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Abstract

X-ray crystallography, molecular dynamics (MD) simulations and biochemistry were utilized to 

investigate the effect of introducing hydrophobic interactions in the 4-fold (N148L and Q151L) 

and B-pores (D34F) of Pseudomonas aeruginosa bacterioferritin B (BfrB) on BfrB function. The 

structures show only local structural perturbations and confirm the anticipated hydrophobic 

interactions. Surprisingly, structures obtained after soaking crystals in Fe2+-containing 

crystallization solution revealed that although iron loads into the ferroxidase centers of the 

mutants, the side chains of ferroxidase ligands E51 and H130 do not reorganize to bind the iron 

ions, as is seen in the wt BfrB structures. Similar experiments with a double mutant (C89S/K96C) 

prepared to introduce changes outside the pores show competent ferroxidase centers that function 

akin to those in wt BfrB. MD simulations comparing wt BfrB with the D34F and N148L mutants 

show that the mutants exhibit significantly reduced flexibility, and reveal a network of concerted 

motions linking ferroxidase centers and 4-fold and B-pores, which are important for imparting 

ferroxidase centers in BfrB with the required flexibility to function efficiently. In agreement, the 

£This study was supported by a grant from the National Science Foundation (M.R., MCB-1158469), funds from the University of 
Kansas Strategic Initiative – Center for Antimicrobial Discovery and Development (M.R.), a grant from the National Institutes of 
Health (W.I. R01-GM092950), and a grant from XSEDE (W.I., MCB070009).
ξCoordinates and crystallographic structure factors for the distinct BfrB structures have been deposited in the protein data bank under 
accession codes listed in Table 1.
*Corresponding author: Mario Rivera, Department of Chemisty, University of Kansas, Multidisciplinary Research Building, 2030 
Becker Dr., Lawrence, KS 66047. Telephone: 785-864-4936; Fax: 785-864-1916; mrivera@ku.edu. 

Supporting Information Available: Phased anomalous difference maps of the different iron sites in observed in the structures of Fe-
soaked D34F, N148L, Q151L and C89S/K96C BfrB are shown in Figures S1-S3 and S5-S7. 2Fo-Fc maps for sulfate ions in the 3-fold 
pores of Fe-soaked N148L, Q151L and C89S/K96C BfrB are shown in Figure S3, and 2Fo-Fc maps of sulfate ions in the 3-fold pores 
of as-isolated-2 C89S/K96C BfrB are depicted in Figure S4. Anomalous peak heights and B-factors for iron atoms in the Fe-soaked 
structure of C89S/K96C structure are listed in Table S1, and anomalous peak heights and B-factor ranges for iron atoms in the 
structures of Fe-soaked D34F, N148L, and Q151L BfrB are listed in Table S2. Sequence of primer pairs used to introduce the sited 
directed mutations. This material is available free of charge via the Internet at http://pubs.acs.org.

HHS Public Access
Author manuscript
Biochemistry. Author manuscript; available in PMC 2016 March 03.

Published in final edited form as:
Biochemistry. 2015 March 3; 54(8): 1611–1627. doi:10.1021/bi501255r.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://pubs.acs.org


efficiency of Fe2+ oxidation and uptake of the 4-fold and B-pore mutants in solution is 

significantly compromised relative to wt or C89S/K96C BfrB. Finally, our structures show a large 

number of previously unknown iron binding sites in the interior cavity and B-pores of BfrB, which 

reveal in unprecedented detail conduits followed by iron and phosphate ions across the BfrB shell, 

as well as paths in the interior cavity that may facilitate nucleation of the iron phosphate mineral.

Introduction

Iron, an essential nutrient for pathogenic bacteria, can also stimulate the formation of 

reactive oxygen species via the Haber Weiss cycle, in which free iron catalyzes the 

conversion of hydrogen peroxide and superoxide to the highly toxic hydroxyl radical (1, 2). 

Consequently, free levels of iron in bacteria are tightly regulated to ensure sufficiency for 

metabolic needs, while preventing iron-induced oxidative toxicity. To maintain iron 

homeostasis, pathogens must balance the need to obtain iron from their host with careful 

management of intracellular iron levels, which includes storage of iron reserves for 

subsequent utilization when the nutrient becomes scarce (2, 3). Bacteria have evolved two 

types of protein for storing iron, ferritin (Ftn) and bacterioferritin (Bfr); the latter is unique 

to bacteria (2, 4). The significance of bacterial Ftn and Bfr in the life cycle and virulence of 

pathogens is just beginning to emerge, as reflected in recent findings with Bfr and Ftn 

mutants of Mycobacterium tuberculosis, which are highly susceptible to antibiotics and 

unable to persist in mouse and guinea pig models of infection (5, 6). In the plant pathogen 

Erwinia chrysanthemi mutation of the bfr gene results in impaired iron utilization and 

growth defects (7).

