ratories (Schloss and Handelsman, 2005). The field of metagenom-

ics has attracted researchers of diverse backgrounds, including

microbial ecology, biosciences and health and medical sciences,

due to the increasing availability of high throughput sequencing

technologies (Virgin and Todd, 2011). An important application

of metagenomics is the identification of differentially abundant

features (DAFs), which can be either taxonomic units (e.g. species)

or functional units (e.g. genes) across different environmental

(including host-associated) conditions (White et al., 2009).

Detection of differentially abundant microbes across healthy and

diseased populations, for instance, can enable us to identify poten-

tial pathogens or probiotics.
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In the differential analysis, normalization is an essential step as

demonstrated in many previous studies on RNA sequencing (RNA-

seq) and metagenomic sequencing data. Several normalization

approaches have been proposed, including total count (TC), upper

quartile, trimmed mean of M values (TMM), cumulative sum

scaling, etc. (Dillies et al., 2013; Paulson et al., 2013). Although

these methods differ in the choices of representative features used

to account for samples on different scales, they all, implicitly or ex-

plicitly, adjust counts (i.e. the number of sequence reads assigned

to each feature) measured on different scales to a common scale

using the total sum, mean or median of the counts of the represen-

tative features. For instance, TC uses all features in a sample as

representative features and normalizes counts with the total sum.

TMM (Robinson and Oshlack, 2010) uses trimmed features,

which are the remaining features after removing some upper and

lower percentage of the data based on the gene-wise log-fold-

changes and absolute expression levels, as representative features

to adjust library sizes and normalizes counts with the mean of the

adjusted sizes.

These approaches of rescaling counts are appropriate for either

estimating proportions of features for the samples under the same

biological/environmental condition or comparing overall patterns

of compositions of features for the samples under different condi-

tions. However, they are not conducive for identifying individual

DAFs across different conditions. As an illustration, consider two

different regions, each containing 100 chickens, 100 pigs and

100 cows, respectively. After an Avian Influenza outbreak, half of

the chicken population in region one was eradicated. The

proportions of these animals in each region or the overall differ-

ence in the composition of these animals in the two regions can be

well estimated by the approaches of rescaling counts. Now, we

wanted to identify which animals are different in their abundances

across the two regions. The approaches involving rescaling counts

would find that all the animals are different (e.g. 20:40:40 ver-

sus 33:33:33 percent in abundances for chickens, pigs and cows

in this order). However, we would reject this result because clearly

the change in abundance occurred only in the chicken. A

similar conclusion should be made in the comparison of microbes

even though we cannot directly observe their changes in

abundance.

This by no means disparages the aforementioned methods. In

fact, these methods perform well when the differences in total abun-

dances of DAFs across different conditions are small, that is, the

change in proportions of non-DAFs across different conditions is

small, which we denote by the balanced conditions. However, the

reliability of their results cannot be assessed unless we have such

prior information. Throughout this article, we use the terms bal-

anced conditions and unbalanced conditions, where the latter is

used to describe a situation whereby the difference in total abundan-

ces of DAFs across different conditions is large, thus affecting pro-

portions of non-DAFs. An example is provided in Figure 1 for

illustrative purposes. In this example, the proportion of the total

abundance of non-DAFs is 300/500¼60% for both conditions

under the balanced case, while it is changed from 300/350¼86%

to 300/500¼60% between two conditions under the unbalanced

case.

To identify DAFs consistently without being confounded by the

amount of difference in total abundances of DAFs across different

conditions, we propose a new approach, called Ratio Approach for

Identifying Differential Abundance (RAIDA), with the assumption

that majority of features are not differentially abundant. This is

the same assumption used for genomic studies in DESeq (Anders

and Huber, 2010) and edgeR (Robinson et al., 2010). In fact, this

assumption is stronger than necessary in most cases (See the proof

of Proposition in Supplementary File). RAIDA utilizes the ratios

between the counts of features in each sample, eliminating possible

problems associated with counts on different scales within and be-

tween conditions. Metagenomic sequencing data are sparse, i.e.

containing a lot of zeros. To account for ratios with zeros, we use

a modified zero-inflated lognormal (ZIL) model with the assump-

tion that most of the zeros come from undersampling (Hughes

et al., 2001) of the microbial community or insufficient sequencing

depth.

