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Abstract

Purpose of review—Acute kidney injury (AKI) is a common complication in critically ill 

patients and is associated with increased morbidity and mortality. Sepsis is the most common 

cause of AKI. Considerable evidence now suggests that the pathogenic mechanisms of sepsis-

induced AKI are different from those seen in other etiologies of AKI. This review focuses on the 

recent advances in this area and discusses possible therapeutic interventions that might derive 

from these new insights into the pathogenesis of sepsis-induced AKI.

Recent findings—The traditional paradigm that sepsis-induced AKI arises from ischemia has 

been challenged by recent evidence that total renal blood flow (RBF) in is not universally 

impaired during sepsis, and AKI can develop in the presence of normal or even increased RBF. 

Animal and human studies suggest that adaptive responses of tubular epithelial cells to injurious 

signals are responsible for renal dysfunction. Simultaneously occurring renal inflammation and 

microcirculatory dysfunction further amplify these mechanisms.

Summary—An understanding of the pathologic mechanisms of sepsis-induced AKI emphasizes 

the important role of maladaptive responses to the septic insult. Preventive and therapeutic 

measures should be based on counteracting these maladaptive responses of tubular epithelial cells, 

inflammation, and microvascular dysfunction.
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Introduction

Acute kidney injury (AKI) occurs in 1–35% of hospitalized patients and is associated with 

high mortality [1]. The incidence of AKI after general surgery has been reported to be about 
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1%, whereas the incidence among critically ill patients can be as high as 70%, with an in-

hospital mortality of 50% when AKI is part of the multiple organ dysfunction syndrome [2, 

3]. AKI is an independent risk factor for death [4], and patients who survive have an 

increased risk to develop chronic kidney disease. AKI is a syndrome comprising multiple 

clinical conditions, and outcomes are influenced by underlying disease. The most common 

cause of AKI in critically ill patients is sepsis. Despite considerable research during the last 

decades, the pathophysiology of sepsis-induced-AKI remains incompletely understood.

In the not-so-distant past, sepsis-induced AKI was considered a disease of the renal 

macrocirculation [5] resulting from global renal ischemia, cellular damage and acute tubular 

necrosis (ATN). However, an increasing body of evidence suggests that AKI can occur in 

the absence of hypoperfusion [6*, 7]. In a human study, Prowle et al. were able to 

demonstrate that decreased renal blood flow (RBF) was not a universal finding in patients 

with sepsis-induced AKI [8]. In addition, Murugan et al. [9] demonstrated in a prospective 

multicenter study of more than 1800 patients with community-acquired pneumonia that AKI 

was a common condition, even in patients without severe disease. Higher cytokine levels 

(e.g. interleukin 6) were associated with severity and worsening of AKI [9]. Moreover, most 

of the patients with sepsis-induced AKI were never admitted to the intensive care unit nor 

suffered from hemodynamic instability [9]. Complementary to the insights from clinical 

studies, in vitro experiments have revealed that incubating human epithelial cells with 

plasma from septic patients resulted in decreased cell function and shortened the survival of 

tubular cells and podocytes, suggesting that the plasma from septic patients can induce renal 

cell injury and dysfunction absent any vasculature or circulating immune effector cells. 

Recent postmortem studies attempted to more closely describe the pathological changes in 

septic kidneys [10**, 11]. Despite representing the latest stages of the disease, these kidneys 

were characterized by a strikingly bland histology with focal areas of tubular injury, which 

was also entirely discordant with the profound functional impairment seen pre-mortem. 

Interestingly, all these changes can occur in the presence of a normal RBF, and define the 

clinical phenotype characterized by a reduced glomerular filtration rate and tubular 

dysfunction. Although RBF does not universally decrease during sepsis, some data exist 

suggesting that the blood pressure can directly influence the perfusion of the kidney and 

GFR under some pathological conditions [12] and that a higher blood pressure in patients 

with previous hypertension can prevent AKI during sepsis [13]. These data support the 

hypothesis that mechanisms other than tissue hypoperfusion are involved in the pathogenesis 

of sepsis-induced AKI. A consistent finding in septic humans, independent of the severity of 

AKI, is the presence of three pathologic findings: microcirculatory dysfunction, 

inflammation, and bio-energetic adaptive response to injury. The aim of this review is to 

discuss the role of these mechanisms in the genesis of sepsis-induced AKI and the potential 

therapeutic implications.