The subunit architecture of eukaryotic Ftns, bacterial Ftns and Bfrs is highly conserved and 

consists of five α-helices (A-E) arranged in a four-helix bundle (A-D) and a short helix (E) 

that lies nearly perpendicular to the central axis of the bundle; helices B and C are connected 

by a long loop that traverses the length of the four-helix bundle. Although the structures of 

Bfrs are similar to those of Ftns in terms of the overall architecture of the subunits and how 

they assemble together into 24-mers, their amino acid sequences exhibit little homology (< 

18%) (8, 9). In addition, Bfrs are unique in possessing intrinsic heme groups, which are 

bound at two-fold symmetric inter-subunit sites by coordinative interactions with 

methionine residues from adjacent subunits. (Figure 1A). Twenty four subunits and 12 

hemes assemble into a spherical and hollow structure (Figure 1B) with an outer diameter of 

∼120 Å and an inner diameter of ∼80 Å, where up to ∼3,500 iron atoms can be stored in 

the form of a Fe3+ mineral(10). Details pertaining the self-assembly and stability of the 24-

mer bacterioferritin shells are beginning to emerge (11, 12). The formation of an iron core 

(iron uptake) requires binding of ferrous iron (Fe2+) to a ferroxidase catalytic site, where it is 

oxidized to the ferric (Fe3+) state (10, 13, 14), and then translocated to the interior cavity. 

Reincorporation of iron in metabolism requires accepting electrons to reduce Fe3+ in the 

internal cavity and releasing Fe2+ to the bacterial cytosol (15, 16). This dual function (iron 

uptake and iron release) enables an equilibrium that regulates the range of cytosolic Fe2+ 

concentrations that allow Fur (Fe uptake repressor) to perform a broad range of regulatory 

functions linking iron homeostasis to broader bacterial metabolism (17-19). Pseudomonas 

aeruginosa has two ferritin-like molecules, a bacterial ferritin (FtnA), and a bacterioferritin 
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(BfrB) (20). The release of iron stored in BfrB involves reduction of the Fe3+ mineral, which 

requires that electrons originating in NADPH are shuttled to BfrB by way of an NADPH 

ferredoxin reductase (FPR) and a ferredoxin, termed bacterioferritin-associated ferredoxin 

(Bfd) (16). The X-ray crystal structure of the BfrB-Bfd complex revealed that residues at the 

complementary BfrB-Bfd interface are highly conserved in Bfr and Bfd sequences from a 

number of pathogenic bacteria, suggesting that the BfrB/Bfd interaction is important in the 

regulation of cytosolic iron concentrations in gram-negative pathogens (15).

In Bfrs the ferroxidase catalytic centers are located in the middle of each subunit (Figure 1A 

and C). In the structure of as-isolated recombinant wt BfrB, the ferroxidase centers are 

devoid of iron, and although most of the ferroxidase residues are poised to bind iron, the 

side chain of H130 is rotated away; we termed this conformation of H130 “gate open” (gray 

in Figure 1C) (21). Soaking crystals of as-isolated wt BfrB in Fe2+ solution causes iron to 

load onto the ferroxidase center and the H130 side chain is seen in two conformations, one 

coordinated to Fe2 (“gate closed”) and the other in the “gate open” state (Figure 1C) (21). 

These structural observations, together with findings obtained from iron incorporation 

studies in solution, support the idea of a gating mechanism in BfrB, where a ferroxidase 

channel allows entry of Fe2+ from the protein exterior to the ferroxidase center, where a di-

Fe2+ moiety is coordinated by the ferroxidase ligands, including H130. Oxidation to di-Fe3+ 

is thought to signal H130 to adopt the gate open conformation and allow Fe3+ translocation 

from the ferroxidase center to the internal cavity (21).

The structures of ferritin-like molecules suggest that in addition to the ferroxidase pores, the 

protein interior communicates with the exterior via 8 three-fold pores, 6 four-fold pores, and 

24 B-pores (Figures 2A-B). The 3-fold pores assemble at the intersection of 3 subunits and 

in BfrB are formed by layers of alternating positively and negatively charged residues 

(Figure 2C) (21). The 4-fold pores, which assemble at the intersection of 4-subunits, are 

lined by the corresponding E-helices; their narrowest portion is composed of two layers 

made by the side chains of four N148 and four Q151 (Figure 2D). Bacterial Ftns and Bfrs 

also have B-pores, which are formed at the intersection of three subunits not aligned with an 

axis of symmetry. Four B-pores surround each 4-fold pore, such that there are 24 B-pores in 

the 24-mer. In BfrB the narrowest section of a B-pore is defined by D132 and T136 from 

one subunit, and D34 from a different subunit (Figure 2E). It has been noted that the size of 

B-pores may allow the traffic of Fe2+ across the Bfr shell (22, 23).

The low amino acid sequence conservation among Ftns, bacterial Ftns and Bfrs (8, 9) 

profoundly influence packing of the protein shell, charge distribution inside the pores, and 

possibly pore function: The 3-fold pores of eukaryotic Ftns are lined with negatively 

charged residues (24), which are thought to function as conduits for iron across the 

eukaryotic Ftn shell (25, 26). A similar function, however, is not obvious for the 3-fold 

pores in Bfrs, which have a layered structure of alternating positive and negative charge. 

