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Abstract

Neonatal brain hemorrhage (NBH) of prematurity is an unfortunate consequence of preterm birth. 

Complications result in shunt dependence and long-term structural changes such as post-

hemorrhagic hydrocephalus, periventricular leukomalacia, gliosis, and neurological dysfunction. 

Several animal models are available to study this condition, and many basic mechanisms, 

etiological factors, and outcome consequences, are becoming understood. NBH is an important 

clinical condition, of which treatment may potentially circumvent shunt complication, and 

improve functional recovery (cerebral palsy, and cognitive impairments). This review highlights 

key pathophysiological findings of the neonatal vascular-neural network in the context of 

molecular mechanisms targeting the post-hemorrhagic hydrocephalus affecting this vulnerable 

infant population.
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INTRODUCTION

Neonatal brain hemorrhage (NBH) occurs at a rate of approximately 3.5 times per 1,000 live 

births, and this is the most common neurological disorder of newborns [1]. The injury is 

defined as blood vessel rupture of subependymal immature (i.e. germinal–matrix) near the 

ganglionic eminence (neural and glial progenitor cell region) [2-3]. Severity of the bleeding 

is defined as grade I: isolated in the germinal matrix (i.e. GMH); grade II: GMH with 

intraventricular extension (IVH) without ventricular enlargement; grade III: GMH with IVH 

with ventricular enlargement; grade IV: GMH/IVH with intraparenchymal extension [4-5]. 

Others further subdivide the sub-types, according to less common bleeding location (i.e. 
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epidural, between skull and dura; subdural, between dura and arachnoid membranes; and 

subarachnoid) [6].

Extent of bleeding is the factor ultimately most associated with increased morbidity and 

mortality [7]. Grade 1-2 hemorrhage has been related to developmental disabilities; while 

grade 3-4 hemorrhages are associated with increased risk of hydrocephalus, as well as long-

term sequelae like mental retardation and cerebral palsy [8-9]. Ultimately, up to 85% of 

survivors of neonatal brain hemorrhage will exhibit major cognitive dysfunction; the 

majority of which eventually having special educational needs [10-11].

Despite extensive work in both human and animal studies regarding pathogenesis and 

prevention of neonatal brain bleeds, the incidence has remained relatively the same over the 

last two decades [12]. The risk and severity of neonatal brain hemorrhage are inversely 

related to the gestational age and weight at time of birth: there is a 1% incidence in human 

infants born between 38 and 43 weeks, and a 50% incidence between 24-30 weeks [13]. 

Occurring with nearly 15% of premature births (<37 weeks); and gestational age (often 

clinically related to body weight) is the most important clinical predictor of brain 

hemorrhage. Premature infants with weights between 500-750g have a 45% incidence of 

NBH [14]; 20% incidence for those <1000g (extremely low birth weight; ELBW); and about 

10% of <1500g (very low birth weight; VLBW) infants [15]. Importantly, since both 

preterm birth rates and neonatal survival have increased over the past two decades [16], the 

collective management of these newborns has become an ever increasing social and 

economic burden.

Post-hemorrhagic hydrocephalus often develops as a consequence of NBH [1-2]. Infants 

surviving this brain injury will often suffer from long-term neurological deficits from the 

expansion of the cerebroventricular system and subsequent mechanical compression of brain 

tissue [17]. This has been associated with other diseases of prematurity, and progressive 

neurologic sequelae such as epilepsy, cerebral palsy, and learning disability [18]. Factors 

related to neonatal brain hemorrhage include: vaginal delivery, low Apgar scores, seizure, 

hyaline membrane disease, hypoxia, hyper-/ hypo-carbia, patent ductus arteriosus, infection, 

thrombocytopenia, venous congestion, intravascular volume expansion, arterial hyper-/ 

hypo-tension, serum osmolarity changes, and local fibrinolytic activity [2, 5, 19-28]. Taken 

together, three overall factors seem to predispose NBH: 1) relative vascular fragility of the 

germinal matrix in comparison to other brain regions, 2) changes in cerebral blood flow 

(CBF), and 3) changes in hemostatic forces. Intracerebroventricular blood clots and 

thrombin have been implicated as causative factors for hydrocephalus development. Blood 

clots damage proper cerebrospinal fluid (CSF) absorption and circulation [17, 29]. Thrombin 

leads to obstruction of the cerebroventricular system by inducing proliferation of 

extracellular matrix (ECM) proteins, gliosis, and inflammatory responses [7, 30].

Therefore, NBH is a problem that generates much research interest, as ameliorating the 

hematoma consequences may alleviate permanent neurological impairments [31-32]. This 

article will review the pathogenesis of hydrocephalus with particular focus on the effect on 

neuronal structure and function. Long-term pathogenic outcomes from both animal and 

human studies show: 1) dissolution of the periventricular ependymal layer; 2) compression-
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induced ischemia of local microvessels; 3) reactive processes that include proliferation and 

activation of glial cells; and; 4) neuronal stretching potentially leading to neuronal 

dysfunction and death [33-38].

POST-HEMORRHAGIC VENTRICULAR DILATATION (PHVD)

Post-hemorrhagic ventricular dilatation (PHVD), commonly known as hydrocephalus is a 

serious complication of neonatal brain hemorrhage (see Fig. 1). Although this brain bleed 

usually occurs unilaterally, early bilateral non-communicating hydrocephalus can develop 

from cerebrospinal fluid outflow obstruction at the cerebral aqueduct or foramina of 

Magendie and Luschka. This is quite common, as over 50% of premature newborns with 

NBH studied at one institution had either died or required neurosurgical intervention with 

shunt placement; however in the early stage of brain bleed, most infants remain 

asymptomatic with incidental perinatal diagnosis by screening transcranial ultrasound or by 

other brain imaging technique [8]. PHVD can be physically evident with subtle or obvious 

neurologic changes in alertness, behavior, tone, respirations or cranial enlargement; later in 

life, the neurologic impairments become apparent, with many individuals developing 

cognitive or motor deficits [39-41].

PHVD results in periventricular white matter injury by a variety of mechanisms, such as: 

hypoxia-ischemia, altered interstitial flow from compressive forces, free radical injury, and 

cytokine abnormalities [38]. In addition, lack of regional autoregulation in cerebral 

vasculature and inadequate vascularization to periventricular regions may exacerbate 

hypoxia-induced injury [28, 42-44]. Both acute and chronic symptoms can be partially 

explained by periventricular white matter disease and dysfunction, which likely begins with 

ventricular expansion [5, 38]. Direct intraparenchymal extension of the hemorrhage can also 

damage proximal structures, such as the head of the caudate nucleus and the internal capsule 

[45], and delayed periventricular hemorrhagic infarcts were observed in the white matter 

from ischemic insult [5], could both partially explain the long-term neurologic dysfunctions 

observed clinically.

Early ventriculo-peritoneal shunting is often the treatment of choice, as it is associated with 

rapid improvement of some symptoms and short and long-term physiologic normalization 

[38]. However, despite its usefulness, this has expected complications, such as shunt failure 

at some point; and unexpected ones, specifically infection, or migration of individual parts. 

Less invasive therapies, including repeated lumbar or ventricular tapping of cerebrospinal 

fluid (CSF), intraventricular infusion of fibrinolytics, or diuretics have not yet been found 

effective [46-48].

Anatomic and pathologic descriptions of PHVD brains have been largely described, and 

immunohistochemical techniques have yielded valuable information [25, 49-50]. Fukimizu 

et al have described increased hemosiderin deposition, nodular gliosis, ependymal cell loss 

and underlying subependymal rosette formation in the ventricular wall following PHVD 

[51-52]. Other investigators have shown growth of glial progenitor cells in areas of 

ependymal cell loss after hydrocephalus, as indicated by high expression of nestin and 

vimentin in those brain regions [53]. Together, it was observed that pathologic findings were 
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greater in PHVD brains in comparison to those lacking ventricular dilation after IVH; 

suggesting the difference may be accounted by rapid increases of intracranial pressure. 

Regardless of the cause, hydrocephalus is associated with specific functional and behavioral 

deficits, with recent attempts made to isolate exact brain regions responsible [54-55].

The neonatal age of hydrocephalus development is possibly an important descriptor in the 

perinatal and infant period as it pertains to neurodevelopment. In animal models, 

hydrocephalus can be induced prenatally via genetically-engineered predisposition (i.e. the 

hydrocephalic Texas [H-Tx] rat [56]), or at later time of infancy using kaolin or silicone 

injections [57-58]. Studies comparing rat models using both techniques demonstrated that 

the resultant hydrocephalus causes abnormal cell proliferation in the periventricular 

germinal layer [56, 59-60].

PHVD delays myelination in white matter regions, which shows reversibility with early 

surgical shunting [61-63]. Parallel findings were found in humans using magnetic resonance 

imaging techniques [64] and post-mortem analysis [65]; demonstrating changed post-

operative myelination. In clinical terms, if shunting results in the cease of ventricular 

enlargement, it is referred to as arrested or compensated hydrocephalus. Whether pathologic 

changes actually stop post-operatively remains a point of contention. Observational studies 

show long-term neuropsychiatric disorder and benefit following shunting in young adults 

and adults with previous “arrested” hydrocephalus [66-69]. In light of such findings, 

increased effort has been on objectively identifying patients who will benefit from repeat 

shunting despite apparent clinical stability [70-72]. Especially challenging in this clinical 

situation has been the lack of an adequate animal model. Although perinatal hydrocephalus 

has been studied 8 weeks after treatment of H-Tx rats [73-75], its applicability to human 

subjects, who may harbor subtle organic disease for years, is questionable.