Pathophysiology of sepsis-induced AKI

Although the functional consequences during sepsis-induced AKI are dramatic, the 

histological changes are moderate and do not entirely explain the clinical phenotype. Recent 

evidence suggests that instead of a single mechanism being responsible for its etiology, 

sepsis is associated with an entire orchestra of cellular mechanisms, adaptive and 
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maladaptive, which potentiate each other and ultimately give rise to clinical AKI. The 

microcirculation is perhaps the more important physiological compartment where these 

mechanisms come together and exert their integrated and deleterious action. These 

mechanisms include endothelial dysfunction, inflammation, coagulation disturbance, and 

adaptive cell responses to injury (Figure 1) [7]. Therefore, we hypothesize that a key event 

in the early dysfunction of the kidney during sepsis is a bio-energetic stress of the tubular 

epithelial cells, in response to the amplified inflammatory signal that peritubular 

microvascular dysfunction generates.

Renal microcirculation during sepsis-induced AKI

Sepsis causes a profound alteration of the macro- and microcirculation and is characterized 

by a decreased peripheral vascular resistance, maldistribution of tissue blood flow, and 

derangement of microcirculatory perfusion. These alterations cause a significant decrease in 

functional capillary density [14, 15] and an increment in the heterogeneity of regional blood 

flow distribution [16].

During the initial hyperdynamic stage of sepsis, when AKI develops, cardiac output is 

usually increased. RBF was markedly increased in a sheep model of sepsis [17], and yet 

AKI developed despite increased RBF [18]. Similarly, postmortem studies on septic patients 

have shown the heterogeneous distribution of tubular cellular injury with apical 

vacuolization, but without extensive apoptosis or necrosis [10*]. Alterations in the 

microcirculation in the renal cortex or renal medulla can occur despite normal or even 

increased global RBF [19]. Increased renal vascular resistance may represent an important 

hemodynamic factor that is involved in the development of sepsis-induced AKI.

Of course decreased RBF can cause injury to kidney and when sepsis-induced renal 

microvascular dysfunction is combined with an increase in intra-abdominal pressure, 

increased renal vascular resistance results. Measurement of renal vascular resistance using 

renal Doppler at the bedside has been proposed by Deruddre and colleagues [20] as a tool to 

titrate norepinephrine in septic shock patients based on the renal arterial resistance to 

determine the optimal mean arterial pressure. However, whether improvement of regional 

blood flow, even in this sub-population of patients will prevent tubular damage remains to 

be substantiated.

Platelets, fibrin, stiff red blood cells and leukocytes together with endothelial cell swelling 

are responsible for capillary occlusion [21]. Increased vascular permeability is a common 

feature in sepsis and leads to interstitial edema and fluid retention (Figure 1) [22, 23]. In 

addition to its association with the severity of sepsis, fluid overload and interstitial edema 

increase the diffusion distance for oxygen to target cells [24]. Similar findings can be 

observed in the renal microcirculation [25]. Furthermore, as the kidney is an encapsulated 

organ, fluid accumulation and tissue edema contribute to the observed deterioration of renal 

microcirculatory perfusion by altering transmural pressures and by aggravating venous 

congestion [26*, 27].

Endothelial cells are important determinants of vascular tone, leukocyte recruitment and 

function, and alter the responsiveness of smooth muscles [28]. Injured endothelial cells 
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produce less vasodilators (e.g. nitric oxide) resulting in a more pronounced response to 

vasoconstrictors with a redistribution of blood flow. The imbalance between 

vasoconstrictors, vasodilators and oxidative stress at the endothelial level is receiving 

considerable attention as a major contributor to the development of AKI. Augmented 

vasoconstriction, small vessel occlusion due to the interaction of leukocytes with activated 

endothelial cells, and activation of the coagulation system results in local compromise of the 

microcirculation and regional ischemia [25, 29]. The patchy tubular cell injury [10**] 

probably reflects the heterogeneous distribution of RBF caused by microcirculatory 

dysfunction.

Nitric oxide (NO) plays a pivotal and multifaceted role in the complex pathophysiology of 

sepsis [30] and sepsis-induced AKI [31]. During sepsis, global NO production increases, 

whereas the producing enzyme, inducible NO synthase (iNOS), has a heterogeneous 

expression pattern, resulting in different regional concentrations of NO [30]. The uneven 

distribution of NO production may contribute to the heterogeneous perfusion pattern. 

