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Abstract

In automatic emotional expression analysis, head motion has been considered mostly a nuisance 

variable, something to control when extracting features for action unit or expression detection. As 

an initial step toward understanding the contribution of head motion to emotion communication, 

we investigated the interpersonal coordination of rigid head motion in intimate couples with a 

history of interpersonal violence. Episodes of conflict and non-conflict were elicited in dyadic 

interaction tasks and validated using linguistic criteria. Head motion parameters were analyzed 

using Student’s paired t-tests; actor-partner analyses to model mutual influence within couples; 

and windowed cross-correlation to reveal dynamics of change in direction of influence over time. 

Partners’ RMS angular displacement for yaw and RMS angular velocity for pitch and yaw each 

demonstrated strong mutual influence between partners. Partners’ RMS angular displacement for 

pitch was higher during conflict. In both conflict and non-conflict, head angular displacement and 

angular velocity for pitch and yaw were strongly correlated, with frequent shifts in lead-lag 

relationships. The overall amount of coordination between partners’ head movement was more 

highly correlated during non-conflict compared with conflict interaction. While conflict increased 

head motion, it served to attenuate interpersonal coordination.
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1 Introduction

The last two decades have witnessed significant progress in automatic analysis and 

recognition of human emotion. Until recently, most research in affective computing has 

focused on facial behavior [68] where the confounding effects of head movement are 

removed prior to analysis [61]. Although in everyday experience we encounter associations 

between head movement and emotional expression [29], [13], the communicative functions 

of head movements in relation to emotion have been fairly unexplored in affective 

computing. Some notable exceptions are Paterson et al. [45] and Gunes and Pantic [24], 

[55], who found meaningful correlations between head movement and perceived dimensions 

of emotion in point-light animations [45] and in intelligent virtual agents [55], Busso and et 

al. [8] who considered the relationship between head motion and emotional speech in facial 

animation, De Silva and Bianchi-Berthouze [17] and el Kaliouby and Robinson [20] who 

used head movement among other features to recognize emotional expressions or mental 

states, and more recently Xiao et al. [66] who used head movement to categorize a subset of 

communicative labels in the context of psychotherapy interviews. In all but a few cases, 

such as Sidner et al. [59] and Morency et al. [42] who considered robot-human coordination 

of head motion, interpersonal coordination of head motion in social interactions has not been 

considered in affective computing.

By contrast, the literature on paralinguistic communication and social interaction 

emphasizes the importance of head movement in communication. Head movements regulate 

turn-taking [19], serve back-channeling functions [31], and communicate messages such as 

agreement or disagreement and interpersonal interaction. Head movement also provides 

useful supplementary information for perceiving speech [43], differentiating statements 

from questions [22], [44], and determining word emphasis in phrases [52]. Head movement 

during speaking, singing, and piano performances conveys a range of meanings and 

emotions and allows discriminating between often subtle expressive intentions [16]. When 

Duchenne smiles are coordinated with downward head pitch and head turn, they 

communicate embarrassment rather than enjoyment [13].

Individual differences, such as gender and expressiveness, influence head nods and turns [7]. 

For example, women use more active head motion among each other than do men when they 

talk with each other [6]. A person speaking with a woman tends to nod his or her head more 

than when speaking with a man [2]. Given the importance of head motion in human 

communication, it is critical to include the dynamics of head movement and interpersonal 

coordination in automatic facial expression analysis.

Efforts in this direction have begun. One approach is to observe a participant interacting 

with a virtual agent or animated avatar via an audio-visual link. Pfeiffer et al. [48] used an 

interactive eye-tracking paradigm in which participants interacted with a virtual agent. The 

virtual agent’s gaze was manipulated so that it was either averted from or coordinated with 

that of the participant. The authors investigated the influences of these variations on whether 

participants believed that another person or a computer program controlled the virtual agent. 

Bailenson and Yee [3] used a controlled virtual environment to study the influence of 

mimicry on cooperative behavior. Von der Ptten et al. [64] investigated whether 
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participants’ belief that they were interacting with a virtual representation of a human or an 

agent led to different social behaviors. Using an approach developed by Theobald et al. [60], 

Boker et al. [7] used motion-tracked synthesized avatars to randomly assign apparent 

identity and gender during free conversation in a videoconference, thereby dissociating sex 

from motion dynamics. They tested the relative contribution of apparent identity and head 

motion dynamics on social perception and behavior. All these studies involved 

communication between previously unacquainted participants over an audio-visual 

computer link.

A more challenging task is to study direct face-to-face interaction between participants in 

relatively natural communication. Three groups have addressed this problem by observing 

direct face-to-face interaction between previously unacquainted participants or between 

mothers and their infants. Boker et al. [5] used motion-capture technology to investigate the 

influence of auditory noise on interpersonal coordination of head motion velocity in adult 

face-to-face interaction. Messinger et al. [39] used active appearance models and automated 

measurement of expression intensity to model the face-to-face dynamics of mothers and 

their infants. Hammal et al. [25] used the results of automatic head tracking to investigate 

the contribution of head motion to emotion communication and its dynamic coordination in 

a face-to-face social interaction between parents and infants.