Cerebrospinal Fluid (CSF)

Surgical insertion of shunts for draining CSF from the ventricles into the peritoneum for 

absorption by the vasculature is the current primary method for clinically managing 

hydrocephalus; shunts, however, become obstructed and eventually have to be replaced [7]. 

Generally, the CSF functions to cushion the brain in the cranium, and acts as a medium for 

the transport away of waste products and the diffusion of trophic and autoregulatory factors 

to the parenchyma [76-77]. 80% of the CSF is produced by ependymal cells of the choroid 

plexus, with the remainder comprised of end-products of cerebral metabolism [78] and flow 

through the blood-brain barrier [79]. CSF drains to the subarachnoid space through the 

foramen of Magendie and the foramina of Luschka, where it is predominantly absorbed by 

arachnoid granulations into the venous sinuses. Removal of CSF is also achieved through 

drainage into nasal lymph compartments [80], but clinical significance has not been 

established.

Impendence of normal CSF flow or defective CSF production causes hydrocephalus (see 

Fig. 1), which may alter normal CSF function and lead to physiologic, structural, and 

neurobehavioral changes. Early neuropathological and ultra-sonographic studies in humans 

have suggested that ventricular dilation following IVH was due to initial plugging of 

arachnoid villi followed by the development of obliterative arachnoiditis, while meningeal 
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fibrosis and subependymal gliosis could cause outflow obstruction in the posterior fossa [49, 

81]. This model has been widely accepted; however, a more recent model using nuclear and 

magnetic resonance imaging has suggested that major CSF resorption occurs through brain 

capillaries [82]. In this proposed model, CSF crosses the ependyma and the blood-brain 

barrier of local microvessels into the venous system, where any factor impeding this process 

could lead to hydrocephalus.

Enhanced extracellular matrix (ECM) deposition has thus been implicated in the 

pathogenesis of PHVD and may work to impair CSF resorption. Furthermore, some 

hypothesize that inflammation changes of the choroid plexus and ependymal lining of the 

ventricles will result in both increased production of abnormal protein-rich CSF, and the 

impedance of trans-ependymal CSF migration. Demonstrated by colocalized nuclear factor-

KB (NF-KB) signaling and abnormal serum-derived IgG uptake by barrier cells; associating 

abnormal blood–brain barrier permeability with inflammation [83].

Periventricular Leukomalacia (PVL)

In the work by Cherian’s group, newborn rats who developed hydrocephalus had a 48% 

mean reduction in the thickness of the corpus callosum and a 31% mean reduction of the 

frontal cortex [84]. Immunohistochemistry techniques yielded further pathologic changes in 

white matter [84]. Although basic pathologic changes have been described from human 

samples, morphologic alterations noted in the rat model should be confirmed in human 

disease. In very premature infants, magnetic resonance imaging (MRI) has shown that 

cortical surface area and complexity are decreased when compared to infants born around 

term [85].

Subsequent MRI studies have found that brain changes persist into adolescence, with 

decreases in whole brain volume, cortical gray matter and hippocampal volume noted [86]. 

Similarly, premature infants with periventricular leukomalacia (PVL) exhibit both reduced 

cortical grey matter and total myelinated white matter at term [87], although other studies 

have suggested that those with PVL and NBH experience an accelerated growth of grey 

matter structures postnatally [88]. As a disease of prematurity, similar findings in PHVD can 

be expected. Further studies of postconditioning modalities (such as the 

phosphatidylinositol-3-kinase/Akt [89-90] neuroprotective pathway), may prove to up-

regulate regenerative pathways in order to mitigate these known losses in white matter, 

following neonatal brain hemorrhage.

Intracranial Pressure (ICP)

Findings in both animal models and humans have suggested that increased intracranial 

pressure and acute ventricular distension are important pathologic features of PHVD. For 

example, in the newborn rat model, during injection of blood or CSF into the lateral 

ventricles, intracranial pressure was raised approximately 8-times its normal level [84], 

which may reflect the raised intracranial pressure observed in premature infants developing 

PHVD [91] as discussed above. In regards to ventricular expansion, it has been previously 

shown in one study that 40% of adults treated for severe primary IVH develop 

hydrocephalus requiring shunting [92], while in VLBW infants, the severity of IVH was the 
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major predictor of short term adverse outcomes, including the development of PHVD [8]. In 

light of the fact that blood and CSF produce ventricular dilatation similarly in the rat model 

[84], acute elevation of intracranial pressure, not blood composition, is likely particularly 

important in the pathogenesis of PHVD.

Premature infants with PHVD have CSF pressures three-fold higher (9.1 mm Hg) than 

control patients [91]. In the same study, CSF pressures continued to be elevated, but less 

than two-fold, in “arrested” cases where ventricular dilatation was stable or reversing. At 15 

mm Hg, blood flow through major cerebral vessels can be halted during diastole, which is 

restored when intracranial pressure is reduced to 6 mm Hg [29]. In addition, deep white 

matter vessel density is transiently decreased in preterm gestation [44]. Combined, these 

factors give periventricular white matter high susceptibility to ischemic-hypoxic injury. 

Periventricular axons therefore appear to be the primary target of ventricular expansion, with 

axonal degeneration and other neuronal distortions demonstrated that may occur 

independent of ischemia [34-35, 38, 57, 93-94]

Shunting is accompanied by both expected and unexpected outcomes, and, in addition, some 

pathologic changes that occur prior to shunting are likely not reversible. Much focus has 

been placed on early interventions, including quickly identifying patients that will most 

benefit from shunting. Other therapies involving early fibrinolytic therapy were investigated 

in animals [95-98], and in humans [46]. White et al have proposed a new treatment method 

of drainage, irrigation and fibrinolytic therapy (DRIFT). Studied in human neonates, DRIFT 

aims to remove cytokine and iron-containing blood products from early hydrocephalic 

brains [99]. The breakdown of clot facilitates the irrigation of blood from the ventricular 

system. A reduction of CSF concentrations of transforming growth factor-beta (TGF-β) may 

be one beneficial outcome of such therapies. Other interventions that block the release or 

action of TGF-β may be found effective; however, such treatments must aim to avoid the 

unintended cerebral damage demonstrated in TGF-β1 knockout mice [100]. Prematurity 

remains a common occurrence with strong pathologic associations, including IVH and 

PHVD. Animal models, particularly newborn rat models of these diseases, can be used 

effectively in pre-clinical investigations of pathogenesis, pathophysiology, and treatment of 

IVH and its complications, as is further elaborated in this review.

NEUROVASCULAR UNIT

Blood-Brain Barrier (BBB)

Dr. Ballabh’s group has collected much information regarding the structural and molecular 

characteristics of each individual blood-brain barrier component [101-106]. Much of the 

data was obtained through samples from post-mortem fetus and premature infants. 

According to their findings, in prematurity, IVH is most typically an extension of GMH, and 

cortical or white matter bleeding is far less common, together suggesting that germinal 

matrix vasculature has relative fragility in comparison to other areas in the developing brain. 

In all brain regions, the blood-brain barrier is similarly comprised of endothelial tight 

junctions, basal lamina, associated pericytes, and perivascular coverage by astrocyte end-

feet. Although these components work in conjunction in the normal blood-brain barrier, it is 
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possible that a dysfunction in any of these pieces would result in increased susceptibility to 

hemorrhage.

Endothelial tight junctions are comprised of three major integral membrane proteins claudin, 

occludin and junction adhesion molecules and cytoplasmic accessory proteins that include 

ZO1, ZO2, ZO3, and cingulin [31]. These strengthen cell-to-cell adhesion, and thus enhance 

structural integrity of the vessel, and, in the brain, limit paracellular flow of substrates; 

forming the selectivity of the blood-brain barrier [107]. Ballabh’s group hypothesized there 

would be a differential presence of these proteins in the forebrain (using Western blot 

analysis and other immunohistochemical techniques); however comparable expressions of 

claudin, occludin, and junction adhesion molecules were shown between cortex, white 

matter and germinal matrix endothelial cells as a function of gestational age [102]. Thereby 

it has been discussed that deficiencies of tight junction proteins were unlikely responsible 

for enhanced germinal matrix fragility; however, further study of molecular signaling 

pathways involved in endothelial tight junction formation may yield useful information in 

future neonatal studies [107].

Through analysis of post-mortem fetus and premature infants, Ballabh et al have 

demonstrated that, throughout human gestation (between 16-40 weeks), vessel density and 

cross-sectional area increased in all three studied brain regions: germinal matrix, white 

matter, and cortical grey matter [101]. Interregional comparison also showed that those same 

vascular parameters were greatest in the germinal matrix throughout gestation. Cross-

sectional imaging of the germinal matrix showed vessels to be round in shape in comparison 

to the flat vessels of grey and white matter regions. This has been described as evidence of 

vessel immaturity [108]. Both study findings have suggested that high vascularity with 

morphologic immaturity, although useful in providing blood flow to areas of high metabolic 

demand, likely increases the susceptibility of the germinal matrix to hemorrhage.