We evaluated RAIDA through comprehensive simulated studies

and compared the results with those of Metastats (White et al.,

2009) and metagenomeSeq (Paulson et al., 2013), which were de-

veloped for a metagenomic and a microbial marker-gene analysis,

respectively. In the comparison, we also included a representative

method for RNA-seq analysis, edgeR, which uses TMM as a de-

fault normalization method. Compared with the other methods,

RAIDA gives equivalent performance in the balanced conditions

and improved performance in the unbalanced conditions. Above

all, RAIDA performs consistently for both the balanced and unbal-

anced conditions. The consistency of the performance should be

highly valued, since most of time there is no sufficient prior infor-

mation about samples available. In other words, it is unlikely to

know ahead that conditions to be compared are balanced or

unbalanced.

We also applied RAIDA on a subset of real data selected from

the original datasets in the metagenomic study of diabetes

(Qin et al., 2012). RAIDA identified two differentially abun-

dant bacteria, Clostridium botulinum and Clostridium cellulovor-

ans, across fecal DNA samples of the type II diabetics and

non-diabetic controls at the false discovery rate (FDR) < 0.05.

These bacteria appear in the KEGG pathways for type II and type I

diabetes mellitus, respectively. The RAIDA method is developed

for the analysis of differential abundance between two conditions

of samples such as healthy versus diseased. However, it can be ex-

tended to detect DAFs in metagenomic samples under more than

two conditions.

2 Methods

2.1 Framework: modified ZIL model
Metagenomic sequencing data consist of highly skewed non-negative

counts with an excess of zeros, which come from either true absence

of microbes (true zeros) or undersampling of the microbial

(a) (b)

Fig. 1. A simple example contrasting the balanced and unbalanced condi-

tions: C.1 and C.2 are two different conditions, F.1, F.2 and F.3 are DAF, and

non-DAFs are all non-DAFs across two conditions C.1and C.2
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community (false zeros). All zeros remain unchanged after trans-

forming the count data into ratio data using a common divisor. It can

be a vector of the counts of a feature consisting of non-zeros in all

samples or a vector of the sums of a group of features consisting of

non-zeros in all samples. To fit ratios with zeros, we use a modified

ZIL. Note a lognormal distribution has been used as a fundamental

distribution for non-zero ratios in the compositional data analysis

(Aitchison, 1986).

Let cij denote the observed count for feature i and sample j, and

rij denote the ratio of cij to ckj, where k represents a feature (or a set

of features) used as a divisor and ckj>0 for all j. Here, i ¼ 1; 2; . . . ;

n and j ¼ 1;2; . . . ;m. Throughout this article, we denote undersam-

pling of the microbial community or insufficient sequencing depth

by the false zero state. Assuming a ZIL model for the ratio Rij, we

have:

Rij �
0 with probability gi

LNðli; r
2
i Þ with probability 1� gi

:

(
(1)

This model does not account for zero counts from the true zeros

since the support for a lognormal distribution is ð0;þ1Þ; that is, rij

is assumed to be in the false zero state if cij¼0, whether or not the

zero count comes from the false zero state. To accommodate for this

insufficiency, a small number � is added to cij for all i and j before

computing the ratios. We denote the ratio computed this way as R�
ij

and we have:

R�
ij �

Unifð0; �Þ with probability gi

LNðli; r
2
i Þ with probability 1� gi

:

(
(2)

In this study, we use � ¼ min ðrijjrij > 0Þ for all i and j. The par-

ameters hi ¼ ðgi;li;riÞ are estimated by the following expectation-

maximization (EM) algorithm.