In continuity with these initial efforts and as an initial step toward understanding the 

contribution of head motion to emotion communication, we investigated interpersonal 

coordination of rigid head motion in face-to-face interactions between intimate partners 

during conflict and non-conflict. A well-validated dyadic interaction task was used to elicit 

conditions of conflict and non-conflict [51] in intimate couples that had a history of 

interpersonal violence. One of the partners had recently begun inpatient treatment for anger 

control in relation to their partner and substance dependence. Analyzing pre-existing couples 

of this sort, instead of solitary participants interacting with a virtual agent or previously 

unacquainted participant, posed both advantages and challenges. First, intimate partners are 

more likely to express their emotions in an uninhibited manner [51]. In the couples with a 

history of violence toward each other that we studied, extreme anger and violence were 

ever-present possibilities. We hypothesized that head displacement and velocity would 

increase in conflict compared with non-conflict. Second, because the behaviors are 

interpersonal, each participant’s behavior is both cause and consequence of the other’s 

behavior. Data analytic approaches that are appropriate for mutual influence are needed. 

Actor-Partner analysis and windowed cross-correlation (WCC) were used to measure the 

reciprocal relationship between the partners. We hypothesized that patterns of symmetry and 

asymmetry may shift rapidly as one or the other partner becomes momentarily dominant.

2 Methods

The following sections describe the participants, the observational and recording procedures, 

the linguistic coding of the audiovisual recordings, and the procedure used to automatically 

measure head pose.
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2.1 Participants

Twenty-seven (10 women and 17 men) heterosexual intimate partners participated in a 

dyadic interaction task. One member of each couple was enrolled in inpatient treatment for 

anger control and alcohol dependence [23]. These members, referred to below as inpatient 

participants, had committed physical aggression toward their partners on at least two 

separate occasions within the past year, at least one of which was under the influence of 

alcohol, and had scored 3 or higher on the physical violence subscale of the Straus Conflict 

Tactics Scales, a well-validated instrument for assessing intimate conflict [58]. Informed 

consents were obtained from both partners to be video-recorded during a dyadic interaction 

task. The average age of participants and their intimate partners was 40.8 years (range: 23–

57). Fifty-two percent self-identified as White, 44 percent as Black, 4 percent as Hispanic, 

and 4 percent as other.

2.2 Observational Procedure

The inpatient participants and their partners participated in a dyadic interaction task within 

two weeks of the beginning of the inpatient participant treatment. They were seated on 

opposite ends of a couch with an experimenter seated across the room in front of them [23]. 

The experimenter instructed them to engage in two tasks. First, they were asked to discuss 

something neutral, such as how the partner had traveled to the treatment center (low 

conflict). Next, they were asked to “discuss something that has been difficult for the two of 

you” (high conflict). The order of the two tasks was the same for all the dyads. Couples were 

asked to address each other and to ignore the experimenter. The interactions were recorded 

using two hardware-synchronized VGA cameras and a microphone that were input to a 

special effects generator that created a split-screen recording. The sessions lasted an average 

of 16.68 min (range: 6.07–46.54 min). The video captured their faces and upper chest and 

shoulders. Fig. 1 shows an example of the obtained split-screen for one of the 27-couples. 

To protect the identity of the participants, their faces have been digitally masked.

2.3 Segmentation of Conflict and Non-Conflict Segments

Despite the instructions to the couples, high conflict could and did occur during the 

nominally low-conflict task. To assess this possibility, manual linguistic coding was used to 

identify segments of actual low and high conflict throughout the recording period. The 

linguistic criteria were inspired by previous research. Dunn and Munn [18] used behavioral 

and linguistic criteria to investigate conflict episodes in sibling interaction. Caughy et al. [9] 

did the same in mother-child interactions. Because our goal was to understand nonverbal 

behavior during conflict episodes, we used linguistic criteria to segment conflict and non-

conflict segments and analyzed head movement to characterize corresponding behavior.

2.3.1 Segmentation—Conflict was defined as one partner opposing or contradicting the 

other. Examples included disagreement, hostile behavior, and deliberate attempts to 

contradict, upset, or provoke the partner, such as: “no”, “that’s a lie”, “you are wrong”, 

“never”. Further examples included contradicting statements, such as: “I was not drunk, you 

had 12 beers”; “ Amy was there, she had left already”. Conflict segments ended when a) 

one member of the dyad submitted to the other, b) the couple reached consensus or changed 
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topics, c) the interviewer intervened between them, or d) one of the partners directed their 

remarks toward the interviewer using third-person language. Excluded from conflict were 

segments in which one partner initiated a conflict but the other complied or ignored without 

reciprocating or exhibiting negative affect.

Non-conflict segments were defined as segments in which the couple engaged in 

conversation with each other and used second-person language when they referred to each 

other.

Experimenter segments were those in which either the experimenter addressed one or both 

partners or one or both partners spoke to the experimenter.