In application, experimental studies using adult animals have implicated Src family kinases 

(SFKs) in the modulation of N-methyl-d-aspartate (NMDA) receptors involved with 

neurovascular cell death following brain bleeding [through excitatory and mitogenic signal 

transductions] and these play a dual role in both the early stage-acute endothelial tight 

junction disruption; and also BBB-recovery over subsequent weeks following the brain 

hemorrhage [109]. However, such a mechanism has yet to be investigated in a 

corresponding neonatal study.

Angiogenesis

The germinal matrix is a highly vascularized region of increased angiogenesis and 

endothelial turnover, and physiologic hypoxia may be their trigger in this brain region. 

Hypoxia is an important trigger for pro-angiogenic factors [110-112], and as noted, VEGF 

and angiopoeitin-2 levels are greater in the germinal matrix compared to cortical and white 

matter regions [106]. In the rabbits, premature pups euthanized 2 hours postnatally showed 

more intense staining of Hypoxyprobe (immunolabeled in tissue exhibiting low P02, often 

used in tumor studies), in the germinal matrix than in other forebrain regions, suggesting 

relative hypoxia [2].
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As such, using post-mortem human samples and premature rabbit pup models, Ballabh’s 

group has shown VEGF and angiopoietin-2 expression to be higher in the germinal matrix 

when compared to forebrain grey and white matter regions [106]. In the same study, 

premature infants at hours after birth had greater endothelial proliferation compared to those 

at mean postnatal day 7. This suggests that angiogenic rate decreases within days in the 

postnatal period.

Two angiogenic inhibitors, the COX-2 inhibitor, celecoxib, and the VEFGR-2 inhibitor, 

ZD6474 were then studied in the premature rabbit pup model, with prenatal celecoxib 

treatment resulting in decreased angiopoietin-2 and VEGF expression, and decreased 

germinal matrix endothelial proliferation [106]. Both celecoxib and ZD6474 were effective 

in decreasing the incidence of glycerol-induced NBH [106]. These angiogenic inhibitors 

have been similarly used to significantly enhance pericyte coverage and decrease blood-

vessel area and vascular density in the germinal matrix [105].

Ways to utilize angiogenic inhibitors such as celecoxib in order to promote blood-brain 

barrier integrity while avoiding tissue hypoxia are thus being explored. The concern has 

been that by stunting angiogenesis, CBF (cerebral blood flow) would not meet the metabolic 

demand of the germinal matrix. However, cancer studies have demonstrated that specific 

low-dose concentrations of some antiangiogenic agents function to improve tumor vessel 

morphology and function, as well as tissue oxygenation [113].

Accordingly, other tumor studies have shown that VEGFR2 inhibition increases expression 

of angiopoietin-1 to enhance pericyte coverage, and is involved in activating 

metalloproteinases to degrade pathologically thick basal lamina [114-115]. Further 

investigation into antiangiogenic therapies is deserved. Short courses of current inhibitors at 

low doses, or novel usage of other modulators [116-121], including the study of balancing 

matrix metalloproteinases (MMP) [122-123] and TIMP (tissue inhibitors of 

metalloproteinases) [124-125], together may help promote vascular stability, while limiting 

germinal matrix devascularization.

Extracellular Matrix (ECM)

The ECM basal lamina is comprised of fibronectin, laminin, collagen, heparin sulfate 

proteoglycan and perlacan molecules [126-127]; and elimination of fibronectin, laminin, 

collagen IV or perlacan genes in knockout mice have shown the importance of the basal 

lamina in angiogenesis, vessel stability [128-130], and thus in extension (for GMH/IVH). 

For example, levels of propeptide of type I procollagen increased in the CSF of PHVD 

premature neonates when compared to those with hydrocephalus associated with congenital 

malformation [131]; reflecting increased local type I collagen synthesis and turnover, related 

to the neuropathological (ECM) fibrotic changes found within arachnoid and meningeal 

tissues.

Laminin, collagen V and other important basal lamina proteins, have also been studied for 

their role in GMH/IVH. Ment et al. used the newborn beagle pup model to explore if the 

decreasing risk of GMH/IVH with increased postnatal age was related to germinal matrix 

vasculature maturation. Immunohistochemical evaluation revealed increased staining for 
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laminin and collagen V in the germinal matrix on postnatal day 4 compared with postnatal 

day 1 [132]. A second study from this group demonstrated increased germinal matrix 

staining for laminin and collagen V in postnatal indomethacin-treated animals [133]. 

Together, the studies suggest that sufficient laminin and collagen V deposition in the 

extracellular matrix may stabilize the basal lamina of the germinal matrix. Although this is 

physiologically accomplished with postnatal aging, indomethacin and other interventions 

may be useful in preventing GMH/IVH in neonates. Other forms of collagen appear less 

significant in relation to neonatal brain hemorrhage. Collagen I, II, and IV concentrations in 

the germinal matrix showed no deficiency relative to cortical and white matter vessels [134]. 

Regardless, the role of basement membrane integrity in NBH is likely to be further 

investigated.

Fibronectin, an extracellular glycoprotein that binds both integrins and other extracellular 

matrix components, functions in cell movement, cell-cell adhesion, and cytoskelatal 

arrangement [135]. Polymerization of fibronectin is important for further cell growth, 

contractility, and strengthening of the extracellular matrix [136-137]. In post-mortem 

samples, Xu et al demonstrated significantly lower levels of fibronectin in the germinal 

matrix of both human fetuses and premature infants in comparison to cortical and white 

matter regions [104]. In comparison, the presence of a1, a4 and a5 laminin, a1 collagen and 

collagen IV, and perlacan was not significantly different. Knockout mice models with 

inactive fibronectin gene produced fatal neural development and vessels with variable 

deformity [128]. Fibronectin studies have thus been interpreted as evidence that insufficient 

levels of basal lamina fibronectin may contribute to germinal matrix propensity to 

hemorrhage. Low-dose prenatal betamethasone therapy is associated with increased 

expression of fibronectin [104], and as in GFAP studies, supports the role of corticosteroids 

in preventing NBH. In addition to glucocorticoids, new approaches to fibronectin up-

regulation in the germinal matrix should be considered. Increasing expression of 

Transforming growth factor (TGF) may be one novel approach. In rat models, iatrogenic 

elevations in TGF increased fibronectin expression [138]. Similar to fibronectin, TGF levels 

are lower than those seen in other brain regions. The clinical efficacy of increasing TGF has 

not been explored. Although higher levels may promote basal lamina strengthening through 

increased fibronectin expression, TGF has diverse targets and functions, which may limit its 

clinical specificity.

Transforming Growth Factor Beta

Alterations in TGF-β concentrations in the CSF may play a role in the pathogenesis of 

PVHD. As a family of signaling proteins, TFG-β proteins are involved in regulating a 

variety of molecular pathways, including cell proliferation and differentiation, immunity, 

inflammation cascades, and tissue repair [139-153]. They appear in both animals and 

humans, and both systemically and in the central nervous system (CNS) [139-152]. TGF-β is 

an important mediator in collagen formation that is capable of rapid induction of 

angiogenesis, collagen formation and fibrosis [139]. Although this cytokine family plays 

mostly physiologic (i.e. homeostatic) roles, TGF-β also is involved in the development of 

diseases of pathologic collagen and ECM deposition, as in glomerulonephritis [140] or liver 
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cirrhosis [141]. These molecules are therefore appropriately studied in both humans and 

experimentally in animal models.

Both animal models and humans have been used to demonstrate the role of TGF-β in PVHD. 

Experimentally, non-communicating hydrocephalus was induced in mice following injection 

of human recombinant TGF-β into the subarachnoid space [142], while transgenic mice who 

over express TGF-β from glial cells developed severe ventricular dilatation with observed 

seizures and motor dysfunction, as well as upregulation of ECM proteins laminin and 

fibronectin [143]. In humans, high concentrations of TGF-β1 have been demonstrated in 

CSF studies of adults with hydrocephalus following subarachnoid hemorrhage compared to 

non-hemorrhagic hydrocephalus patients [144], where two elevation spikes in TGF-β1 were 

appreciated: early on from known release from hemorrhaged platelets, and a delayed spike 

likely reflecting exogenous upregulation. Similarly, elevated levels of TGF-β1 and –β2 have 

been shown in the CSF of premature infants with PHVD [145].

The rodent model has been used extensively to relate CNS injury to TGF-β expression. For 

example, TGF-β is up-regulated in response to ischemic cerebral insult [146-147]. Its 

expression is also enhanced following penetrating brain lesion, and is thought to mediate 

formation of a glial scar observed at the site of injury [148]. These models therefore suggest 

that cerebral injury, including NBH, is capable of releasing high levels of TGF-β into the 

CSF, an alteration that has been implicated in the pathogenesis of PHVD in both mice 

models [143, 149] and clinical studies [145, 150]. Pathogenetic studies, whether done in 

animal models or humans, are particularly important, as they are often the first step in 

developing sound therapeutic interventions.