2.2 EM algorithm
Given that a ratio R follows a lognormal distribution,

fLNðrjl; r2Þ ¼ 1

r
ffiffiffiffiffiffi
2p
p

r
exp �ðlog r� lÞ2

2r2

" #
; (3)

by definition Y ¼ log R is normally distributed with mean l and

variance r2. Thus, the maximum-likelihood estimate of hi for the

modified ZIL model, Equation (2), can be obtained by solving

‘ðhijyij; zijÞ ¼
Xm
j¼1

zijlog½gi þ ð1� giÞfNðyij; li;r
2
i Þ�

þ
Xm
j¼1

ð1� zijÞlogð1� giÞ

þ
Xm
j¼1

ð1� zijÞlog fNðyij; li;r
2
i Þ;

(4)

where yij ¼ log r�ij, fN is the probability density function of a normal

distribution and zij is a unobservable latent variable that accounts

for the probability of zero coming from the false zero state. The

E and M steps of our EM algorithm are defined as follows:

Initialization step

Initialize the values of ðgi;li; riÞ using gð0Þi ¼ N�=N, where N� is the

number of yij�log � and N is the number of yij,

lð0Þi ¼ Eðyijjyij > log �Þ and rð0Þi ¼ Varðyijjyij > log �Þ. In cases that

rð0Þi ¼ 0, we initialized rð0Þi with 10�6.

E step

Estimate Z
ðkÞ
ij , the probability of zero coming from the false zero

state given current estimates h
ðkÞ
i by

Z
ðkÞ
ij ¼

gðkÞi

gðkÞi þ 1� gðkÞi

� �
U

ffiffiffi
2
p

fðkÞij

� � if yij�log �

0 if yij > log �

;

8>>><
>>>:

(5)

where U is the cumulative distribution function of a normal distribu-

tion and fðkÞij ¼ ðyij � lðkÞi Þ=ð
ffiffiffi
2
p

rðkÞi Þ.

M step

Estimate h
ðkþ1Þ
i given current estimates of Z

ðkÞ
ij by maximizing

Equation (4) subject to the constraints: 0�gi�1 and ri > 0 for all i.

We used a limited-memory modification of the BFGS quasi-Newton

method (Byrd et al., 1995).

Repeat the E step and M step until all the parameters converge,

i.e. the differences between (kþ1)th and kth estimations for all the

parameters are <10�6.

2.3 Selection of possible common divisors
The ratio between a pair of features in samples under the same condi-

tion remains constant in the absence of random variations and the

ratios between features in a sample are invariant when features are

divided by a common divisor. As an illustration, consider the follow-

ing example. Let s ¼ fc1; c2; . . . ; cng denote a sample containing

counts of n features and s0 ¼ j � s denote another sample on a differ-

ent scale. Then, the ratio, for instance, between feature 1 and feature

2 in sample s0 is ðj � c1Þ=ðj � c2Þ ¼ c1=c2, which is the same for the

ratio between feature 1 and feature 2 in sample s. That is, the ratio is

not affected by the scaling factor j. Clearly the ratio between c1=cn

and c2=cn is also c1=c2. We utilize this invariance property of ratios to

identify possible common divisors across different conditions.

For each condition, we temporarily remove the features that

have �2 non-zero counts in all samples and select a feature with

non-zero counts in all the samples as a preliminary divisor. Note if

no such features exist, which is very rare, we can remove some sam-

ples to have such one(s). We then obtain r�ij with the preliminary div-

isor and estimate h using the EM algorithm. The proportion of the

false zero state g does not carry much information in the comparison

of abundances. Therefore, we simply use mean l and variance r2 to

measure the similarity in abundance between features using the

Bhattacharyya distance (Aherne et al., 1998) and cluster similar fea-

tures using hierarchical clustering with minimax linkage (Bien and

Tibshirani, 2011) based on the Bhattacharyya distance.