2.3.2 Inter-Observer Reliability—All coding was performed by a single trained 

annotator. To assess the reliability of the coding, 15 percent of the videos were randomly 

sampled and independently labelled by another trained annotator. Agreement was measured 

using coefficient kappa. The mean kappa for interobserver agreement was 0.75, which 

suggests substantial inter-observer agreement [35], [63].

2.4 Automatic Head Tracking

A cylinder-based 3D head tracker (CSIRO tracker) [15] was used to model the 6 degrees of 

freedom of rigid head motion (i.e., pitch, yaw, roll, scale, translation y (up/down), and 

translation × (left/right)), which refers to head movement in a three-dimensional space. For 

each participant, the tracker was initialized on a manually selected near-frontal image prior 

to tracking. To assess the concurrent validity of the tracker for the tracking of head 

orientation, it was compared with two alternative methods on an independent data set. One 

method was Xiao, Kanade, and Cohn’s generic cylindrical head tracker [65]; the other was a 

person-specific 2D+3D AAM [27]. Test data were 18 minutes of video from three 

participants in the Sayette Group Formation Task (GFT) data set [53]. The GFT participants 

were recorded while seated around a circular table, talking, and consuming drinks 

containing alcohol or a placebo beverage. Moderate to large head motion and occlusion 

occurred frequently over the course of these spontaneous social interactions. The CSIRO 

tracker demonstrated high concurrent validity with both of the other trackers. In comparison 

with [27], concurrent correlations for roll, pitch, and yaw were 0.78, 0.96, 0.93, respectively. 

In comparison with [65], the corresponding values were 0.77, 0.93, and 0.94. In a recent 

behavioral study, the CSIRO tracker has differentiated normal and perturbed parent-infant 

interaction [25]. In the current study, the tracker covered the wide range of head pose 

variation that can occur in social interaction within couples and proved robust to both minor 

occlusion and rapid changes in pose. An example of the tracker’s performance is shown in 

Fig. 2.

3 Data Selection and Reduction

In the following sections we first present results for linguistic coding and automatic head 

tracking. We then describe how angular displacement and angular velocity of head motion 

were computed.
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3.1 Linguistic Coding Results

Fig. 3 shows the interaction map obtained by linguistic coding (see Section 2.3). For all 

couples, interactions began in conversation with the experimenter (delimited in blue on Fig. 

3). In a few cases, couples never progressed beyond this. As the goal of our study was to 

compare the head movements in conflict and non-conflict segments, segments involving the 

experimenter were not analyzed. In most cases, segments with and without conflict 

(delimited in red and green, respectively on Fig. 3) alternated throughout the interaction 

regardless of the experimental instructions. This pattern highlights the importance of using 

independent criteria to identify episodes of conflict and non-conflict instead of relying upon 

the experimenter’s instructions. Conflict was interspersed frequently throughout the sessions 

regardless of instructions. The ratio of conflict to non-conflict was about 2:1. Conflict 

occurred 49.63 percent of the time, and non-conflict occurred 25.66 percent of the time (t = 

2.94, df = 26, p = 0.006).

3.2 Head Tracking Results

For each video frame, the tracker output six degrees of freedom of rigid head motion (i.e. 

pitch, yaw, roll, translation x, translation y, and scale) or a failure message when a frame 

could not be tracked (see Fig. 2). 4.39 percent of the total frames could not be tracked. To 

evaluate the quality of the tracking, we visually reviewed the tracking results overlaid on the 

video (Fig. 2). In 17 percent of the tracked video frames, visual review indicated errors. 

These frames were excluded from further analyses. Table 1 reports the proportions of 

tracked frames that met visual review for each participant separately and for each couple 

(valid tracking for both partners in the same video frame) for the three different interaction 

episodes. Valid tracking was highest for the experimenter interaction. The proportion of 

valid frames in conflict and non-conflict did not vary whether for individual participants or 

for couples. Fig. 4 shows the distribution of valid tracking for each couple.

3.3 Data Selection

Within couples, the proportion of valid frames for conflict and non-conflict varied and for 

some couples was low. So that imbalance between conflict and non-conflict or low base rate 

would not bias test statistics, two criteria for data selection were followed. One, the same 

duration was sampled for both conflict and non-conflict (Fig. 5 for an example). Two, only 

segments greater than 30 seconds were considered. “Thin slices” less than this amount are 

believed to be insufficient to permit valid inferences about personality-based characteristics 

[1]. Using the criteria of a minimum duration of half a minute for both conflict and non-

conflict, 17 dyads corresponding to 34 participants had complete data (see Fig. 6). We report 

on their data in the following.