The rat model of PHVD has also been used to study the role of TGF-β [151-152]. In these 

studies by Cherian and Love et al, in contrast to the brains of normal 21-day old rats, those 

who received intraventricular blood or CSF-infusion showed significantly increased 

expression of TGF-β isoforms. Using immunohistochemistry, staining was prominently 

found for TGF-β1 in the ependyma, periventricular white matter, and deep cortical neuropil, 

TGF-β2 was present in neuronal cell bodies and periventricular oligodendrocytes, and TGF-

β3 stained in oligodendrocytes and microglia. Although TGF-β1 and –β2 were elevated in 

rats injected with blood or CSF-infusion regardless if they developed ventricular dilatation, 

levels of these isoforms were highest in hydrocephalic animals [152]. The immunolabeling 

of intracellular phosphorylated p44/42 MAP kinases, modulators of TGF-β effects, rose 

similarly to TGF-β1 and –β2, as did ECM deposition of fibronectin, laminin and vitronectin 

proteins [152].

Astrocytes

Perivascular coverage is provided by close association with astrocyte end-feet that surround 

the cerebral vessels. End-feet contribute to the structural stability of the vessel and are major 

components to the blood-brain barrier. Glial fibrillary acidic protein (GFAP) is an 

intermediate filament astroglial marker thought to be important in maintaining mechanical 

strength and shape to astrocytes. In post-mortem analysis, El-Khoury’s group has 

demonstrated that GFAP+ astrocyte end-feet increased as a function of gestational age in 

both the cortex and white matter between 19 - 40 weeks, but perivascular expression of 
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GFAP+ end-feet was decreased in the germinal matrix relative to the cortex and white 

matter from 23-34 weeks [103]. This discrepancy may indicate decreased cytoskeletal 

stability, resulting in increased vulnerability of the germinal matrix to hemorrhage. GFAP+ 

astrocytes first appear in the spinal cord at 9 weeks of gestation, and are then present in the 

ependyma from the 14th-19th weeks; while their expression has been described in germinal 

eminence cells at 17 weeks [154-156]. They are present early in gestation, and are therefore 

exposed to perinatal therapies. In vitro studies have shown that GFAP expression 

significantly increased in the presence of hydrocortisone [157], potentially explaining the 

efficacy of prenatal corticosteroids in reducing the incidence (or severity) of NBH. The 

above studies regarding astrocyte end-feet support the idea that they play an important role 

in allowing or preventing GMH.

On the other hand, ‘astrogliosis’ is an abnormal increase in the number of astrocytes in the 

recovery period following brain hemorrhage [60, 158]. This is postulated to involve 

molecular mechanisms with both beneficial and detrimental end-outcome effects [159]. The 

functional role of this process after neonatal hemorrhagic brain injury thus raises the 

prospect of therapeutically targeting this glial -cell response in future study, as this is to date 

poorly defined perinatally.

Pericytes

Pericytes are cellular constituents of the blood-brain barrier that surround endothelial cells 

of small vessels in the brain. As part of the neurovascular unit, they function in endothelial 

tight junction formation, blood-brain barrier differentiation, microvascular vasoactivity, 

structural stability of the vessel, and in angiogenesis [160]. Pericytes appear to control 

angiogenesis at many stages, including both initiation and maturation [161]. Early in 

angiogenesis, they regulate proliferation and migration of endothelial cells. Later, pericytes 

closely associate with the new vessel and contribute to endothelial cell differentiation, 

maturation and extracellular matrix deposition [162].

Pericyte recruitment and functions are regulated by four major ligand-receptor systems: 

TGF-B-TGFR-B, PDGF-B-PDFGR-B, angiopoietin-Tie, and sphingosine-1-phosphate-S1P1 

[162]. Ligand or receptor null mice failed to recruit pericytes to endothelial cells, resulting 

in microaneurysms of the microvasculature, with propensity to rupture [163-164]. In post-

mortem infant and rabbit pup models, Braun’s group found less pericyte coverage and 

pericyte density in the germinal matrix compared to grey or white matter regions [105]. The 

relative lack of pericytes in the germinal matrix suggests it may be a factor in GMH/IVH. 

The authors further investigated the molecular basis of lower levels of pericytes in the 

germinal matrix of human fetuses, preterm infants, and preterm rabbit pups. Ligand-receptor 

expression studies demonstrated lower TGF-B1 in the germinal matrix than in the cortex and 

white matter. Levels of PDGF-B, PDGFRB, angiopoietin-1 and its receptor Tie were not 

significantly different among the brain regions, while S1P1 and N-cadherin expressions 

were higher in the germinal matrix compared to cortex and white matter [105]. The authors 

suggest low levels of TGF-B1 may promote endothelial proliferation, while high levels of 

S1P1 and N-cadherin are likely involved in vascular maturation; however both these 

characteristics are important in germinal matrix angiogenesis. TGF-B1, an important 
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regulator, promotes neurovascular stability through mesenchymal differentiation into 

pericytes, synthesis of extracellular matrix, and organization of pericytes around the 

endothelium [165]. Hence, low expression of TGF-B1 may be related to the decreased 

pericyte density and perivascular coverage in the germinal matrix, and may further 

contribute to GMH.

CEREBROVASCULATURE

Hemostasis

In conjunction with known fragility of the germinal matrix, it is tempting to hypothesize that 

disorders in hemostasis have a role in the disease. The relative contribution of coagulation 

factors in preventing or causing (in the case of deficiency) GMH/IVH, however, is not 

completely understood. For example, thrombocytopenia has been linked to IVH [166-167]. 

Further, in preterm neonates, fibrinolysis in the CSF may be inefficient in breaking blood 

clots impeding CSF flow, as decreased plasminogen and increased plasminogen activator 

inhibitor have been demonstrated in post-IVH CSF studies [168-169]. This is a potentially 

reversible abnormality, with CSF infusion of fibrinolytics having been explored [46, 169]. 

However, it is unlikely that connective tissue deposition induced by the blood clot can be 

effectively reversed or removed.

In a study of premature neonates with known intracranial hemorrhage, marked decreases in 

platelets, fibrinogen, and factor XIII activity were reported [170]. In the same study, those 

treated at 6 hours after birth with factor XIII concentrate had a significantly lower incidence 

of IVH. Since coagulation and inflammatory pathways appear interrelated in the 

development of IVH, various co-genotypes (of IL-1β, IL-4, IL-6, IL-10, and TNF-α), have 

been investigated as potential predictors of both IVH risk and severity [171-173]. In these 

studies, Harding’s group found an association between the CC genotype of IL-6 and higher 

incidence of significant intracranial hemorrhage and poorer clinical outcomes, while Gopel 

et al failed to confirm those results.

Currently, these remain preliminary findings, but there is continued interest in finding risk 

modifiers in GMH/IVH. Other alterations in hemostatic components are thus likely present; 

for example, hemostatic differences have been noted in preterm infants as compared to those 

born at full gestation [174-176]; and warrant continued investigation.

Cerebral Venous Pressure (CVP)

A recent multi-hospital observational study of neonatal intensive care units found that 

among VLBW infants, there was borderline association between severe NBH and 

hypotension, while there was no association with hypertension [177]. Previous 

investigations have also found data supporting a relationship between hypotension and NBH 

[178-180]. In contrast, other research teams demonstrated no association between the two 

factors [181-183]. This is of clinical importance considering that CVP increases in 

mechanical ventilation, positive pressure ventilation, pneumothorax, and likely many other 

conditions.
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In regards to CVP, elevated pressures are postulated to increase risk of NBH in 

prematurity[184]. Post-mortem microscopic analysis of preterm neonates found the majority 

of germinal matrix hemorrhages to stem from venous sources, although the sample size was 

small [27]. Hypotension and hypertension have a variety of congenital, physiologic and 

iatrogenic causes in premature neonates [185]. However, with a possible prevalence of 

24%-45%, hypotension is a much more common disorder in prematurity [177]. A 

mechanism of disease may be related to changes in cerebral blood flow (CBF), where 

elevated CVP leads to reduction in cerebral perfusion pressure (CPP). CPP, which is 

normally dependent on the gradient between MAP and intracranial pressure (ICP, CP = 

MAP – ICP), may be alternately determined by CVP if CVP is higher than ICP. 

Autoregulatory ranges of neonatal brains are thus poorly defined, as compared with adult or 

pediatric populations [186]; justifying further study.

Cerebrovascular: Cerebral Blood Flow (CBF)

In the acute phase of disease, much importance is placed on the role altered cerebral blood 

flow (CBF) has on pathogenesis in hydrocephalus, increased intraventricular pressure, and 

ischemia of periventricular microvasculature [187-189]. Accordingly, in animal models, 

reduced capillary number, density and vessel diameter have all been demonstrated in local 

white matter [190-192]; following hydrocephalus. Regional CBF, assessed in humans 

through xenon clearance, Doppler techniques, and spectroscopy, is also decreased in 

hydrocephalic human brains [193-195]. A reduction in regional CBF has been associated 

with a number of metabolic changes: increased glucose consumption in the cat model [61], 

increased production of reactive oxygen species (ROS) and lipid peroxidation in H-Tx rats 

[196], and activation of proteolytic enzymes capable of axon degradation in kaolin-injected 

rat models [197]. Likewise, CSF assays from hydrocephalic humans demonstrate likely 

disturbance in metabolism and neurotransmission [198], as well as increases in oxidative 

stress [199]. Of note, similar abnormalities and processes are implicated in hydrocephalus, 

stroke and traumatic brain injury, which may relate to shared pathogenic factors. Lastly, 

specific to hydrocephalus, shunting results in normalization of local CBF that has been 

linked to improved outcomes [200-202]; however, others have suggested that this may not 

account for clinical improvement seen in the long-term [193].