2.3.1 Bhattacharyya distance

The Bhattacharyya distance has been long used as a measure of fea-

ture selection in pattern recognition, which is defined (Kailath,

1967) as

DBðp;qÞ ¼ �logðBCðp; qÞÞ; (6)

where p and q are probability distributions, and BC is the

Bhattacharyya coefficient, which measures the amount of overlap

between two distributions (Reyes-Aldasoroa and Bhalerao, 2006).

For continuous probability distributions, the Bhattacharyya coeffi-

cient is defined (Kailath, 1967) as

BCðp;qÞ ¼
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðxÞqðxÞ
p

dx: (7)
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If p and q are normal distributions, the Bhattacharyya distance has a

closed form solution (Coleman and Andrews, 1979) given by

DBðp; qÞ ¼
1

4
log

1

4

r2
p

r2
q

þ
r2

q

r2
p

þ 2

 !" #
þ 1

4

ðlp � lqÞ2

r2
p þ r2

q

" #
: (8)

2.3.2 Hierarchical clustering with minimax linkage

Hierarchical clustering builds a hierarchy of clusters commonly dis-

played as a tree diagram called a dendrogram, thus not requiring

any pre-specified number of clusters. Instead, the hierarchy can be

cut at a pre-specified level of similarity, commonly called height h,

to create a set of disjoint clusters satisfying a clustering criterion. We

use the clustering criterion for the minimax linkage, where for any

point x the minimax linkage between two clusters C1 and C2 is

defined as

dðC1;C2Þ ¼ min
x2C1[C2

max
x02C1[C2

dðx; x0Þ; (9)

where d is a distance function (e.g. the Bhattacharyya distance). In

words, the distance between C1 and C2 is the smallest distance to

merge the two clusters and the largest distance possible between

any point and the prototype that is the point giving the smallest

distance among the largest distances between all paired points in

C1 and C2. That is, for a given height h, the minimax linkage as-

sures that the distance between any point and the prototype for a

cluster is �h.

Cluster analysis is performed separately for each condition and

we cut a minimax clustering of features with the Bhattacharyya dis-

tance at h¼0.05 that corresponds to approximately 95% overlap

between two distributions. We then create a set of clustered features

common in both conditions and use its elements as possible com-

mon divisors. Let’s assume, for instance, that we had a set of

two clusters ffA;B;Eg; fC;Dgg for one condition and three clusters

ffAg; fB;C;Dg; fEgg for another condition. We would then have a

set of possible common divisors ffAg; fBg; fC;Dg; fEgg.

2.4 Identification of DAFs
To compare ratios across different conditions, the common divisor

must be a non-DAF or a group of non-DAFs. However, the identifi-

cation of non-DAFs or DAFs, which is the ultimate goal of the ana-

lysis of differential abundance, is not attainable without a priori

information or assumption. Under the assumption that majority of

features are not differentially abundant, the number of DAFs

obtained with a non-DAF or a group of non-DAFs as a common div-

isor should be the smallest. This assumption is stronger than neces-

sary in most cases as shown in the proof of Proposition

(Supplementary File).

Proposition: Under the assumption that majority of features are

not differentially abundant, the minimum number of DAFs is

achieved when a non-DAF or a group of non-DAFs is used as a com-

mon divisor.

In other words, the common divisor that gives the smallest num-

ber of DAFs is a non-DAF or a group of non-DAFs. DAFs obtained

with this common divisor are the most probable, true DAFs. To

identify this common divisor and the corresponding DAFs, we re-

peat the following steps for each possible divisor obtained in the sec-

tion 2.3:

1. Sum up the counts of features in a possible common divisor for

each sample, which will reduce variation in counts across sam-

ples since the abundance of all features in a possible common

divisor is assumed to be statistically identical.