The 4-fold pores of eukaryotic Ftn are lined with hydrophobic residues, but contain 

hydrophilic amino acids in BfrB (Figure 2D). In reported BfrB structures, a cation has been 

observed in the pores, which is best modeled as potassium (21) and sodium (15), whereas in 

two distinct structures of Azotobacter vinelandii Bfr the cation was modeled as a barium 

(27) or iron (23). Eukaryotic Ftns lack B-pores, whereas the 24 B-pores in BfrB are lined 
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with hydrophilic and negatively charged residues (Figure 2E). Moreover, in molecular 

dynamics (MD) simulations carried out with wt BfrB, K+ ions were seen to traffic in and out 

of the BfrB shell via B- and ferroxidase pores, but not through the 3-fold or 4-fold pores 

(28). The MD simulations also suggest that movement of K+ through B-pores is enabled by 

periodic kinking/straightening, as well as folding/unfolding of the C-terminal half of helices 

D, and that these fluctuations are coupled to lateral oscillations of the short E-helices that 

constitute the 4-fold pores, such that the aggregate of the motions is a periodic expansion 

and contraction of the B-pores. More recently, elastic network models were used to predict 

extensive networks of highly correlated residues connecting ferroxidase centers with B- and 

4-fold pores in Bfr and bacterial Ftn, leaving the 3-fold pores disconnected from the grid, 

while in contrast a network of correlated residues in eukaryotic Ftn connects ferroxidase 

centers and 3-fold pores (9). These predictions are not only in agreement with the putative 

distinct function of the different pores in Bfr and eukaryotic Ftn, but also support the idea 

that cooperative dynamics of the 24-mer architecture are pivotal for iron traffic and iron 

handling inside the ferritin cavity.

Despite the significant advances made toward understanding Bfr function, many important 

questions remain unanswered. For example, it is not yet clear how ions (positive and 

negative) enter or exit the interior cavity through the protein shell, or how these ions are 

“handled” in the protein interior. It is also not known how the dynamics of individual 

subunits and 24-mer assemblies contribute to the function of Bfr and the traffic of ions 

across the protein shell. In an attempt to provide answers to these questions, in this work we 

interrogated the effect that mutations in the 4-fold and B-pores may exert in the structure, 

iron uptake efficiency and dynamics of BfrB. N148 and Q151, the residues in helices E that 

line the 4-fold pores and normally coordinate K+ or Na+ (Figure 2D) were each replaced by 

leucine, and D34, one of the negatively charged residues that is part of the narrowest section 

of the B-pores, and coordinates a Na+ ion within the pore (Figure 2E), was replaced with 

phenylalanine. Our results show that the site-directed alterations not only exert a local effect 

on the targeted pores, but also influence the flexibility and reactivity of relatively distant 

ferroxidase centers. MD simulations carried out with the X-ray crystal structures of select 

mutants provide a platform for interpretation of the experimental observations in the context 

of cooperative motions, extending from 4-fold pores, via B-pores, into ferroxidase centers, 

which are required for efficient oxidation and mineralization of iron by the 24-mer 

bacterioferritin assembly. Structural studies of the BfrB mutants carried out after exposure 

of single crystals to Fe2+ solution provide experimental support for iron traffic through B-

pores, and compilation of iron binding sites in the interior surface of the distinct mutants 

give unprecedented insight into the paths followed by iron and phosphate, from entry ports 

in the Bfr shell toward possible mineralization sites in the interior cavity.

Experimental Procedures

Site-Directed Mutagenesis and Protein Expression

The pET11a vector containing the bfrB gene (16) was mutated to D34F, N148L, Q151L and 

C89SK96C using the QuikChange II Site-Directed Mutagenesis Kit (Stratagene, La Jolla, 

CA) using the manufacturer instructions. Primer pair sequences are provided in 
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Supplementary Information. PCR products were digested using Dpn I and transformed into 

XL1-Blue Supercompetent cells (Agilent Technologies) for DNA amplification. Plasmid 

DNA was isolated using the QIAprep Spin Miniprep Kit (QIAGEN), and the sequences 

verified by SeqWright (Houston, TX). Recombinant DNA plasmids with the correct 

sequence were transformed to Escherichia coli ArcticExpress (DE3)RIL competent cells 

(Agilent Technologies) for subsequent protein expression. The protocols for protein 

expression, purification and reconstitution with heme have been described previously (16, 

21).

Crystallization and Data Collection

All crystallization experiments were conducted in Compact 300 or CombiClover 500 

(Rigaku Reagents) sitting drop vapor diffusion plates at 20 °C. Equal volumes of BfrB (10 

mg/mL in 100 mM potassium phosphate buffer, pH 7.6 and 1 mM TCEP) and crystallization 

solutions were equilibrated against 75 μL reservoir volume. Within 1 day, red prismatic 

crystals were obtained from Wizard 2 (Rigaku Reagents) condition E2 (35% (v/v) 2-

methyl-2,4-pentanediol, and 100 mM MES pH 6.5, 200 mM Li2SO4). Crystals were 

transferred to a fresh drop of crystallization solution, which served as the cryoprotectant, and 

stored in liquid nitrogen for data collection. Fe-soaked crystals were prepared by soaking 

native crystals for 10 minutes in 50 mM FeCl2 freshly dissolved in crystallization solution 

then frozen in liquid nitrogen. X-ray diffraction data were collected at the Advanced Photon 

Source beamline 17-ID (IMCA-CAT) using a Dectris Pilatus 6M pixel array detector.