However, elevated NO also influences renal hemodynamics and causes peroxynitrite-related 

tubular injury through the local generation of reactive nitrogen species during sepsis [32]. 

Evidence suggests that this may play an important role as up-regulation of iNOS has been 

associated with proximal tubular injury during systemic inflammation, and its selective 

inhibition, with amelioration of the functional impairment caused by cecal ligation and 

puncture [33]. Therefore, the selective inhibition of renal iNOS might have an implication 

for the treatment of sepsis-induced AKI.

Inflammation propagates renal damage during sepsis

There is a strong association between cytokine levels (interleukin (IL)-6, IL-10, and 

macrophage migration inhibitory factor) and the development of sepsis-induced AKI [9, 34], 

suggesting an important role of systemic inflammatory mediators in this process. During 

sepsis, infection triggers a host response, in which inflammatory mechanisms contribute to 

clearance of infection and tissue recovery on the one hand, and organ injury on the other 

[35]. Pathogens activate a variety of cells including renal epithelial and dendritic cells 

through an interaction with pattern-recognition receptors including toll-like receptors (TLR), 

C-type lectin receptors, retinoic acid inducible gene 1-like receptors, and nucleotide-binding 

oligomerization domain-like receptors [36]. The engagement of these receptors results in the 

up-regulation of inflammatory gene transcription and initiation of innate immunity. The 

same receptors can also detect endogenous molecules released from injured cells, so-called 

damage-associated molecular patterns, such as DNA, RNA, histones, HMGPB1, and S100 

proteins [37].

The cytokine storm during the initial phase of severe sepsis activates leukocytes, endothelial 

cells, and epithelial cells leading to leukocyte and platelet activation, microvascular 

dysfunction, hypoxia, and tissue damage [35]. Pro-inflammatory mediators activate 

endothelial cells and increase vascular permeability (Figure 1). Activated endothelial cells 

up-regulate the expression of adhesion molecules and release additional pro-inflammatory 

mediators. E-selectin, specifically induced on the endothelium upon inflammatory 

stimulation, has been demonstrated to play a major role in leukocyte recruitment into the 
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kidney during the late stages of sepsis-induced AKI [38*]. Experimental data highlight the 

importance of leukocyte recruitment into the kidney [38*] especially in later stages of AKI. 

Although not seen in all models of sepsis-induced AKI [39] elimination of neutrophils or 

blocking adhesion molecules that are required for neutrophil recruitment into the kidney 

completely abolished sepsis-induced AKI in a cecal ligation and puncture (CLP)-induced 

sepsis model [38*]. This observation can be explained by the fact that adherent and 

transmigrated neutrophils release reactive oxygen species, proteases, elastases, 

myeloperoxidase, and other enzymes that damage the tissue. These substances, together with 

leukotriene B4 and platelet-activating factor, can both increase vascular permeability and up-

regulate the expression of adhesion molecules that promote further inflammation [6*, 40, 

41]. Leukocytes leaving peritubular capillaries have a close proximity to tubular epithelial 

cells and can directly activate tubular epithelial cells by releasing pro-inflammatory 

mediators and DAMPs (Figure 1). Based on the special location of tubular epithelial cells, 

these cells can also be activated from the tubular side [42]. DAMPs, PAMPs, and pro-

inflammatory cytokines are filtered in the glomerulus, enter the proximal tubulus and can 

directly activate tubular epithelial cells resulting in a change of the metabolic and functional 

state of these cells (Figure 1). It has been recently shown that these molecules can bind to 

and activate tubular cells by binding to TLR-2 and -4 [43–44, 45*, 46]. While animal studies 

have linked TLR4 signaling to kidney injury, the relevance of TLR activation in human 

kidney was unknown until recently. In a very elegant human study, Krüger et al. [43] 

demonstrate that TLR4 is constitutively expressed in kidneys and that tubules in damaged 

kidneys also stain positively for HMGB1, a known endogenous TLR4 ligand. In vitro 

stimulation of human tubular epithelial cells with HMGB1 confirmed that HMGB1 can 

stimulate pro-inflammatory responses through TLR4 [43]. The released pro-inflammatory 

mediators can act in an autocrine and paracrine fashion and may contribute to further tubular 

cell damage. In agreement with these findings, kidneys with a TLR4 loss-of-function allele 

contained less TNF-α, MCP-1, and more heme oxygenase 1 [43]. During sepsis, endotoxin 

in the tubule binds to TLR4 on S1 proximal tubule cells, which subsequently causes 

oxidative stress in cells of the neighboring S2 segment [44], suggesting that targeting TLR4 

signaling may have value in preventing or treating AKI.