2. Compute the ratios r�ij with these sums as a common divisor.

3. Estimate h using the EM algorithm for each condition.

4. Construct a moderated t-statistics (Smyth, 2005) for the log

ratio of each feature yij using the estimated mean l and variance

r2 and obtain P values for the null hypotheses, H0 : l1 ¼ l2 for

all features.

5. Adjust P values using a multiple testing correction method. In

this study, we used the Benjamini–Hochberg (BH) procedure

(Benjamini and Hochberg, 1995).

6. Compute the number of DAFs.

In the step 2 earlier, if the sums contain zeros, we treat the zeros as

missing values since the probability of the zeros being true zeros be-

comes small when a cluster contains more than a few features,

that is, the zeros result most likely from undersampling. We estimate

the missing values using the following steps of a parametric

approach:

i. Compute the ratios of a common divisor to a feature, that has

non-zero counts in all samples. Note a common divisor is in the

numerator here.

ii. Log-transform the non-zero ratios and estimate the mean and

SD of the log-ratios.

iii. Generate random normal values with the estimated mean and

SD.

iv. Transform log-ratios to ratios.

v. Multiply the estimated ratios by the corresponding counts of

the feature.

For the temporarily removed features in the selection of possible

common divisors, which have �2 non-zero counts in all samples in a

condition, we compute their ratios using the common divisor ob-

tained by the earlier steps after splitting them into two cases: (i) at

least one non-zero in each condition and (ii) all zeros in one of con-

ditions. We then use a two-sample moderated t-test for the first

case. However, for the second case, we use a one-sample moderated

t-test to test whether a distribution of ratios contains �. Finally, we

combine all the features and readjust P values using a multiple test-

ing correction method, BH procedure, to control the FDR. A flow

chart of RAIDA is given in Supplementary File.

3 Results

3.1 Simulation studies
To compare the performance of RAIDA to that of edgeR,

metagenomeSeq and Metastats, we used simulated data where we

can control the settings and the true differential abundance of each

feature. We simulated counts using a zero-inflated negative binomial

model:

Cij �
0 with probability ni

NBðli; ciÞ with probability 1� ni

;

(
(10)

where we use mean l and size c as the parameterization of a nega-

tive binomial, such that its probability mass function is

PNBðC ¼ cÞ ¼ Cðcþ cÞ
CðcÞCðcþ 1Þ

c
cþ l

� �c l
cþ l

� �c

; (11)

giving EðCÞ ¼ l and VarðCÞ ¼ lþ l2=c.

To minimize any possible bias toward any method, we randomly

generated the mean l and size c parameters from wide ranges of

values partially drawn from real data (Supplementary File).

For instance, the computed range of c for non-zero counts from the
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real data was ð0:139; 1690Þ, but we used c 2 ð0:1; 10Þ because c is

highly frequent in the range (0, 10) (Supplementary Fig. S2 in

Supplementary File). It is worth noting that the analysis of differen-

tial abundance with small or moderate number of samples is often

difficult when c is small. For each condition, we sampled 1000 fea-

tures with different percents—10, 20 and 30%—as DAFs, whose

differences between conditions are randomly selected from 2 to 6 at

varying sample sizes: m¼10, 15, 25 and 50. The sample scaling fac-

tor or the depth of coverage was also randomly selected from 1 to

10. The details for the setting of balanced and unbalanced condi-

tions can be found in the Supplementary File. We repeated the same

settings for both the balanced and unbalanced conditions. See

Supplementary Table S2 in Supplementary File for further explan-

ation and summary of parameter ranges.

We used three measures to compare the performance of the four

methods: true-positive rate (TPR) versus false-positive rate (FPR),

false discoveries (FD) versus features selected, and true positives and

FD at a FDR of 0.05. Figure 2 shows the results of the first measure,

TPR versus FPR, in terms of a partial receiver operating characteris-

tic (ROC) analysis for four settings: 10 and 20% DAFs for the bal-

anced and unbalanced conditions. Note that the nearer a ROC

curve is to upper left corner, the better a method is. All the methods

except Metastats perform similarly in the balanced conditions but

not in the unbalanced conditions: there is a noticeable deterioration

in performance for edgeR, metagenomeSeq and Metastats as the

percent of DAFs increases. Partial ROC curve plots for different set-

tings are given in Supplementary Figures S3, S5 and S7 in

Supplementary File.