Structure Solution and Refinement

Intensities were integrated using XDS (29) via the XDSAPP (30) interface or the Autoproc 

(31) software package and the Laue class analysis, and data scaling were performed with 

Aimless (32). All crystals were isomorphous (P212121, 24 molecules/asu) with the 

previously determined BfrB structure (PDB: 3IS7) (21). However, BfrB (C89S/K96C) 

crystals were found to belong to the Laue class 6/mmm (a=158.57 Å, c=152.38 Å) with the 

likely space group P6322 (4 molecules/asu). The Matthews coefficient (33) (Vm) suggested 

that there were likely four (Vm = 3.2 Å3/Da, 62% solvent) molecules in the asymmetric unit. 

This is similar to the Matthew's coefficient observed for the P212121 crystal form (3.0 

Å3/Da, 59% solvent), indicating similar crystal packing in both crystals. Structure solution 

was conducted by molecular replacement using a single subunit from PDB:3IS7 as the 

search model with Phaser (34). All space groups with 622 point symmetry were tested in the 

molecular replacement searches. The top solution was found in the space group P6322 with 

four molecules in the asymmetric unit. A second crystal form of as-isolated BfrB (C89S/

K96C) was obtained from crystals that had been incubating in the trays for over six months, 

which resulted in significantly different lattice constants of a=b=155.13 Å, c=155.18 Å. The 

biological assembly (24-mers) of C89S/K96C BfrB can be generated by application of the 

space group symmetry operators to the asymmetric units. Structure refinement and manual 

model building were conducted with Phenix (35) and Coot (36) respectively. Disordered 

side chains were truncated to the point where electron density could be observed. Structure 

validation was conducted with Molprobity (37). Coordinates and structure factors were 

deposited to the Worldwide Protein Data Bank and the accession codes are provided in 

Table 1.
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In order to assign the Fe sites for the Fe-soaked BfrB (C89S/K96C) structure, data were 

collected at a wavelength corresponding to the iron absorption edge (1.7396 Å). This 

structure was refined using data to 1.8 Å resolution. During subsequent data collection at the 

synchrotron, diffraction data were collected for another Fe-soaked BfrB (C89S/K96C) 

crystal and data were collected at wavelengths of 1.7398 Å and 1.7463 Å, which correspond 

to the absorption peak and low energy remote respectively. The diffraction data were a bit 

weaker for this sample and were scaled to 2.1 Å resolution. However, this allowed for the 

confirmation of the assigned Fe sites, particularly those that displayed weaker electron 

density and possibly lower occupancy. By computing phased anomalous difference maps the 

anomalous signal was compared at the peak/remote wavelengths. If Fe is indeed present at a 

particular site, the anomalous signal should disappear when using the low energy remote 

wavelength data. Conversely, an atom such as a K+ ion, which yields an appreciable 

anomalous signal at the Fe peak wavelength, would display an increased anomalous signal 

at the low energy remote wavelength. This second data set (peak and low energy remote) 

was included with the structure factors deposited to the PDB for the Fe-soaked C89S/K96C 

structure.

Effect of the mutations on iron oxidation and uptake in solution by wt and mutant BfrB

As-isolated BfrB (wt and mutants) contain only a very small amount of iron in their core 

(16). Reconstitution with an iron core was carried out as previously reported (16): A 10 mM 

solution of ferrous ammonium sulfate was prepared inside an anaerobic chamber (Coy 

Laboratories, Grass Lake, MI), placed in a container with a rubber septum, and removed 

from the chamber. Concentrated HCl was added to the ferrous ammonium sulfate solution 

(50 μL/100 mL) through the septum with the aid of a Hamilton microsyringe (final pH ≈ 

2.0) and the resultant solution titrated into a stirred solution of 2 μM BfrB and 1.0 mM 

TCEP in 100 mM phosphate buffer, pH 7.6, in aliquots delivering 50 Fe2+ ions/BfrB. 

Fifteen minutes were allowed after the addition of each aliquot; upon the addition of the 

total iron load (500 Fe atoms/BfrB), the solutions were stirred overnight at 4 °C and then 

passed through a Sephadex G25M size exclusion column (GE Healthcare). The iron content 

of the samples, prior and after reconstitution with iron, was analyzed using a colorimetric 

ferrozine-based assay (38), as reported previously (16): 50 μL concentrated HCl was added 

to 50 μL mineralized BfrB and the mixture incubated for 15 min at room temperature prior 

to the addition of 50 μL ascorbic acid (25 mg/mL) and 250 μL saturated sodium acetate. The 

concentration of iron was determined using the absorbance at 562 nm (ε562nm = 27.9 

mM-1cm-1) 15 min after the addition of ferrozine (5mg/mL).

Molecular dynamics simulations of BfrB D34F and N148L mutants

Each mutant BfrB (D34F and N148L) was first immersed in a pre-equilibrated cubic water 

box of 160 Å in all three dimensions. This box is the same size as that used in the Grand 

Canonical Monte Carlo/Brownian Dynamics simulations of wt BfrB described previously 

(28, 39). Both the box and the BfrB molecule were centered at the origin. The initial ion 

configurations were the same as those in the E2, E10 and E40 systems described previously 