Adaptive responses of tubular cells to changes in the local environment

Tubular cells exposed to inflammation and the consequences of microcirculatory 

dysfunction act as primary targets and respond by adaptation to the altered tubular 

environment. They may also spread this signal and shutdown other tubular cells in a 

paracrine fashion [43]. Microvascular dysfunction occurs in heterogeneous regions of the 

kidney and therefore may explain the heterogeneous histopathologic changes of tubular 

epithelial cells.

Oxidative stress is a hallmark of sepsis-induced AKI. Postmortem studies in humans with 

sepsis-induced AKI show apical epithelial tubular cell vacuolization, which has been linked 

to oxidative stress [47]. Cultured tubular cells and podocytes treated with components of 

bacteria or plasma from patients with severe burns and sepsis associated AKI produce 

reactive oxygen species (ROS) [48] or undergo apoptosis [48]. Oxidative stress is also 

linked to tubular dysfunction [50]. Recent studies demonstrate that apoptosis of tubular cells 
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is rare during sepsis-induced AKI [10**], suggesting that tubular epithelial cells exposed to 

hypoxia and inflammation limit processes that can result in apoptosis or necrosis (Figure 1). 

This can be achieved by an adaptive response of tubular cells characterized by 

downregulating metabolism and undergoing cell-cycle arrest (Figure 1) [51–53]. This 

response may be orchestrated by mitochondria and limits further damage and provide cells 

with the opportunity to recover function. Swollen and injured mitochondria, which can be 

found in humans with sepsis-induced AKI, cause a reduced tubular cell function by 

prioritizing the existing energy to functions that are required for cell survival. Another 

important feature is mitophagy. This is process that removes damaged mitochondria through 

autophagy and can be induced in the kidney by several factors including inflammation and 

oxidative stress [54]. Decreased mitophagy is associated with a proximal tubular 

dysfunction, cell and organ dysfunction, and worse outcome in critically ill patients [54]. 

Furthermore, abnormal mitophagy has also been linked progressive renal injury [55]. 

However, mitophagy was significantly up-regulated in septic kidneys [10**]. As most of the 

patients had an already established AKI, this observation let us speculate that increased 

mitophagy contributes to renal recovery.

Mitochondria are also involved in cell cycle arrest, which is a quality control process of cell 

division. Recent clinical studies have independently demonstrated that two markers involved 

in G1 cell cycle arrest, insulin-like growth factor-binding protein 7 (IGFBP7) and tissue 

inhibitor of metalloproteinase 2 (TIMP-2), predict AKI in critical ill patients and in patients 

undergoing cardiac surgery [56*, 57, 58**], suggesting that cell cycle arrest of tubular 

epithelial cells is involved in AKI. The reduction in ATP production triggers cell cycle arrest 

[59]. Therefore, a reduced ATP level may induce cell cycle arrest in these cells and prevent 

the cell from undertaking a process that could end in cell death. Interestingly, these cell 

cycle arrest markers can also predict renal recovery [56*, 60].

Potential for diagnostic and therapeutic targets

To date no therapeutic measures are available to prevent or treat sepsis-induced AKI. A 

potential reason for this may be that often therapy is started too late in the disease process. 

The development of new biomarkers, which also provide insights in the pathophysiology of 

the disease, makes it possible to detect kidneys at risk for injury and thus enable earlier 

initiation of interventions [56*, 57, 58**].

The knowledge that inflammation, microvascular dysfunction, and adaptive responses of 

tubular cells are involved in the development of sepsis-induced AKI provides new 

diagnostic and therapeutic avenues. As these mechanisms are closely interlinked with each 

other, modulating one of these components simultaneously alters other components. The 

recognition of inflammation has triggered the investigation of therapeutic strategies to 

dampen inflammation to prevent/treat AKI. As increased levels of pro-inflammatory 

mediators (e.g. IL-6) are associated with the development of AKI [34], it is tempting to 

speculate that eliminating these mediators or endotoxin can prevent sepsis-induced AKI. 

Indeed, elimination of cytokines and endotoxin is feasible by hemoadsorption [61, 62] and 

experimentally it has been shown that hemoadsorption completely protects against AKI in a 

CLP-model of sepsis [63]. A clinical study demonstrated that reducing endotoxin by 
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polymyxin-B hemoperfusion reduced RIFLE scores and urine tubular enzymes [62]. 