The FD plot is often more interesting since it emphasizes the per-

formance of a method on a selected number of significant features.

Figure 3 shows FD plots for the same settings used in Figure 2.

Clearly, a smaller number of FD is preferable. The performance of

edgeR, metagenomeSeq and RAIDA is comparable in the balanced

conditions and the 10% DAFs unbalanced conditions. However, for

the 20% DAFs unbalanced conditions RAIDA results in fewer FD

than the other methods. FD plots for different settings are given in

Supplementary Figures S4, S6 and S8 in Supplementary File.

Figure 4 shows the numbers of true positives and false positives

resulting from the four methods for the same four settings with dif-

ferent sample sizes: m¼10, 15, 25 and 50. Each bar represents the

total number of features that statistically significant at the

FDR<0.05. The white segment in each bar is the number of true

positives, and the gray segment is the number of false positives.

Note the proportion of the gray segment in each bar defines the

FDR. In terms of the power that is defined by the ratio of true posi-

tives to positives, metagenomeSeq and RAIDA give better results

than the other two methods in all the different settings. However,

metagenomeSeq has a significantly high FDR in both the balanced

and unbalanced conditions. In terms of controlling FDR, edgeR per-

forms best for the balanced conditions, and RAIDA and Metastats

follow next. However, for the unbalanced conditions RAIDA sur-

passes edgeR as the percent of DAFs increases. As clearly shown in

Figure 4, the most appealing characteristic of RAIDA is consistency

in performance: the power and FDR of RAIDA depend only on the

number of samples. That is, RAIDA does not depend on the amount

of difference in total abundances of DAFs across different

conditions, which is very critical since we do not have a priori infor-

mation of metagenomic samples. The results for 30% DAFs are

given in Supplementary Figure S9 in Supplementary File and it is

clear that RAIDA performs comparable with other methods for

the balanced conditions but exceeds others for the unbalanced

situations.

The computation time for RAIDA on a dataset containing 30

samples of 1000 features is about 30 s on a desktop with a 3.5 GHz

CPU and 16 GB of memory. The comparison of computation time

for the tools used in the simulation studies is given in Supplementary

Table S3 in Supplementary File. The computational time for RAIDA

is longer than the times for edgeR and metagenomicSeq but shorter

than for Metastats.
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Fig. 2. Partial of mean ROC curves for 10 and 20% of DAFs in the balanced

and unbalanced conditions with 10 samples of each condition, based on 100

simulations with 1000 features. The shades around the lines are 95% confi-

dence bands
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simulations with 1000 features. The horizontal axis is the number of features

in ascending order of P value (i.e. the most significant feature first), and the

vertical axis is the number of falsely identified features. The shades around

the lines are 95% confidence bands
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3.2 Analysis of real data: diabetes II datasets
We applied RAIDA to 30 fecal DNA samples from male Chinese

subjects with type II diabetes (N¼15) and non-diabetic controls

(N¼15) (Supplementary Table S4 in Supplementary File), which

were selected from 345 fecal DNA samples in the original datasets

(Qin et al., 2012). We first performed sequence alignments for each

sample against the bacterial reference genomes in NCBI using

BLASTN and then used TAEC (Sohn et al., 2014) to estimate abun-

dance of bacteria at the species level. The detailed information about

reads and parameters used in BLASTN and TAEC is given in

Supplementary File. On the count data, we applied RAIDA and

identified differentially abundant species across fecal DNA samples

of type II diabetics and non-diabetic controls.