(28); the free K+ ion numbers are 2,840 (E2), 1,042 (E10), and 714 (E40) and the numbers 

of HPO4
2- ions are 1,231 (E2), 332 (E10) and 168 (E40). In each of the D34F mutant 

systems, 24 K+ ions were added in the bulk solution to make the total charge of the systems 
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neutral, and they were distributed with 2,000 Monte Carlo moves, which were either 

accepted or rejected based on Metropolis criteria. Water molecules within 2.4 Å from the 

ions and the BfrB heavy atoms were removed. The systems were then subjected to a 900-ps 

equilibration cycle with decreasing positional harmonic restraints on heavy atoms not 

including water oxygen. In the BfrB interior, the removed water molecules that were close 

to BfrB before the equilibration cycle were quickly replaced by water from the interior 

cavity of BfrB, creating small vacuum pockets. To overcome this problem, an additional 

sphere of pre-equilibrated water with 40 Å radius was added to the system on top of the 

other water molecules (also see (28)). Any of these newly added water molecules that were 

within 2.4 Å of either the BfrB heavy atoms or the other water molecules in the system were 

deleted. Each of the resultant systems was again equilibrated with diminishing positional-

harmonic-restraint potentials on the heavy atoms for another 900 ps and then subjected to a 

40-ns production.

All the simulations were carried out in NPT (constant particle number, pressure and 

temperature) ensembles using the NAMD2.9 (40) simulation package. The simulation inputs 

were obtained from the Quick MD Simulator module in CHARMM-GUI (41). The 

simulations were performed with CHARMM all-atom parameter set PARAM22 (42) 

including the dihedral cross-term corrections (CMAP) (43) and a modified TIP3P water 

model (44). The van der Waals interactions were smoothly switched off at 10-12 Å by a 

force switching function (45) and the electrostatic interactions were calculated using the 

particle-mesh Ewald method (46) with a mesh size of ∼1 Å for fast Fourier transformation, 

κ = 0.34 Å-1, and a sixth-order B-spline interpolation. The temperature (300 K) and pressure 

(1 atm) were kept constant during all the simulations by Langevin dynamics and the hybrid 

Nosé-Hoover Langevin piston method, respectively. The Langevin damping coefficient was 

set to 1 ps-1; the decay period and damping timescale were 50 fs, respectively.

Results

X-ray crystal structures

The structures of four BfrB mutants (N148L, Q151L, D34F and C89S/K96C) were 

determined using crystals grown from purified protein (as-isolated) and using crystals of 

pure protein after soaking in Fe2+ solution (Fe-soaked). Two mutants (N148L and Q151L) 

were prepared to investigate the effect of replacing the hydrophilic side chains that 

coordinate K+ in the 4-fold pores of BfrB (Figure 2D) with hydrophobic non-coordinative 

side chains. A third mutant (D34F) was prepared to study the effect of replacing a negatively 

charged residue, which was shown to bind a Na+ ion in the B-pores of BfrB (Figure 2E), 

with a hydrophobic side chain. As will be shown below, these mutations affect the flexibility 

of ferroxidase center ligands and the catalytic efficiency of Fe2+ oxidation by their 

respective ferroxidase centers. To show that mutation of residues outside of the pores has no 

effect on ferroxidase center function, we studied the surface mutant C89S/K96C, which had 

been prepared for a different investigation. Interestingly, the C89S/K96C mutant not only 

showed wt-like behavior of the ferroxidase center in crystallo and in solution, but also 

displayed all the iron binding sites observed in the structures of the different mutants 

reported here, and also revealed new ones. The unprecedented observation of six different 
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types of iron binding sites (>200 iron ions not counting heme-iron) in one Bfr structure 

allows comparison of thermal factors for each type of iron binding site, and therefore 

provides insights into their relative occupancies.

The structures of all the mutants show strong conservation of the subunit architecture and 

24-mer assemblies. Superposition (47) of subunit A from the as-isolated structure of each 

mutant reported here with subunit A of the previously determined wt BfrB structure (PDB: 

3IS7) resulted in the following RMSD between Cα atoms for 153 residues aligned: N148L 

(0.15 Å), Q151L (0.15 Å), D34F (0.10 Å) and C89S/K96C (0.15 Å). Closer inspection 

shows that the mutations cause local structural perturbations in the corresponding 4-fold or 

B-pores relative to the wt structure, as expected. However, comparison of as-isolated and 

Fe-soaked structures for each of the mutants uncovers important differences: (i) With the 

exception of the C89S/K96C mutant, iron ions in the ferroxidase centers are not coordinated 

as in the wt protein, (ii) previously unobserved iron binding sites are present in the interior 

cavity, near the entrance to 3-fold, 4-fold and B-pores in all mutants, (iii) sulfate ions are 

found in the interior cavity at the entrance to 3-fold pores, where they are coordinated by 

iron ions, (iv) iron ions are observed in B-pores, and (v) the ubiquitous K+ ions observed in 

the 4-fold pores of wt and other mutant BfrB proteins are absent in the Q151L mutant. 

Pertinent details are presented below.

Four-fold pores

In wt BfrB the side chains of N148 and Q151, located in each of the two turns of helices E, 

point toward the pore interior, where they coordinate a K+ ion (Figures 2D and 3A). The 

structure of 4-fold pores in the as-isolated and Fe-soaked C89S/K96C mutant is nearly 

identical to that in wt BfrB, including the placement of the K+ ion (Figure 3B). As seen 

previously in the Fe-soaked structure of wt BfrB (21), in the interior cavity of Fe-soaked 

C89S/K96C four Fe ions (orange spheres) nest in the exterior wall of the 4-fold pore, where 

they are coordinated by H155 from one subunit (A) and H153 from a different subunit (B) 

(Figure 3B and Figure S1A of the Supplementary information). These sites were previously 

termed Fein to denote their location in the interior cavity. Herein, we will term these sites 

Fe4f-1 to indicate that they are the first Fe-sites observed near 4-fold pores. The C89S/K96C 

structure also revealed previously unobserved Fe sites located deeper in the interior cavity, 

along the perimeter of the entrance to 4-fold pores from the interior cavity, which we term 

Fe4f-2 (blue spheres). Although these Fe ions do not appear to be coordinated by a protein-

provided ligand (Figure S1A), interactions with the side chains of one of the terminal 

residues (E157 or E158), for which there is no observable electron density, cannot be ruled 

out.