On postnatal day 1, Perlman et al studied CBF velocity using Doppler ultrasonography in 

very low birth-weight (VLBW, <1500 g) premature infants who required mechanical 

ventilation secondary to respiratory distress syndrome. At 12 hours of age, two CBF patterns 

emerged: 1) stable, where peak and trough systolic and diastolic blood flow velocities were 

relatively consistent; and 2) fluctuating, where blood flow velocities were varied. Flow 

velocities reflected simultaneously-recorded blood pressures. IVH developed in 21/23 

infants with the fluctuating pattern, most within 24 H of birth, and in 7/27 neonates with a 

stable pattern [188]. Similar results were demonstrated in infants with gestational ages <34 

weeks, regardless of respiratory status [203]. In a subsequent study by Perlman’s group, 

significantly less IVH and grade III IVH developed following pancuronium-induced 

paralysis [189]. Muscle paralysis was thought to stabilize a fluctuating CBF velocity pattern 

by eliminating dyssynchrony between infant and mechanical ventilations. Accordingly, 

variability in CBF velocities in ventilator-dependent infants has been demonstrated to 
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improve with synchronous respiration [204]. Hence, fluctuating CBF velocity was seen as a 

preventable cause of IVH. While paralytic agents tend to be avoided clinically (in premature 

ventilator-dependent infants) out of concern for adverse effects with extended use; 

synchrony promoting modes of ventilation (between infant and machine) can be widely 

employed. These include assist control and synchronized intermittent mandatory ventilation. 

Of note, serum hyperosmolarity may also contribute to IVH through alteration of CBF, 

although investigators have argued for and against this hypothesis [205-207].

Despite a consensus not being reached, it is plausible that rapid infusion of large quantities 

of hypertonic sodium bicarbonate, as used in neonatal resuscitation, may lead to high PaCO2 

and subsequent cerebral vasodilatation. Rapid increases or fluctuations in CBF may thus 

increase the propensity of the germinal matrix to hemorrhage, and should be avoided. 

Finally, fluctuating CBF is also associated with hypotension, hypercapnia, patent ductus 

arteriosus and clinical restlessness [203, 208-209], all preventable or treatable risks that may 

aid in preventing IVH in the premature.

Emerging clinical modalities include investigations using sonothrombolysis (e.g. therapeutic 

ultrasound) with-or-without adjuvant micro-bubbles, as a means to more rapidly remove any 

impedance of normal blood circulation, are a possible approach in the brain (to salvage 

damaged tissue); and to achieve better hematoma mass reduction following neonatal 

hemorrhagic stroke [210].

Autoregulation

Two predominant regulatory responses constitute cerebral autoregulation: myogenic 

responses to intravascular pressure, and functional hyperemia via neurogenic responses. 

Through these processes, stable and adequate CBF to the brain is achieved [211]. On a 

cellular level, autoregulation occurs through the innate ability of pericytes and smooth 

muscle cells surrounding cerebral vessels to constrict and relax in response to intravascular 

pressure changes. The molecular pathway begins with triggering of stretch-activated Ca++ 

channels, allowing the influx of calcium and subsequent activation of phospholipase A2 

[212]. Consequently, arachidonic acids are released from cell membrane phospholipids, 

which are in turn metabolized to 20-hydroxyeicosatetraenoic acids (20-HETEs) by P450 

enzymes. 20-HETEs function to inhibit Ca++-dependent K+ channels, sequentially leading to 

smooth muscle cell depolarization and contraction. The resulting vasoconstriction 

counteracts hypertension-induced increases in CBF.

Lack of cerebrovascular autoregulation, or pressure-passivity, indicates the inability of the 

vasculature to keep CBF constant despite variations in mean arterial pressure (MAP). CBF 

has been assessed by xenon clearance, as well as by cerebral oxygenation studies that 

include Doppler techniques, near-infrared spectroscopy (NIRS), and spatially resolved 

spectroscopy (SRS) [181, 213-215]. Pressure passivity is subsequently determined by 

factoring both CBF and MAP. A lack of cerebrovascular autoregulation in prematurity was 

thought to contribute to the development of NBH. An early study using xenon clearance in 

premature infants on mechanical ventilation showed decreased pressure-flow autoregulation 

and vasoreactivity to changes in PaCO2 in those subsequently developing severe intracranial 
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hemorrhage [213]. In contrast, pressure-flow autoregulation was preserved in patients 

without hemorrhage.

Using near-infrared spectroscopy (NIRS; in a more recent study of similar patients), found 

those with greater difference between intravascular oxygenation and MAP (indicating 

impaired autoregulation) had a higher incidence of either severe GMH/IVH, periventricular 

leukomalacia (PVL); or both [216]. Further suggesting pressure-passivity relates to 

cerebrovascular disease. In contrast to previous xenon and Doppler ultrasonography 

techniques, researchers have strongly favored continued use of NIRS in the evaluation of 

autoregulation because of the ability to record continuously [217].

Results that do not support an association between pressure-passivity and NBH have also 

been found. A relatively large and recent study using continuous NIRS on VLBW infants 

reported pressure-passivity was significantly related to low gestational age and birth weight, 

but was not associated to NBH incidence [181]. Similarly, a group using SRS (related to 

NIRS) demonstrated impaired cerebral autoregulation present in clinically sick preterm 

infants predicted subsequent mortality, but did not relate to the development of NBH [215]. 

Together, these studies suggest impaired cerebrovascular autoregulation is a phenomena 

more common to sick, premature and ventilated infants, but without any clear association 

with NBH. Further investigation should employ NIRS, SRS or other methods of continuous 

recordings for more useful results.

Functional Hyperemia

Functional hyperemia is achieved through a complex neurogenic regulatory response aimed 

at matching CBF to metabolic demand. The entire neurovascular unit appears involved; 

however, their coordination has not been entirely elucidated. On a molecular level, it is 

thought that a cascade initiated by activation of synaptic glutamate receptors results in the 

production of vasoactive agents [218]. Specifically, nitric oxide and adenosine are 

considered to have primary roles in the genesis of functional hyperemia, which, along with 

CO2, H+, arachidonic acid metabolites and cytokines, are all associated with increased CBF 

[211, 219].

In the case of adenosine, smooth muscle relaxation and subsequent vasodilatation occur 

through cAMP-pathway activation of KATP and KCa channels [220]. Moreover, recent 

studies in the mouse model have further implicated COX-1 and COX-2 as being important 

regulators of functional hyperemia by causing vasodilatation and elevations in CBF 

[221-222]. In contrast, indomethacin, commonly used in neonates to close a patent ductus 

arteriosus, was demonstrated to reduce CBF in a sheep model [223]. Taken together, as 

impaired cerebral autoregulation is linked to brain bleeds in premature infants, further such 

study of the molecular basis may yield effective preventative therapies in future preclinical 

and clinical trials [224].

Interstitial Flow

Separate from alterations in CBF, changes in extracellular fluid flow and composition may 

contribute to cellular dysfunction. Physiologic waste products that fail to cross the blood-
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brain barrier into the systemic venous system must filter through the interstitial space and in 

to the CSF [76]. In the normal cerebrum, this flow occurs at 0.1-0.3 µl/min/g of brain tissue 

[225], but is thought to be impeded in hydrocephalus. In rodent models of hydrocephalus, 

the extracellular compartment volume in grey matter is reduced [226-227], extracellular 

fluid movement is diminished [228-229], and CSF composition changes as metabolic 

byproducts and other neuromodulators accumulate [198]. In humans, elevated biomarkers 

that result from increased CSF protein and waste concentrations are being investigated in the 

non-invasive diagnosis of chronic hydrocephalus [230]. Even slight alterations in waste 

product concentration and factors in neurotransmission may significantly impact glial and 

neuronal function.

MECHANISM

Free Radicals

Free radicals can exacerbate white matter injury in PHVD [231-232]. The pathogenesis of 

increased oxidative stress in PHVD may primarily relate to IVH [233-234]. During 

hemorrhage, a large quantity of iron is released into the CSF. Non-protein-bound iron is 

elevated in preterm infants with PHVD [232], and likely reflects iron in excess of the total 

iron-binding capacity of the CSF. Via the Fenton reaction, free iron mediates the production 

of hydroxyl radicals that potentially damage periventricular white matter [235]. In rat 

models of congenital hydrocephalus, increased reactive oxygen species and lipid 

peroxidation have been demonstrated [196], while human CSF studies have shown similar 

findings in premature neonates with white matter injury [231] and with hydrocephalus [199].

Cell loss immediately adjacent to the bleed may be mediated in part by the toxicities of 

extracellular hemoglobin (Hb) and thrombin [236-237] (and correspondingly responsive to 

free-radical scavengers like hydrogen [238-239] or melatonin [240-245]). However, at low 

concentrations, ‘offending’ proteins may precondition tolerance to hemin and iron; to 

decrease peri-hematomal injury through heme oxygenase (HO)-1 and iron binding protein 

modulation [246], e.g. transcription factor Nrf2 (Nuclear factor-like 2) [247]. Study of such 

mechanisms could help find strategies to further protect against periventricular erythrocyte 

lysis-related damage [248-249].