3.4 Data Reduction: Head Movement Measurement

Angles of the head in the horizontal and vertical directions were selected to measure head 

movement. These directions correspond to the meaningful motion of head nods (i.e., pitch), 

and head turns (i.e., yaw), respectively (see Fig. 7). Head angles were converted into angular 

displacement and angular velocity. For both pitch and yaw, angular displacement was 

computed by subtracting the overall mean head angle from each observed head angle within 
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each valid segment (i.e., consecutive valid frames). We used the overall mean head angle, 

which afforded an estimate of the overall head position for each partner in each condition 

and each segment. Similarly, for both pitch and yaw, angular velocity was computed as the 

derivative of angular displacement, measuring the speed of changes of head movement from 

one frame to the next. So that missing data would not bias measurements, the angular 

displacement and angular velocity for each episode and each subject were computed for 

each consecutive valid segment separately. The root mean square (RMS) was then used to 

measure the magnitude of variation of the angular displacement and the angular velocity, 

respectively. The RMS value of the angular displacement and angular velocity was 

computed as the square root of the mean value of the squared values of the quantity taken 

over a segment. The RMS of the horizontal (RMS–yaw), and vertical (RMS–pitch) angular 

displacement and angular velocity were then calculated for each condition of dyadic 

interaction for each separate partner.

To minimize missing data, the RMSs of the angular displacement and angular velocity were 

computed for each selected valid segment and normalized by the duration of the segment. 

They are denoted nRMS. Then for each dyad the mean of the consecutive nRMSs over the 

selected segments (for angular displacement and angular velocity, respectively) was 

computed and used for analyses. Fig. 8 shows an example of selected conflict segments 

taken from Fig. 5. In this example, to measure the RMS of head movement (displacement 

and velocity) in the conflict condition we first computed the nRMSs of angular displacement 

(respectively angular velocity) for each consecutive segment: nRMS1, nRMS2 and nRMS3. 

The mean RMS of the angular displacement (respectively angular velocity), denoted mRMS, 

of the cumulative segments is then computed as the mean of these three normalized RMSs 

as: mRMS = ((nRMS1 + nRMS2 + nRMS3)/3). The obtained mRMSs (for angular 

displacement and angular velocity, respectively) are used as the characteristic measure of 

head movement and are used in all the subsequent analyses. In the following sections 

mRMS are noted RMS for simplicity.

4 Data Analyses

We first evaluated whether changes (increase or decrease) of head angular displacement and 

angular velocity are characteristic of conflict compared with non-conflict for men and for 

women and for inpatient participants and their partners. We then used Actor-Partner analysis 

to evaluate how the partners affect each other’s head movements. Finally, time series 

analysis was used to measure the pattern of synchrony in head movement between the 

partners and whether this pattern changes between conflict and non-conflict.

4.1 Do Head Movements of Distressed Couples Differ During Conflict and Non-Conflict?

Because of the repeated-measures nature of the data, Student’s paired t-tests were used to 

test differences in head movement between conflict and non-conflict. The RMSs of the 

angular displacement and angular velocity for pitch and yaw were the primary dependent 

measures. First, within-subject comparisons evaluated the variability of each participant’s 

angular displacement and angular velocity of head movement in conflict compared with 

non-conflict. A Student’s paired t-test on the RMS angular displacement and RMS angular 

velocity of pitch and yaw was computed between conflict and non-conflict, separately for 
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men and women. Second, within-dyad comparisons evaluated differences between inpatient 

participants’ and partners’ RMS angular displacement and RMS angular velocity of pitch 

and yaw separately for conflict and non-conflict.

4.2 How Do Head Movements of Men and Women, Inpatient Participants and Partners 
Compare?

We expect that each inpatient participant affected the head movements of their partner as 

well as their partner affected the head movements of the inpatient participant. Given these 

bi-directional feedback effects, the data need to be analyzed while taking into account both 

participants in the dyad simultaneously. Each participant’s head movements are thus both a 

predictor and an outcome variable.

To put both partners in a dyad into the same analysis, we used a variant of Actor-Partner 

analysis [30], [7]. For example, for the analysis of the RMS–pitch angular displacement, we 

put both participants RMS’ pitch angular displacement into the same column in the data 

matrix; and used a second column as a dummy code gender to identify whether the data in 

the angular RMS angular displacement column came from a man or a woman. In a third 

column, we put the RMS–pitch angular displacement from the other participant. We then 

used the terminology Actor and Partner to distinguish which variable is the predictor and 

which is the outcome for a selected row in the data matrix. If gender = 1, then the man is the 

Actor and the woman is the Partner in that row of the data matrix. If gender = 0, then the 

woman is the Actor and the man is the Partner. The RMS–pitch angular displacement of the 

Partner is used as a continuous predictor variable. Binary variables were used to code the 

partners’s status (1 = inpatient participant, 0 = partner) and the conflict condition (1 = 

conflict, 0 = non-conflict) [30], [7]. We also added an interaction variable (partner status X 

conflict condition) that allows us to account for an overall effect of the partner status 

(inpatient participant or their partner) as well as the condition of the interaction (conflict or 

non-conflict) between the partners. Then models were fit using R (R Core Team, 2013) [49] 

and nlme package [47] to perform linear mixed effects analysis of the relationship between 

the head movements of the partners. To do so, we used the R generic function lme() that fits 

a linear mixed effects model in the formulation described in Laird and Ware [32]. In our 

case this model can be expressed as:

(1)

where yj is the outcome variable (either RMS–pitch, or RMS–yaw angular displacement or 

velocity) for dyad j. The other predictor variables are the sex of the Actor Sj, whether the 

Actor is the inpatient participant PRj, the interaction condition Ij (conflict or non-conflict), 

and the interaction between the partner status and the conflict condition PRjIj, the RMS–

pitch, or RMS–yaw angular displacement or angular velocity of the partner PYj.