Diffraction data collected at a wavelength of 1.0000 Å did not yield anomalous signal for 

the K+ ions in the 4-fold pores. In contrast, diffraction data collected at low energy 

wavelength (∼1.74 Å, Fe-edge) resulted in appreciable anomalous difference density at the 

K+ sites, and naturally, at the iron and heme-iron sites. Notably, the anomalous-difference-

map peak height increases at the K+ sites when computed using data collect at a low energy 

remote wavelength relative to the Fe-edge (Figure S2). This suggests that the assignment of 
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K+ in the pore interior and Fe ions in the periphery of 4-fold pores in the interior cavity is 

the correct model.

In the as-isolated N148L structure the conformation of L148 side chains is nearly identical 

to that of N148 in the wt protein, which results in a tight network of hydrophobic 

interactions in the pore interior of the mutant. Closer to the interior cavity, the Q151 side 

chains assume conformations identical to those observed in wt BfrB, and a K+ is present in 

the pore interior, but is coordinated only by the side chains of Q151 (Figure 3C). 

Consequently, K+ in the 4-fold pores of N148L BfrB is 1.7 Å closer to the interior cavity 

than equivalent K+ in the wt protein. As seen previously in the Fe-soaked structure of wt 

(21), and C89S/K96C BfrB, four Fe4f-1 ions (orange) nest in the exterior wall of the 4-fold 

pore inside the BfrB cavity (Figure 3C). The N148L structure also reveals a previously 

unobserved Fe ion at the entrance to 4-fold pores in the interior cavity, which is termed 

Fe4f-3 (cyan spheres). These Fe ions also do not appear to be coordinated by a protein-

provided ligand (Figure S1B), although it is likely that the side chains of one of the terminal 

residues, for which there is no observable electron density (E157 or E158), provide the 

necessary stabilizing interactions.

In the structure of as-isolated and Fe-soaked Q151L BfrB the L151 side chains adopt the 

same conformation as the Q151 side chains in the wt protein, which creates a network of 

hydrophobic interactions that constrict the interior of 4-fold pores. Interestingly, the K+ 

ubiquitously found in Pa BfrB structures are absent in the 4-fold pores of the Q151L mutant, 

in both the as-isolated and Fe-soaked structures (Figure 3D). In the Fe-soaked structure, four 

Fe4f-1 ions are present in the exterior perimeter of the 4-fold pore, but unlike N148L, the 

Fe4f-3 ion is not observed. The presence of iron is confirmed by strong anomalous difference 

density observed in diffraction data sets collected at ∼1.74 Å (Figure S1C). It is also 

interesting that structured water is absent in the pores below the hydrophobic constriction 

formed by the L151 side chains in the as-isolated and Fe-soaked structures.

The D34F mutation does not have a structural effect on the 4-fold pores. The side chains of 

N148 and Q151 coordinate K+ (Figure 3E) in the as-isolated and Fe-soaked structures. Four 

Fe4f-1 ions are observed along the periphery of 4-fold pores in the interior cavity, in 

positions identical to those observed in wt BfrB. As with the previously discussed structures, 

anomalous difference density in data sets collected at ∼1.74 Å corroborate Fe ions at these 

sites (Figure S1D).

Three-fold pores

The 3-fold pores in the structures of the as-isolated N148L, Q151L, D34F and C89S/K96C 

mutants are almost identical to their counterparts in wt Bfr (Figure 4 top). The narrowest 

pore section is lined by side chains from three R117 and three K121, with E109 immediately 

above (closer to the cytosol) R117 and D118 immediately below (closer to the interior 

cavity) K121; the K121 side chains cannot be modeled entirely due to disorder in as-isolated 

BfrB. The innermost layer is wider and demarcated by the side chains of D122 and E125. 

Soaking crystals of wt BfrB in crystallization solution containing Fe2+ led to the observation 

of a sulfate ion in the 3-fold pores, located between the side chains of R117 and K121 

(Figure 4A center) (21). Similar iron-soaking experiments carried out with crystals of all 
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mutant proteins allowed observation of a sulfate ion in the innermost layer of each pore, 

where it is coordinated by three K121 side-chains (Figure 4B-E). Interestingly, in the mutant 

structures each sulfate ion also interacts with three Fe ions, termed Fe3f (avg. Fe-O distance 

4.2 Å), which in turn are coordinated by the side chains of D118, D122 and E125. The side 

chains of D118 and E125 move from their conformation in the as-isolated structures to 

coordinate iron in the Fe-soaked structure. The presence of Fe at these sites is supported by 

anomalous difference density in data sets collected at ∼1.74 Å (Figure S3).