Oxidative Stress

Oxidative stress may also increase secondary to ischemia-reperfusion injuries in 

periventricular white matter, while hyperbaric-oxygen (HBO) therapy may have protective 

effects [250]. Hypoxanthine, a purine metabolite, is a reliable marker for hypoxia, and has 

been shown to be elevated in preterm PHVD infants [251]. Under normal conditions, 

xanthine dehydrogenase uses NAD+ as final electron acceptor to oxidize hypoxanthine and 

xanthine to uric acid. However, in ischemic tissue, xanthine dehydrogenase is converted to 

xanthine oxidase, which uses oxygen as the final electron acceptor, resulting in the 

generation of free radicals [252-254]. Xanthine oxidase persists with reperfusion, causing 

continued oxidative damage with purine metabolism. Oligodendrocyte precursors, highly 

present in the periventricular germinal zones, appear especially vulnerable to hypoxia-
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ischemia and oxidative stress in human studies of periventricular leukomalacia (PVL) 

[255-257].

Inflammation

Leukocyte (white blood cell) trafficking in the acute phase following experimental brain 

hemorrhage in adult rodents is a molecular target that may ameliorate cerebral inflammation 

[258-259]. Specifically, it has been shown that blood-derived monocyte populations 

(inflammatory macrophages and dendritic cells) travel to the brain in the 12 hours following 

brain bleeding, and this response out-numbers neutrophil migration [260]. Further study 

nonetheless will need to determine the significance of these findings and any role of these 

cells after neonatal brain injury [261]; as this pathophysiological process may differ from 

what is reported in the adult literature.

Specifically, the inflammatory response is related to white matter injury in VLBW infants 

[262], and has been demonstrated to be strong and prolonged in preterm infants with PHVD 

(i.e. hydrocephalus). In corresponding CSF studies, pro-inflammatory cytokines tumor 

necrosis factor-α, interleukin-1β (IL-1β), IL-6, IL-8, and interferon-γ were significantly 

elevated and were associated with increased risk of subsequent white matter injury and 

poorer neurologic outcomes [263]. Increased inflammatory response with elevations in pro-

inflammatory cytokines [264] appears important in the pathogenesis of PVL (i.e. white-

matter loss) [265-266], and clinical evidence supports a similar role in the development of 

white matter disease in PHVD. In extension, recent therapeutic approaches using adult 

animals may one day prove useful in neonates [264] and vice-versa. Notably, proteasome 

inhibition using PS-519 was found to attenuate rodent brain inflammation, and related 

edema, through perihematomal modulation of nuclear factor-KB [267]. This intervention 

reduced expression of inflammatory astroglial iNOS; and improved functional recovery 

following the brain injury.

NEUROPATHOLOGY

Monoamine Neurotransmission

Abnormalities in monoamine neurotransmission systems are associated with hydrocephalus 

[34]. In animal models, monoamine neurotransmitter concentrations are decreased 

[268-269]; while reductions in cholinergic and dopaminergic neurons in particular brain 

regions have also been demonstrated [270-271]. Much of the literature regarding 

neurotransmitters is related to the association between hydrocephalus and Parkinsonism’s, 

rarely akinetic mutism, and other movement disorders [272-275].

Experimentally in rats, hydrocephalus resulted in mechanical distortion and functional 

injuries of cholinergic and GABAergic neurons in the neostriatum and dopaminergic 

neurons in the substantia nigra [276-277], with improvement following shunt placement 

[278]. Likewise, in human positron emission tomography studies, functionally repressed 

dopamine receptors (D2 receptors) in the nigrostiatal system have been linked to gait 

disturbances in NPH [279]. Post shunting, upregulation of D2 receptors was correlated to 

clinical improvement [280]. Considering that D2 receptor hypoactivity in the dorsal 
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putamen may be able to predict the severity of gait disturbance in idiopathic NPH [279], 

there is potential to find additional biomarkers with clinical significance.

While periventricular axons appear to be the primary target of ventricular expansion with 

hydrocephalus, non-axonal architectural changes are also observed. Damage and functional 

impairment are not limited to periventricular tissue, as biopsy and post-mortem human 

samples in chronic hydrocephalus demonstrate degenerative changes that extend beyond this 

region [281]. Thus abnormalities in neuronal conduction pathways likely results from both 

peri-hematomal morphologic changes with distal alterations of synaptic transmission.

Endocrine

The hypothalamic-pituitary axis (HPA) is exposed to ventricular expansion in the third 

ventricle. Hypothalamic changes related to hydrocephalus are not extensively established. 

However, initial gross and microscopic findings in the HPA of hydrocephalic humans have 

been described, with noted changes including an enlarged infundibular recess and a 

shortened infundibular stalk [282-284], although clinical significance has not been 

determined. Endocrine abnormalities, however, are associated with hydrocephalus. Pituitary 

hormone secretion appears affected. In shunted humans, myelomeningocele and 

hydrocephalus have been related to growth hormone deficiency, higher basal FSH and LH 

(and GnRH), precocious puberty, and amenorrhea [285-287]. However there is often an 

improvement of the reproductive cycle, following shunting [286]. Following experimental 

hydrocephalus in rats, increased hypothalamic GnRH was also observed [288].

Experimentally, angiotensin II receptor content is increased in third ventricle 

circumventricular organ systems [289], while alterations in the catecholaminergic system 

have been described [269, 290]. The exact pathogenesis in HPA dysfunction has not been 

clearly demonstrated, but it potentially parallels gross and cellular mechanisms evident in 

periventricular white matter disease. Therefore, continued use of neonatal animal models 

will be beneficial to better outline the role of these molecules in preterm neonates, as recent 

findings supporting therapeutic modulation of Arginine vasopressin (AVP; also known as 

vasopressin, or antidiuretic-hormone) a neurohypophysial hormone found in most mammals 

- may differ from experimental adult models of brain hemorrhage [291-293].

Synaptogenesis

Non-axonal architectural changes in the neuron have been demonstrated in hydrocephalus 

models. In kittens, visual cortex neurons are smaller, cortical neuron somata are disoriented 

[294], hippocampal synaptic contacts are decreased [295], and dendritic deformity in the 

cortex is apparent with electron microscopy [296]. Morphology did not normalize after 

shunting [296]. In rats, cortical dendrites were decreased in length, displayed fewer, shorter 

branches [297-298], and had frequent varicosities of the dendritic shaft [297]. In contrast, 

cellular columns and serotonergic innervations in the somatosensory cortex were preserved, 

suggesting that some basic cytoarchitecture is unaffected by hydrocephalus [299]. Although 

evidence of cortical neuropil degeneration is observed in H-Tx rats, early shunting may 

prevent these changes [300].
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Synaptic morphology and function has also been experimentally described. In rat models, 

synaptophysin, a presynaptic vesicle protein, showed decay or decrease after 4 weeks in 

hydrocephalus [301-304], while synaptophysin staining in the hippocampus of H-Tx rats 

showed possible resilience of synaptogenesis [305]. Findings in animal models should be 

correlated with human studies. Electron microscopies of human samples from hydrocephalic 

brains have shown evidence of synaptic degeneration, clumping of synaptic vesicles, and 

glial abnormalities in association with the synapse [306-307]. Models of chronic 

hydrocephalus and biopsies from chronic hydrocephalus patients can more clearly define 

long-term characteristics of synaptogenesis. Of note, upregulation of neurotrophins, 

including growth-associated protein and nerve growth factor, has been demonstrated in rat 

models [308-311] and may indicate important axonal protection and synaptic remodeling.

Visual System

In regards to sensory abnormalities, the visual system is the most extensively studied. 

Hydrocephalus can cause pathology at a number of points along this pathway. Increased 

intracranial pressure and subsequent papilledema can damage the retina and optic nerve 

[312-313]. Ventricular expansion can cause morphologic alterations to geniculocortical 

pathways [314], while cortical and subcortical pathways can become ischemic if posterior 

circulation is significantly compressed. As briefly mentioned before, the integrity of visual 

pathways can be evaluated through the use of visual evoked potentials, which has been done 

in animal models [315] and in humans [316-318]. Parinaud’s syndrome, an upward gaze 

palsy that is seen in midbrain dysfunction, has been suggested to indicate shunt malfunction 

[319-320]. It is potentially caused by functional impairment of the midbrain associated with 

transtentorial pressure differences [320] or by structural distortion of the tectum by 

suprapineal recess (part of ventricular system) dilation [321], and may be a combination of 

multiple factors.