4.3 Is Head Movement between Partners Synchronous?

To investigate synchrony, we used windowed cross-correlation and peak picking. 

Windowed cross-correlation [33], [34] is a method of time-series analysis appropriate when 
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synchrony between two series varies over time [2]. Peak picking is applied to WCC to better 

reveal pattern of change in lead-lag relationship between series [5].

4.3.1 Windowed Cross-Correlation—The windowed cross-correlation estimates time 

varying correlations between signals [33], [34]. It produces positive or negative correlation 

values between two signals over time for each (time, lag) pair of values. The windowed 

cross-correlation assumes that the mean and variance of time series and patterns of 

dependency between them may change over time. It uses a temporally defined window to 

calculate successive local zero-order correlations over the course of an interaction. In Boker 

et al. [5], for example, the windowed cross-correlation was used to compare the frequency of 

head and hand motion and their synchrony between conversing dyads with and without 

street noise. In Messinger et al. [39], the windowed cross-correlation was used to measure 

local correlation between infant and mother during smiling activity over time. Following 

these previous studies, windowed cross-correlation was used to measure the associations 

between previous, current, and future head movements of partners. The windowed cross-

correlation consists in estimating the successive correlation values and the corresponding 

time lag from the beginning to the end of the interaction (see Fig. 9). It requests the 

definition of a set of parameters: the sliding windows size (Wmax), the window increment 

(Winc), maximum lag (tmax) and the lag increment (tinc). The results matrix will have a 

number of columns equal to (tmax * 2) +1 and a number of rows equal to the largest integer 

less than (N − Wmax − tmax)/Winc. The choice of parameter values was guided by previous 

studies and by preliminary inspection of the data. Previous works [5], [50] showed that plus 

or minus 2s is meaningful for the production and perception of head nods (i.e. pitch) and 

turns (i.e. yaw). We therefore set window size Wmax = 4 seconds. The maximum lag tmax is 

the maximum interval of time that separates the beginning of the two windows. The 

maximum lag should allow the capture of the possible lags of interest and the exclusion of 

lags of no interest. After exploring different lag values, we chose a maximum lag tmax = ½ 

seconds ×30 sample/sec =15 samples. Using these parameter values, the windowed cross-

correlation was computed for the angular amplitude and the angular velocity of pitch and 

yaw, for all the dyads during conflict and non-conflict, and for each consecutive valid 

segment (see Section 3.4).

4.3.2 Peak Picking—To analyze patterns of change in the obtained cross-correlation 

matrix, Boker et al. [5] proposed a peak selection algorithm that selects the peak correlation 

at each elapsed time according to flexible criteria. The peaks are defined so that each 

selected peak has the maximum value of cross-correlation centered in a local region where 

the other values are monotonically decreasing through each side of the peak. The second 

row of Fig. 10 shows an example.

5 Results

To answer the above questions, three sets of analyses were pursued and presented in the 

following sections.
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5.1 Head Movement Characteristics in Conflict Compared with Non-Conflict

Student’s paired t-tests revealed that men’s RMS angular displacement and RMS angular 

velocity of pitch and yaw increased significantly in the conflict condition compared with the 

non-conflict condition (see Tables 2 and 3). For women, RMS angular velocity of pitch and 

yaw but not amplitude increased in conflict (see Table 3). Overall, both men and women 

moved their heads faster in conflict than in non-conflict, while only men increased RMS 

angular displacement of pitch and yaw during conflict. No significant differences were 

found between inpatient participants and partners for RMS angular displacement or velocity 

of pitch or yaw during conflict and non-conflict.

5.2 Actor-Partner Results

Table 4 presents the results of the mixed effects random intercept models for the RMS 

angular displacement of pitch and yaw, respectively. The intercepts, 7.404e-05 radian/sec (p 

= 0.03) and 6.894e-05 radian/sec (p = 0.047) correspond to the overall mean vertical RMS 

angular displacement of both partners for pitch and yaw, respectively. The lines “Partner 

RMS PitchAmp” and “Partner RMS YawAmp” estimate the reciprocal relationship between 

the partners’ RMS-Pitch and RMS-Yaw angular displacements, respectively. The obtained 

results show that there was a reciprocal relationship in the partners’ RMS–yaw angular 

displacements. For each 1 radian/sec increase in the partners RMS–yaw, there was a 0.273 

radian/sec increase in the RMS–yaw angular displacement of the other partner (p = 0.029). 