It is interesting to note that sulfate is absent from the 3-fold pores in all the structures of as-

isolated proteins, but is present in the corresponding Fe-soaked structures. An exception is 

the structure of as-isolated C89S/K96C BfrB obtained from a crystal that had been in the 

crystallization trays for over 6 months (hereafter as-isolated-2), which showed clear electron 

density consistent with sulfate ions in the 3-fold pores (Figure S4). In comparison, 

diffraction data from other as-isolated BfrB crystals was obtained within 20 days of crystal 

growth. Therefore, it may be reasonable to consider the as-isolated-2 crystal as being soaked 

for a prolonged period in high sulfate concentration (200 mM Li2SO4 from the crystallant), 

which causes sulfate to slowly occupy the 3-fold pores. As noted in the experimental 

section, the unit cell parameters differ significantly for the as-isolated and as-isolated-2 

C89S/K96C structures. This appears to result in a “tightening up” of the lattice and 

formation of an intermolecular disulfide bond between C96 of subunit A and its counterpart 

related by a crystallographic 2-fold axis (Figure S8). It should be noted that soaking of as-

isolated C89S/K96C crystals with iron also results in this lattice transformation (see Table 

1). Comparison of the 3-fold pores before and after Fe-soak is illustrated in Figure 5: While 

in the as-isolated-2 structure sulfate nests between R117 and K121 in the middle of the pore, 

after Fe-soak sulfate is in the most interior pore layer, still coordinated by the side chains of 

K121, which likely “escort” the anion to its position at the exit of 3-fold pores, where it is 

seen interacting with iron ions.

In the context of anion traffic through 3-fold pores, it is also interesting to contrast the 

relatively low tendency of sulfate to populate 3-fold pores in as-isolated crystals of BfrB 

with its ubiquitous presence within the pores, or at the exit into the interior cavity, after 

crystals are soaked in Fe2+ solution. The comparisons suggest that 3-fold pores are conduits 

for anions, which are needed to compensate for the flux of positive charge that accompanies 

iron traffic. Note that the anions in 3-fold pores were modeled as sulfate because the 

crystallization conditions contain 200 mM Li2SO4. However, since the core mineral in Bfr 

and bacterial Ftn is known to be composed of iron and phosphate in nearly 1:1 ratio (48-50), 

our findings can be interpreted to suggest that phosphate traffics across Bfr through the 3-

fold pores to counteract the charge flux created by the traffic of iron across the Bfr shell as 

iron enters or leaves the interior cavity. The bottom row in Figure 4 illustrates the 

arrangement of iron, phosphate and acidic side chains in the interior cavity at the exit of the 

3-fold pores. This highly organized network of contacts encompassing electrostatic and 

coordinative interactions supports the idea that iron ions entering BfrB via different pores in 

the structure are directed toward the perimeter of 3-fold pores to interact with phosphate 

ions accessing the BfrB interior via 3-fold pores.
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B-pores

The B-pore channels in wt BfrB are formed at the intersection of three subunits not aligned 

with an axis of symmetry, and are demarcated by the side chains of E66, D34, T136 and 

D132, arranged in a corkscrew leading from the outermost (E66) to the innermost (D132) 

layer (Figure 6A). The structure of B-pores in as-isolated and Fe-soaked N148L and Q151L 

BfrB are very similar to wt (Figure 6B-C), with the exception of the E66 side chain, which is 

rotated away and does not participate in the “corkscrew” of hydroxyl and carboxylate groups 

traversing the channel. In the B-pores of as-isolated D34F BfrB the E66 side chain is also 

rotated away from the corkscrew, and the side chain of F34 acts as a hydrophobic barrier 

that occludes the pores and disrupts the hydrophilicity of the corkscrew. Interestingly, the 

corresponding Fe-soaked structure shows an Fe ion (FeB-1) in the innermost layer of the 

pores, where it is coordinated by D132 (Figure 6D). Anomalous difference density in data 

sets collected at 1.74 Å support this conclusion (Figure S5A).

The corkscrew of hydroxyl and carboxylate residues seen in wt BfrB is preserved in the B-

pores of as-isolated and Fe-soaked C89S/K96C. Remarkably, the Fe-soaked structure of the 

double mutant reveals two Fe ions aligned along the length of the B-pores (Figure 6E and 

Figure S5B). One is coordinated by D132 and is located near the interior cavity in a position 

nearly equivalent to that of the FeB-1 ion in the B-pores of Fe-soaked D34F BfrB. The 

second (FeB-2) is near the cytosolic surface, where it is coordinated by D34 and E66. These 

observations, which provide the first experimental evidence of Fe ions in B-pores, strongly 

support the idea derived from our MD simulations (51) that iron traffics across the Bfr shell 

using B-pores as conduits.

The ferroxidase sites

In all the BfrB structures obtained from as-isolated protein, the ferroxidase centers are 

devoid of iron. Soaking crystals of as-isolated protein in crystallization solution containing 

iron invariably leads to iron incorporation in the ferroxidase center. In the structures of wt 

and C89S/K96C BfrB, iron binding at the ferroxidase center is accompanied by a 

conformation change of the H130 side chain from gate open to gate closed state (Figures 1C 

and 7A). In contrast, although iron is observed in the ferroxidase centers of D34F, N148L 

and Q151L BfrB, H130 remains in its gate open conformation, and E51 does not rotate to 

coordinate and bridge Fe1 and Fe2 (Figure 7B-D). The presence of Fe ions in the ferroxidase 

centers of Fe-soaked structures is supported by anomalous difference density peaks using 

diffraction data sets collected at ∼1.74 Å (Figures 7 and S6). The distance between 

ferroxidase iron ions in all structures is 4.1 Å, which suggests di-Fe2+ sites (52).