Periventricular Axon Degeneration

The primary pathologic change to the neuron from ventricular expansion in hydrocephalus is 

periventricular axon degeneration [35, 57, 93-94], while neuron cell death is rarely 

observed, regardless of the severity of hydrocephalus [94, 322]. However, neuronal cell 

death has been observed in the thalamus of H-Tx rats, which has been attributed to 

retrograde degeneration and apoptosis of the cell body following axonal damage [323]. In 

the periventricular white matter of the hydrocephalic brain, the primary sites of axonal 

injury occur in the limbic system, particularly the fimbria-fornix pathway and the corpus 

callosum [324-327]. A study of callosal fibers in kaolin-induced hydrocephalic rats suggests 

a subpopulation of axons may be particularly vulnerable [328]. However, as demonstrated in 

both experimental and human studies, all periventricular white matter, including long 

corticospinal tracts and deeper layers, are susceptible to injury [34, 62, 329]. Accordingly, in 

kaolin-induced hydrocephalic cats, midbrain, thalamic, and cortical axonal tracings were 

decreased, but shunt therapy restored labeling in some, but not all, regions [330]. In the dog 

model, cytoskeletal damage of neurons was most significant in periventricular white matter 

and showed incomplete normalization following shunting [331]. Although much of the 

pathology discussed is largely attributable to increased intraventricular pressure and 

ventricular enlargement secondary to hydrocephalus, the contribution from possible 
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underlying neurologic disease is difficult to ascertain. For example, prematurity is associated 

with multi-system abnormalities, while post-hemorrhagic hydrocephalus occurs with local 

injury and exposes the parenchyma to irritating blood components.

ANIMAL MODEL

Pathophysiology

Previous works have studied the immediate pathophysiology of cellular damage and long-

term consequences of germinal matrix hemorrhage/intraventricular hemorrhage. For 

example, cellular proliferation in the rodent germinal matrix is significantly decreased 

following hemorrhagic insult [30]. Chronic neurologic dysfunction may be partially 

explained if progenitor cells are damaged. Pro-inflammatory states have also been 

postulated to contribute to brain injury. In human neonates, intrauterine infections are 

associated with preterm birth, intraventricular hemorrhage, and cerebral palsy [332]. 

Similarly, inflammation and brain damage in mouse models increase with immune pre-

activation by the endotoxin lipopolysaccharide [333]. Neonatal mice show increased 

cerebral injury in the presence of higher levels of serum thrombin and plasmin, suggesting 

that proteolysis may additionally play a pathogenic role [334]. Regarding long-term 

complications of germinal matrix hemorrhage/intraventricular hemorrhage, developmental 

delay and chronic behavioral deficits have been demonstrated in neonatal rat periventricular 

hemorrhage models [335]. Associated with intraventricular hemorrhage, hydrocephalus has 

been experimentally induced in rat models by blood injection into bilateral ventricles [29, 

84]. On a molecular level, alpha V integrin-null mice develop spontaneous intracerebral 

hemorrhage in midgestation, hypothesized to be secondary to poor endothelial/pericyte 

association with surrounding cerebral parenchyma [336]. The continued use of knockout 

mouse models promises to further detail mechanisms of disease.

Neurological Dysfunction

Neuronal function depends on effective neurotransmission, structural integrity, working 

support cells, and intact regulatory mechanisms [337]. Any point of abnormality can 

ultimately lead to neurologic disorder. Clinically, global and regional abnormalities in neural 

activity associated with hydrocephalus can be demonstrated on electroencephalogram 

[338-339]. The integrity of particular conduction pathways in hydrocephalus has been 

investigated using sensory and motor-evoked potentials. Dysfunctional changes in the 

pyramidal tract, callosal, and corticospinal fibers have been demonstrated in humans 

[340-341], while visual cortex, motor cortex, and thalamo-cortical pathways have been 

shown in animal models [315, 342-344]. Using kaolin-induced hydrocephalic rats, 

pyramidal cells in the hippocampus showed attenuation of long-term potentiation of 

population spikes, a finding suggestive of abnormal postsynaptic integration [345]. In cats, 

single cell recordings from visual cortex cells demonstrated reduced responsiveness [346]. 

Performance-testing has been used to describe larger functional abnormalities related to 

hydrocephalus.

Experimentally, memory and learning difficulties have been shown in animal models 

[347-349] and in humans [350-352], with interest in potential reversibility with shunting. 
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Such cognitive impairments have been related to abnormalities in the limbic system. In rats, 

septohippocampal cholinergic neurons are decreased [353], while in humans; limbic fiber 

aberrances were more common in myelomeningocele and Chiari II malformations [354]. 

Pathologic location may also relate hydrocephalus-type. Limbic and frontal dysfunction are 

implicated in aqueductal stenosis, while, in normal pressure hydrocephalus (NPH), cognitive 

deficits may be more attributable to abnormalities in prefrontal structures [355]. We 

determined memory deficits and spatial learning using the cognitive assessments outlined by 

Morris et al [356]. Juvenile rats with NBH injury had increased hyperactivity in the open 

field (path length) as well as diminished working memory (T-maze) than control groups 

[357].

Rapid changes in rat brain development occur during the first 14 days of life [358-359]. 

Early reflex locomotor assessments conducted by using grip traction, righting-reflex, and 

negative geotropism tests, are amongst the first developmental motor milestones for 

neonatal rats [360-362]. Thus, early cerebrovascular injury [363], such as GMH, could 

disrupt early brain development, resulting in delayed acquirement of basic neurobehavioral 

skills. In humans, delayed early developmental functions in premature infants have been 

strongly associated with reduced neuromotor function as they age [18]. Furthermore, deficits 

in posture, balance, gait, and motor learning have been similarly described in hydrocephalic 

animals [364-365] and humans (both adult and pediatric populations) [366-370]. We found 

that during the first 3 days following collagenase-induced neonatal brain hemorrhage in rats 

[357], significant sensorimotor deficits were observed in injured neonates when compared to 

sham (needle trauma only), which corroborates with a rabbit model of spontaneous pre-term 

brain bleeds and the clinical presentation [234]. We also observed losses in body weight 1 

day following the brain bleed injury, similar to weight changes in P7 rat pups in a related 

model of cerebral hypoxia-ischemia [371-372]. This timeline differed, however, from a 

rodent direct blood-injection model, which had significant neurobehavior deficits observed 

between 1-2 weeks following injury [17, 335]. This free-hand needle insertion method may 

have caused unintended traumatic brain injury, and this may help explain the observed 

differences in timing of neurobehavior deficits between the two models [30].

Translational Studies

The use of animal models is necessary for a variety of reasons, including the complexity of 

human subjects and the need for controlled experimental environments to assess potential 

therapeutics, and the study of injury progression [373-377]. This has been modeled by either 

changing systemic hemodynamic properties (serum glycerol, blood pressure, circulating 

blood volume, oxygenation levels, or osmolarity) or direct, needle injection of blood into the 

ventricle in several animal models including mouse, rat, rabbit, dog, pig, and sheep ([234, 

378-379]; see Table 1 for summary). In prematurely born rabbits (27-30 days gestation), 

spontaneous intraventricular hemorrhage was induced by creating intracranial hypotension 

using intraperitoneally injected glycerol [380]. Ventricular distension upon the blood flow 

patterns in neighboring brain tissues was studied in newborn dog brains by direct blood 

injection [381]. Physiological factors that lead to a greater predisposition to GMH have been 

evaluated extensively in dog models [378]. There is an interesting neonatal hypoxia-

ischemia model using mice that secondarily develops spontaneous bleeding at superficial 
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foci [382]; however that pathophysiology is different compared with what occurs in human 

preterm infant brain hemorrhage [2]. While early experimental neonatal brain hemorrhage 

models relied on the spontaneous development of IVH in preterm subjects [383-384], 

current models produce IVH through two major means: 1) direct injection of autologous 

blood into the ventricles or 2) induction of IVH through the alteration of physiologic 

conditions that increase susceptibility to IVH, for example hypotension, increased 

intracranial pressure or hypercarbia [385-387].

Available animal models, however, are each limited in the ability to individually model 

neuropathology, etiology, and clinical outcomes following neonatal brain bleeds [17, 29, 84, 

335, 388]. Hemodynamic modification has confounding factors such as hypertensive, 

hypercarbic, hyperosomotic, hypoxic, or hypervolemic states. Direct blood infusion, in 

addition to the inherent disadvantage of causing needle trauma to the surrounding tissue, 

does not mimic a spontaneous bleed. Further, the specialized expertise required to rear and 

care for prematurely delivered large mammals is very expensive. On the other hand, rodent 

brain injury models are relatively inexpensive to reproduce, use, maintain, and the 

developmental aspects are well documented [360].

Compared with pig and dog models, the newborn rat has greater neurodevelopmental 

similarities to preterm humans at 24-26 weeks, since neurogenesis is mostly complete [389] 

and the germinal matrix is present in both species. In addition, the germinal matrix has been 

studied extensively in rats [390-392], and long-term behavioral developments are well 

documented [360, 393]. In early studies, post-hemorrhagic hydrocephalus (PHVD) was not 

observed following injection of blood into mouse periventricular tissue [30]. However, a 

later neonatal rat model was outlined by Cherian et al, where ventricular dilatation was 

demonstrated following injection of citrated rat blood or artificial CSF (aCSF) into the 

ventricles [84]. Thereafter, ventricular expansion was produced after injection of blood and 

thrombin into the lateral ventricles of adult pigs [95]; and with injection of pre-clotted blood 

into the lateral ventricles of adult dogs [96-98]. Of note, unlike Cherian’s group, these 

models used adult animals and studied ventricular clot lysis; thus applicability to PHVD of 

prematurity was questionable.