No significant reciprocal relationship was found between the RMS–pitch angular 

displacement of the partners. The lines “Actor is Male” suggest that the males produced 

RMS–pitch and RMS–yaw angular displacements that were not significantly different from 

those of females. The lines “Actor is Inpatient participant” suggest that the inpatient 

participants produced RMS–pitch and RMS–yaw angular displacements that were not 

significantly different from those of their partners. The lines “Conflict” evaluate if partners 

angular displacements change in conflict compared with non-conflict conditions. The 

obtained results suggest that the RMS–pitch angular displacement is 7.671e-05 radian/sec 

higher in conflict compared with non-conflict (p = 0.046). The lines “Actor is Inpatient 

participant X Conflict” suggest that there is no significant interaction effect between 

inpatient participants and the conflict condition. The results of the mixed effects random 

intercept models applied to RMS angular velocity of pitch and yaw respectively are 

presented in Table 5. The same pattern of reciprocal interaction effect between the partners 

head movements were found for the RMS–pitch and the RMS–yaw angular velocity. The 

lines “Partner RMS PitchVel” and”Partner RMS YawVel” show that for each 1 radian/sec 

increase in the partner’s RMS–pitch and RMS–yaw angular velocities there was respectively 

0.724 radian/sec and 0.641 radian/ sec increase in the RMS–pitch and RMS–yaw angular 

velocities of the other partner (p = 0.000).

Overall, the obtained results highlight a significant reciprocal relationship between the 

partners’ head movements for the angular displacements of pitch and the angular velocities 

of pitch and yaw. Thus over the dyadic interaction, greater than normal head movement by 

one partner is associated with greater than normal head movement by the other partner. This 

effect could be attributed to symmetry or mimicry between partners. Finally, there was 

evidence that partners’ pitch angular displacements increase when partners are in conflict 
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interaction compared with non-conflict. While pitch angular displacement was not 

associated with a significant reciprocal increase or decrease between partners’ head 

movements, pitch angular displacement appears to be a characteristic head behavior during 

conflict interaction.

5.3 Head Movement Coordination in Conflict Compared with Non-Conflict

5.3.1 Windowed Cross-Correlation Patterns—Fig. 9 shows examples of windowed 

cross-correlation for pitch angular displacement and angular velocity for one dyad during 

conflict and non-conflict. In each of these graphs, the abscissa plots the elapsed time during 

the dyad, and the ordinate plots the lag of the two windows. The color represents the value 

of the cross-correlation. For each graph, the area above the midline of the plot (Lag > 0) 

represents the relative magnitude of correlations for which the head angular displacement 

(respectively head angular velocity) of one partner predicts the head angular displacement 

(respectively head angular velocity) of the other; the corresponding area below the midline 

(Lag < 0) represents the opposite. The midline (Lag = 0) indicates that both partners are 

changing their head angular displacements and velocities at the same time. Positive 

correlations (red) convey that head angular displacement (respectively angular velocity) of 

both partners is changing in phase. Negative correlation (blue) conveys that head angular 

displacement (respectively velocity) of both partners is changing out of phase.

The obtained cross-correlation graphs highlight vertical slices of positive (red plots) and 

negative (blue plots) correlations between the angular displacements of head movement of 

partners (Figs. 9a and 9b) and local and sparse periods of positive and negative correlations 

between the angular velocities of head movement of partners (Figs. 9c and 9d). Visual 

examination of Fig. 9 suggests that in both non-conflict and conflict tasks, head angular 

displacements and velocities were strongly correlated between partners with instability and 

dynamic exchange of the correlation signs (appearance of correlations with alternative 

positive and negative lags). This dynamic change of the direction of the correlations 

highlights the non-stationarity of the interaction between the partners. The interaction 

between partners changes over time (presence of correlation peaks at both negative and 

positive lag over time), consistent with the view that interpersonal communication is a 

dynamic system. Overall, at any given time men and women form a co-regulated dyadic 

head pose system. Each partner’s head movements predict the other in time, and men to 

women influence is mirrored by women to men influence.

5.3.2 Peaks Cross-Correlation Patterns—The cross-correlation peak selections were 

run separately on the selected segments for conflict and non-conflict conditions. The second 

row of Fig. 10 shows an example of the peaks of correlation (red represents positive peaks 

and blue represents negative peaks) obtained using the peak picking algorithm on the 

windowed cross-correlation matrix reported on the first row of Fig. 10. The visual inspection 

of the obtained peaks shows the same pattern described above. The direction of the peaks 

correlation changes dynamically over time with frequent changes in which partner is leading 

the other. To compare coordination between partners’ head movements in conflict and non-

conflict conditions, the mean of the obtained correlation peak values were calculated for 

each dyad within each condition for each separate valid segment and normalized by the 
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duration of the segment. In order to avoid bias due to low correlations, only peaks 

correlation values greater than 0.3 were considered for analyses. Correlations at this 

threshold or higher represent effect sizes of medium to large [12].

Student’ paired t-tests were used to evaluate the variability of the correlations of the angular 

displacement and the angular velocity of head movement in conflict compared with non-

conflict separately for each dyad. To do so, the obtained means of correlation were first 

Fischer r-to-z transformed and then used as the primary dependent measures in the Student’ 

paired t-tests. The obtained results show that for the angular displacement, the means of 

peak correlation decreased marginally in conflict interaction for pitch and yaw (see Table 6). 