The statistically significant species, at a confidence level of 95%

before multiple testing correction, are shown in Figure 5. After the

BH multiple testing correction, only two bacteria, C.botulinum (ad-

justed P value¼0.02) and C.cellulovorans (adjusted P value¼0.02),

are significantly different at the FDR<0.05. This result is similar but

more specific in terms of taxonomic ranks to the previous findings

(Larsen et al., 2010) obtained by real-time quantitative polymerase

chain reaction and 16S rRNA gene analyses. The proportion of class

Clostridia was significantly lower (P¼0.03), but the mean proportion

of class Bacteroidetes was higher (not statistically significant) in the

diabetics compared with the controls. Moreover, proteins produced

by the bacteria C.botulinum and C.cellulovorans are involved in the

KEGG pathways for type II and type I diabetes mellitus, respectively.

Of particular interest is the bacterium C.botulinum, which pro-

duces a highly potent neurotoxin botulinum toxin. In previous studies,

botulinum toxin type A, commercially known as Botox, has been

shown to improve symptoms in patients with diabetic gastroparesis

(Lacy et al., 2004) and release diabetic neuropathic pain (Yuan et al.,

2009). Also, Rickman and his team at the Heriot-Watt University

have been observing SNARE proteins, which are known to be
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responsible for insulin secretion, targeted by Botox to find new meth-

ods of diagnosis and treatment for type II diabetes (http://www.hw.ac.

uk/news-events/news/botoxs-target-could-hold-cure-diabetes-12960.

htm). Raw and adjusted P values for the species whose raw P values

are <0.05 are given in Supplementary Table S5 in Supplementary File.

4 Discussion

Even though the importance of microbial communities from the nat-

ural environment, industry and health has been well acknowledged,

the composition of microbial communities is still barely known.

Therefore, a method for identifying DAFs in metagenomic samples

should not depend on characteristics of microbial communities across

different conditions, such as the amount of difference in total abun-

dances of DAFs across different conditions. RAIDA has been de-

veloped to satisfy this essential criterion, specifically for the analysis of

differential abundance across different, but closely related conditions,

such as healthy and diseased, where majority of features are unlikely

differentially abundant across conditions. We have shown the consist-

ency of RAIDA on various types of samples in the simulation study.

In this study, we used the smallest non-zero ratio for the value of

� in our modified ZIL model, Equation (2). However, some other

quantities such as the smallest number in the 5th percentile can be

used in the estimation of DAFs across different conditions. As an il-

lustration, we analyzed the simulated data for the 10 and 20%

DAFs in the balanced and unbalanced conditions for the sample size

m¼15 using the smallest number in the 5th percentile for �. We

then compared results with those obtained using the smallest non-

zero ratio for �. Both the values of � give almost identical results in

terms of TPR and FPR as shown in Supplementary Figure S10 in

Supplementary File.

A non-DAF can be a common divisor but will not provide reli-

able results if the non-DAF contains more than a few zeros, which is

often the case, because all the zeros will be treated as missing values

and estimated even if some zeros are truly zero. It will be similar for

a group of non-DAFs with a few members. Since we assume that the

majority of features are not differentially abundant, it is highly prob-

able that non-DAFs form one of the largest cluster. Therefore, it is

more practical to use only the clusters with larger numbers of fea-

tures as possible common divisors.

We have optimized our calculations to the analysis of differential

abundance between two conditions of samples such as healthy versus

diseased in this article. However, our method can be easily extended

to more than two conditions. Note it is just a two-sample t-test with

modified variances for two conditions. Thus, for more than two con-

ditions, the test will be just the analysis of variance with modified

variances. Nevertheless, our method may not be applicable for too

many conditions where a common divisor with more than one feature

for all conditions may not exist. Moreover, even though we have de-

veloped our method for metagenomic data, our method should be ap-

plicable to other types of count data such as RNA-seq data. However,

our method might not be appropriate for the comparison of environ-

mentally different samples (e.g. soil versus sea water, or human gut

versus soil), where the assumption that majority of features are not

differentially abundant could be violated.
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