Another option to interfere with cytokines and endotoxin is the application of exogenous 

alkaline phosphatase. Alkaline phosphatase (AP) is an endogenous enzyme that exerts 

detoxifying effects through dephosphorylation of endotoxins and pro-inflammatory 

extracellular ATP and is reduced during systemic inflammation. Heemskerk and colleagues 

[64] demonstrated that AP application was associated with a decreased expression of iNOS 

synthase in proximal tubule cells isolated from urine related to an attenuated urinary 

excretion of an proximal tubule injury marker. In a small, randomized trial, Pickkers et al. 

showed that the administration of exogenous AP in septic patients improved endogenous 

creatinine clearance and reduced the requirement and duration of renal replacement therapy 

[65]. Modulating TNF-α signaling might be another therapy option, because a 

polymorphism in the promoter region of the TNFA gene is associated with markers of 

kidney disease severity and distant organ dysfunction [66]. However, it is important to keep 

in mind that these pro-inflammatory mediators are required for the host response and 

bacterial clearance during sepsis and that they can later provide necessary signals for the 

resolution of injury.

Microcirculatory dysfunction during AKI initiates hypoxia and inflammation. To improve 

the microcirculatory perfusion, vasodilators in the setting of sepsis are currently under 

investigation including nitroglycerin [14, 67], NO administration, and modulation of NO 

production [30, 32]. Furthermore, drugs with pleiotropic effects on the vasculature, such as 

statins [68] and erythropoietin [69], have the potential to prevent kidney injury by enhancing 

eNOS expression and decreasing vascular permeability. However, on the basis of the 

different mechanisms involved in sepsis-induced AKI and the interrelationship among these 

mechanisms, it is unlikely that a single treatment modality may emerge as a magic bullet in 

the prevention and/or treatment of sepsis-induced AKI.

Conclusions

In conclusion, the old paradigm that sepsis-induced AKI is initiated by renal ischemia as a 

result of macrovascular dysfunction has been called into question, because AKI can also 

develop in the presence of normal or increased renal blood flow. Furthermore, in contrast to 

renal-ischemia reperfusion injury, which is characterized by apoptosis or necrosis of tubular 

epithelial cells, sepsis-induced AKI is characterized by healthy or reversible injured renal 

tubular epithelial cells. New evidence suggests that the inflammatory response during sepsis 

causes an adaptive response of the tubular epithelial cells. These alterations induce a 

downregulation of the cell function in order to minimize energy demand and to ensure cell 

survival. The result is reduced kidney function. The simultaneous occurrence of renal 

inflammation and microvascular dysfunction exacerbates the adaptive response of tubular 

epithelial cells to injurious signals. In addition, the endothelial cell injury is also of 

importance in the initiation and development of sepsis-induced AKI through the nitric oxide 

pathway, leukocyte adhesion, ROS, and inflammation. Targeting tubular epithelial cells and 

components of the microcirculation may be an effective strategy in preventing and/or 

treating sepsis-induced AKI.
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Key points

• The heterogeneous distribution of renal blood flow induced by the 

microcirculatory dysfunction probably causes patchy tubular cell injury during 

sepsis-induced AKI, whereas hypoxia and hypoperfusion may amplify 

inflammation and contributes to an adaptive response of tubular epithelial cells.

• Pro-inflammatory cytokines released during sepsis are filtered in the 

glomerulus, enter the proximal tubulus and can directly activate tubular 

epithelial cells resulting in a change of the metabolic and functional state of 

these cells.

• Recent clinical evidence suggests that G1 cell cycle arrest of tubular epithelial 

cells is involved in AKI.

• As different mechanisms are involved in sepsis-induced AKI, it is unlikely that 

a single treatment may be able to prevent or treat sepsis-induced AKI.
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Figure 1. During sepsis, DAMPs, PAMPs, and cytokines may potentially injure tubular cells 
from the tubular and interstitial side
Inflammatory mediators derived from bacteria or immune cells are filtered in the 

glomerulus, enter the tubular space and can subsquently injure by tubular cells by binding to 

their respective receptors. In addition, cytokines, DAMPs, and PAMPs are released from 

extravasated leukocytes and can also activate tubular cells from the interstitial side. The 

activation of cytokine or DAMP/PAMP receptors may induce apoptosis or cell cycle arrest.
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