For the angular velocities, the means of peak correlation decreased significantly in conflict 

compared with non-conflict for pitch and yaw (see Table 6). Thus, partners’ head 

movements were more highly correlated during non-conflict compared with conflict.

6 Discussion

We used a dyadic interaction task paradigm to investigate the dynamics of head movement 

between intimate partners during conflict and non-conflict. In preliminary analyses, we 

found that both men and women responded with increased RMS angular velocity to conflict. 

Additionally, men responded with increased RMS angular displacement, as well. Actor-

partner analyses revealed patterns of mutual influence and their relation to conflict. This 

study represents the first time that automated head tracking has been used to investigate 

mutual influence in intimate couples.

We found a significant reciprocal relationship between partners’ head movements. During 

both conflict and non-conflict episodes, greater and faster head movements by one partner 

were associated with greater and faster head movements by the other partner. This finding of 

strong mutual influence for head movement was consistent with previous findings using 

manual measurement of perceived emotion in couples [51]. Levenson and Gottman [36], for 

instance, found that the display of more negative emotions from one spouse lead to the 

display of more negative emotions from the other spouse. A provocative exception in this 

literature is a recent study by Madhyastha et al. [37]. While most of the couples in their 

study showed mutual influence, a few were more influenced by their own initial state and 

inertia. Several factors might account for this difference between our findings and theirs. 

Madhyastha et al. [37] analyzed positive and negative valence rather than head motion, 

considered only conflict rather than both conflict and non-conflict, and used separate models 

for each couple rather than a multilevel model. The modal pattern in their study, moreover, 

was mutual influence, which has been found by most investigators using manual 

measurement. Using automated measurement, mutual influence was our finding, as well.

Related literature has investigated mutual influence in unacquainted partners [2], [6]. Using 

motion capture devices and actor-partner analysis, Boker et al. found strong evidence of sex 

differences in head movement; whereas our findings for head movement were mixed. In 

same-sex dyads or groups of previously unacquainted people, women are more expressive 

and do more back channeling than do men in same-sex groups. We found similar sex effects 

for t-tests but not for more rigorous actor-partner analysis. A factor may be that people 
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respond differently with intimate partners than with a stranger. Most studies of sex 

differences in social behavior have been conducted on unfamiliar persons. Both relationship 

history and data analytic strategy are important to consider.

We found an increase in Partners’ RMS angular displacement of head pitch during conflict 

relative to non-conflict. This increase was not different in inpatient participants and their 

partners. This result suggests that it is not just the inpatient participant who is differing 

between conflict and non-conflict. Both partners are working together to behave differently. 

This is consistent with Caughlin’s work on the demand-withdraw (DW) interaction pattern 

which suggests that demand and withdrawal are not pre-established roles between partners. 

From Caughlin’s perspective, DW is a dynamic pattern in which roles are exchanged over 

the course of interaction [10], [11]. The results of windowed cross-correlation analyses 

further support this inference. The direction of influence between partners dynamically 

varied over time. Had the inpatient participant or spouse assumed only one or the other role 

(i.e., one demanding and the other withdrawing), then a unidirectional pattern would have 

emerged. These results are in accordance with a dyadic perspective.

Previous work in emotion communication and social interaction emphasized facial 

expression. Head movement may not rival facial expression in subtlety of expression, but as 

described above it conveys much information about the experience of intimate partner. 

When couples were in conflict their head nods increased compared with non-conflict. The 

temporal coordination of head movements between partners and reciprocal influence 

strongly suggests a deep inter-subjectivity between them. The obtained results suggest that 

head motion is not only a source of noise for automatic facial expression analysis, but a 

potentially rich feature set to include in emotion and relationship detection. Body language, 

such as head movement, warrants our attention for automatic affect recognition.

The current work opens new directions for future investigations of face-to-face interaction 

and emotion communication. One direction is the study of the coordination between head 

movement and emotion exchanges in different contexts of social interaction (e.g., intimate 

partners, parent-infants). Another direction is to explicitly include head motion as a feature 

to inform action unit and emotional expression detection. Finally, further work is needed to 

integrate temporal coordination of facial and vocal expression with head motion for 

emotional expression recognition. We aim at testing these hypotheses in other dyadic social 

interactions such as parents-infants interaction.

Yet another contribution to the literature on nonverbal behavior is to inform the design of 

intelligent virtual agents and social robots in the context of human-robot and human-agent 

interactions. Head movement is involved in behavioral mirroring and mimicry among 

people and qualifies the communicative function of facial actions (e.g., smile is correlated 

with head pitch in embarrassment [13] and anger with head pitch and yaw in conflict 

between intimate partners). Social robots that can interact naturally with humans in different 

contexts will need the ability to use appropriately this important channel of communication. 