Collagenase

Previously, we described a neonatal brain hemorrhage model using stereotaxically injected 

collagenase into the germinal-matrix of neonatal rats [357]. The rats exhibited grade III-IV 

brain bleeds, as the hematoma spread into the ventricles, similar as to what was delineated 

by clinical imaging studies in premature human infants ([4]; animal model illustrated in Fig. 

1). Analogous to intraventricular hemorrhage in human premature infants, this model 

ruptured blood vessels within the germinal-matrix, breaks the ependymal, and fills the 

ventricles with blood [380]. In addition, the progressive and spontaneous escalation of focal 

bleeding and rebleeding, transmural pressure, and blood-vessel rupture in this model, which 

all raise intracranial pressure to severe levels during the first few days of neonatal life, are 

comparable to GMH-intraventricular hemorrhage of human premature infants [380, 394]. 

Clinically, elevated transmural pressures across intracerebral blood vessel walls are caused 
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by diuretic administration, bicarbonate infusions, and high pulmonary-ventilator pressure 

[2].

Compared with prior animal models that used free-hand injections [335, 395], with 

ultrasound or MRI monitoring in a select few [30]; our model used a commercially-

available, standardized, neonatal stereotaxic frame with a Hamilton syringe in order to 

minimize needle trauma to the brain parenchyma. We induced the brain bleed by injecting 

collagenase into the ganglionic eminence as this creates a standardized, spontaneous rupture 

that bleeds into the lateral ventricles [396-398]. This modeled the consequential conditions 

including regional brain swelling (edema), fibrogenesis, gliosis, motor /cognitive deficits, 

altered brain/body growth, delays of neurodevelopment, ventriculomegaly, brain atrophy, 

increased hemoglobin / thrombin, and a strong inflammation response. The slow 

intraventricular bleeding rate in the collagenase-induced rat neonatal brain bleed model had 

fewer confounding factors like related trauma, infarction, rapidly increased intracerebral 

pressure (ICP), as compared to models using rapid intraventricular infusions of relatively 

large blood volumes [84, 95, 335, 388]. Fortunately, rodent neurobehavioral and 

histopathological responses to brain injuries are well documented [397-401]; in addition to 

rodent models being less labor intensive, expensive, and having a much lower mortality rate, 

with survival into adulthood, compared with models using rabbits, piglets, or beagles [84, 

234, 379, 388, 402].

In limitation, the collagenase approach may exaggerate the inflammatory response [403]. 

Indeed, a strong inflammatory response may account for the observed increase in ventricular 

dilation in the collagenase model when compared to direct blood injection, which requires 

twice the hemorrhagic volume to induce comparable ventricular dilation in only 65% of the 

pups [84]. Also, the effects of anti-thrombin drugs and iron-chelators need to be evaluated 

independently when assessing neurobehavioral and hydrocephalus development. Therefore 

the effects of iron, thrombin, hemoglobin, and deactivated collagenase is needed [404].

Moreover, our NBH model has a very low mortality rate for the high-grade of brain bleed 

injury produced; which is very different from the 30-50% mortality rate in humans with 

similar severity [405]. Furthermore, the mechanism behind CSF drainage impairment needs 

investigation; even though it is widely believed that blood and coagulation products disrupt 

arachnoid villi function. Additionally, it will be important to ascertain the effects of drugs on 

blood in the ventricles or on brain tissue; even though blood within the ventricles is a 

causative factor for hydrocephalus development; and future modalities such as MRI may 

help further clarify these associations (as partially illustrated in the Fig. 1).

SUMMARY

Neonatal brain hemorrhage is a devastating neurological disease of prematurity, and is in 

need of further therapeutic interventions. In this review, we discussed the latest 

pathophysiological findings; most specifically in the context of hydrocephalus. This 

pathological outcome can be studied from several perspectives, including: post-hemorrhagic 

ventricular dilatation (PHVD), increased cerebrospinal fluid (CSF) accumulation, and 

dangerously elevated intracranial pressures (ICP).
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The neurovascular unit was explored and reported from several different perspectives. These 

included the blood-brain barrier (BBB) itself, changes in angiogenesis and related factors, 

the extracellular matrix (ECM), and molecules therein. Of note: TGF-β (transforming 

growth factor-beta) has been implicated by many different investigators, to be involved in 

both the recovery and increased brain injury mechanisms, and thus may likely emerge as a 

key molecular target in future studies. Finally, the role of other neurovascular cells: 

specifically astrocytes and pericytes were described in the context of pre-term neonatal brain 

bleeds.

Current advancements of hemostasis and hemostatic factors, and the role of brain vascular 

components, including changes in cerebral venous pressure (CVP) tone, cerebral blood flow 

(CBF) regulation, independent cerebrovascular autoregulation, functional hyperemia 

consequences, and, lastly, interstitial flow were discussed. Several non-novel mechanisms of 

brain injury were also investigated (i.e. free radicals, hypoxic-ischemic stress, and 

inflammation). In this context, the neuropathology following neonatal brain hemorrhage was 

characterized- and included pathological periventricular leukomalacia, monamine 

neurotransmission deficits, endocrine deficiencies, long-term synaptogenesis problems, 

effects on the visual system (i.e. eye-sight), and periventricular axon degeneration.

Finally, several animal models are summarized in terms of their given pathophysiology and 

translational insights into human disease; specifically, long-term neurological, cognitive, 

and sensorimotor dysfunctions as essential mimics of human disease. We also presented the 

potential strengths and limitations of our collagenase rodent model, the developmental stage, 

and appropriateness for further translational studies [406].
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Fig. (1). CSF accumulation and ventriculomegaly 7 days after neonatal brain hemorrhage 
induction depicted by imaging
Magnetic resonance imaging (MRI) was used to evaluate injury progression in sham and 

vehicle P14 rat pups 7 days after NBH induction. These images suggest hydrocephalus 

development commences as early as 1 week following NBH induction. (A) T2-weighted 

MRI (top row) depicts CSF accumulation (hyperintense T2-signal marked with an asterisk) 

and ventriculomegaly. Susceptibility weighted imaging SWI (bottom row) depicts clots 

within the periventricular region (hypointense signal marked with arrows). Sham animals 

did not have any visible brain injury. T2-weighted MRI depicting (B) coronal, (C) axial and 

(D) sagittal cross-sections of NBH animal depicting CSF accumulation, ventriculomegaly, 

and minor midline shift.
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Table 1

Comparison of Neonatal Brain Hemorrhage (NBH) Animal Models.

Species NBH Induction Method
Developmental Ages

Comparable to
Pre-term Humans

Advantages Disadvantages

Rodents
[29-30, 84, 333-

335, 357]

Injection of autologous blood or
collagenase into the periven-

tricular region

Newborns comparable to 
24-26

week human gestational age, 
7

day-old rats comparable to 
32

week human gestational age

Availability of knockout 
strains,

well-documented 
neonatal brain

development, germinal 
matrix

in postnatal age, and 
inexpen-

sive

Substantial anatomical 
and physio-

logical differences with 
humans

Rabbits
[380, 384, 407-

414]

Intraperitoneal injection of
glycerol to induce intracranial
hypotension, sodium bicarbon-

ate hyperosmolality, or fu-
rosemide diuresis

28 days gestation or 3-4 days
before term are most 

comparable
to pre-term humans

Some postnatal brain 
develop-

ment features similar to 
fetal

humans, such as blood 
vessel

immaturity in germinal 
matrix

Inconsistent and diffuse 
hemor-

rhage development

Pigs
[415-424]

Intraventricular autologous
blood injection

Studies performed in 
newborn

pigs, not very comparable to
humans

Good for studying 
pathogenesis

of brain injury in 
neonates

Brain is developmentally 
mature

Sheep
[385, 425-431]

Asphyxia with arterial and
venous hypertension in exteri-

orized sheep fetuses

58 to 85 days gestation 
compara-

ble to 26-30 week preterm 
hu-

mans

Vasculature of germinal 
layer is

similar to humans

Brain is developmentally 
mature at

birth, inconsistent 
hemorrhage

development, sheep 
fetuses must

remain unbilically 
attached their

mothers, and sheep have 
carotid

rete mirables

Cats
[432]

hypernatremia induced by
intraperitoneal sodium injection

Studies performed in 6+ 
week

old kittens, not very 
comparable
to humans

Well documented 
neonatal

neuronal development

Poor documentation on 
kitten

germinal matrix and 
hemorrhage

sites in prior studies

Dogs [132, 378-
379, 383, 386,

433-450]

Induced hypertension, hypoten-
sion, or hypercarbia at 12-48
hours post-birth in beagles, or
asphyxiation of beagles at 6

days before term

Substantial germinal matrix 
layer

at term that is comparable to 
pre-

term humans

Large size makes 
physiological

observations easy, many 
well

documented studies 
related to

neonatal brain 
hemorrhage

Inconsistent hemorrhage 
develo-

pment, limited long-term 
neurofunc-

tional studies, and dog 
brains

contain a carotid rete 
mirables

Primates
[451-456]

Prematurely delivered baboons
at 125-days gestation spontane-

ously develop hemorrhages

Baboons at 100 days 
gestation

comparable to 24-week 
human

gestation age

Most comparable to 
human

development, 
spontaneous

NBH development

Very expensive
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