Social robots as well as virtual human agents would benefit from further research into 

human-human interaction with respect to head motion and other body language. Work in 

this area is just beginning. Recent work with intelligent virtual agents and social robots has 
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explored individual differences in personality and expressiveness [46], [57]. To achieve 

even more human-like capabilities, designers might broaden their attention by considering 

the dynamics of head movements between humans, such as intimate partners or strangers, 

and by the understanding of the causes of differences, instability, and changes in the 

direction of lead-lag relationships according to the context. This would make possible 

greater synchrony, shared intention, and goal-corrected outcomes.

7 Conclusion

We proposed an analysis of the interpersonal timing of head movements in dyadic 

interaction. Videos of intimate couples with a history of violence toward each other were 

analyzed in two conditions: conflict and non-conflict. The root mean square of horizontal 

and vertical angular displacement and angular velocity was used to evaluate how animated 

each participant was during each condition. A variant of actor-partner analysis was used to 

detect differences between men and women and inpatient participants in angular 

displacement and velocity of head pitch and yaw. Windowed cross-correlation analysis was 

used to examine moment-to-moment dynamics. Consistent with previous findings on 

reciprocal interaction and emotion exchange in dyadic interaction between intimate partners, 

our results extend these findings to head movements. Partners’ head movements highlighted 

strong mutual influence between partners. Moreover, in both conflict and non-conflict, head 

angular displacements and velocities were strongly correlated between partners, with 

frequent shifts in lead-lag relationships between them. The overall amount of coordination 

between partners’ head movement was more highly correlated during non-conflict compared 

with conflict interaction. While high conflict increased head motion, it served to attenuate 

interpersonal coordination. In summary, we found that head movement is a powerful signal 

in dyadic social interaction between intimate partners that varies with conflict.
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has conducted treatment trials to examine the efficacy of serotonergic, dominergic, 

cannabinoid, and NK-1 agents to decrease alcohol consumption in patients with alcoholism.
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Fig. 1. 
Example of split-screen video. Images are de-identified to protect participants’ identity.
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Fig. 2. 
Examples of head tracking during moderate to large head motion and occlusion. The 

examples are from Sayette Group Formation Task data set [53].
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Fig. 3. 
Interaction map based on linguistic coding. Each row corresponds to one couple. Columns 

correspond to the results of linguistic coding across frames. Blue delimits interaction with 

the experimenter, and red and green delimit conflict and non-conflict, respectively.
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Fig. 4. 
Interaction map for good tracked frames. Each row corresponds to one couple and the 

corresponding columns correspond to the time of the interaction.
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Fig. 5. 
Event selection after tracking. D_Conflict, corresponds to the duration of the concatenation 

of the conflict segments; D_NonConflict is equal to D_Conflict and corresponds to the 

duration of the concatenation of consecutive non-conflict segments to equal D_Conflict.
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Fig. 6. 
Maximum duration per dyad after the selection process. The dashed line corresponds to the 

threshold over which the data was used for subsequent analyses.
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Fig. 7. 
Illustration of pitch and yaw angles.
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Fig. 8. 
Red segments correspond to valid conflict segments; white segments correspond to missing 

data or tracking failure.
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Fig. 9. 
Examples of windowed cross-correlation matrices for pitch angular displacement (a–b) and 

angular velocity (c–d) for conflict and non-conflict.
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Fig. 10. 
For the windowed cross-correlation plot in the upper panel, we computed correlation peaks 

using the peak-picking algorithm. The peaks are shown in the lower panel. Red indicates 

positive correlation; blue indicates negative correlation.
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Hammal et al. Page 30

TABLE 1

Proportion of Valid Tracking during Experimenter Interaction, Non-Conflict and Conflict Interaction

Proportion of good tracking

Experimenter Interaction Non-Conflict Conflict

Participants 69.34%a 65.81%ab 62.79%b

Couples 56.45%a 50.73%ab 38.03%b

Note: Within rows, means with different superscripts differ at p ≤ 0.05.
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Hammal et al. Page 31

TABLE 2

Within-Subject Effects for Pitch and Yaw RMS Angular Displacements for Men and Women during Conflict 

and Non-Conflict

Paired t-test

Pitch t df p

Men −2.35 16 0.031

Women −1.49 16 0.155

Yaw

Men −2.21 16 0.041

Women −1.74 16 0.099

Note: t: t-ratio, df: degrees of freedom, p: probability.
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TABLE 3

Within-Subject Effects for Pitch and Yaw RMS Angular Velocities for Men and Women during Conflict and 

Non-Conflict

Paired t-test

Pitch t df p

Men −2.74 16 0.014

Women −2.26 16 0.037

Yaw

Men −2.78 16 0.013

Women −2.34 16 0.032

Note: t: t-ratio, df: degrees of freedom, p: probability.
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TABLE 6

Within-Dyad Effects for Normalized Mean of Peaks of Correlation Values for Angular Displacement and 

Angular Velocity of Pitch and Yaw during Non-Conflict and Conflict

Paired t-test

Angular displacement t df P

Pitch 1.91 16 0.07

Yaw 1.84 16 0.08

Angular velocity

Pitch 2.38 16 0.02

Yaw 2.15 16 0.04

Note: t: t-ratio, df: degrees of freedom, p: probability.
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