The Fe-soaked structure of C89S/K96C BfrB also shows an iron site on the inner surface of 

the protein, directly below each of the ferroxidase centers (Feb-fc), where it is coordinated by 

H46 (Figure 8 and Figure S7), and close to D50 (∼4.5 Å). The Feb-fc site is equivalent to the 

iron site observed upon soaking crystals of E. coli Bfr in iron-containing solution of 

crystallant, which was shown to be important in the process of iron mineral growth (53). In 

the asymmetric unit cell of Fe-soaked C89S/K96C BfrB (subunits A, B, C and D), the side 

chains of H46 and H130 in subunit A (grey in Figure 8) are observed in two conformations: 

In one conformation ferroxidase ligand H130 is coordinated to Fe2 (gate closed) and H46 is 
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coordinated to Feb-fc, whereas in their alternate conformations both side chains are rotated 

away from their respective iron ions. In subunits B, C and D, the H46 and H130 side chains 

are seen only in their iron bound conformations. The observations in subunit A permit a 

glimpse into the possible cooperative process of ferroxidase iron translocation, in which the 

transition of H130 from gate closed to gate open is accompanied by a change in 

conformation of H46, which serves to coordinate incoming Fe2 and usher it to the Feb-fc site. 

The model is also consistent with the Feb-fc site serving as an iron depot for the distribution 

of iron entering via the ferroxidase centers to nucleation and mineralization sites.

Effect of the mutations on iron oxidation and uptake function

The X-ray crystal structures show that H130 in the ferroxidase centers of D34F, N148L, and 

Q151L BfrB does not rotate to coordinate Fe2, and that of E51 does not bridge Fe1 and Fe2 

(see Figures 7 and S6). These observations suggest that mutations in the 4-fold and B-pores 

adversely affect the function of relatively distant ferroxidase centers. To investigate this 

idea, we carried out experiments in solution to compare the efficiency of Fe2+ oxidation and 

Fe3+ storage exhibited by each mutant relative to wt BfrB. This was carried out by 

challenging each of the bacterioferritins with 500 Fe2+/BfrB, added in aliquots delivering 50 

Fe2+/ BfrB, as described in Experimental Methods. Because Fe2+ autoxidizes rapidly in 

aqueous solution at pH above 6.5, and even faster in the presence of phosphate (54), the 

addition of Fe2+ to aerobic solutions of BfrB in phosphate buffer, pH 7.6, results in two 

competing reactions: (i) oxidation of Fe2+ at the ferroxidase centers of BfrB and storage of 

the resultant Fe3+ in the interior cavity (Fe3+ is not captured by Bfr or Ftn), and (ii) 

autoxidation of Fe2+ in solution, followed by hydrolysis of Fe3+ into an insoluble ferric 

colloid. The results show that wt and C89S/K96C BfrB oxidize and capture iron with >85% 

efficiency (420 ± 20 Fe2+/BfrB, and 430 ± 22 Fe2+/BfrB, respectively), indicating that the 

dominant reaction is the oxidation of Fe2+ by BfrB. In contrast, the amounts of Fe2+ 

oxidized and captured by the mutants are significantly lower: D34F BfrB oxidized and 

captured only 110 ± 30 Fe2+/BfrB (24%), Q151L captured 320 ± 30 (64%) and the N148L 

mutant 300 ± 20 Fe2+/BfrB (60%). These observations, which show that oxidation of Fe2+ 

by the BfrB mutants does not compete effectively with Fe2+ autoxidation, indicate that 

mutation of important residues at 4-fold pores (N148L, Q151L) and B-pores (D34F) 

compromises the function of the relatively distant ferroxidase centers. Consequently, the 

inability of H130 and E51 side chains to rotate and bind iron at their corresponding 

ferroxidase centers in crystallo manifests in solution in the decreased ferroxidase activity 

exhibited by the 4-fold and B-pore mutants. No attempts were made to determine rates of 

Fe2+ oxidation by BfrB because the only spectroscopic handle to follow the oxidation of 

Fe2+ by BfrB is a broad absorption near 300 nm, which is caused by the formation of Fe3+-

O- moieties. Since the ferroxidase activity of the BfrB mutants is compromised, the 

competing Fe2+ autoxidation contributes significantly to the changes in absorbance at 300 

nm, and therefore precludes meaningful analysis of the progress curves in the context of 

Fe2+ oxidation by BfrB.

Molecular dynamics simulations

In an attempt to explain the nature of the disorganization of the ferroxidase centers in the Fe-

soaked structures of the D34F and N148L mutants, we investigated their dynamic properties 
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relative to wt BfrB. The per-residue backbone root mean square fluctuation (RMSF) plots in 

the top row of Figure 9 illustrate the relative fluctuations in a BfrB subunit. In wt BfrB 

(Figure 9A) the flexibility increases with increasing K2HPO4 concentrations (from system 

E40 to E2). In contrast, the flexibility of the mutants is significantly dampened and 

minimally affected by the same K2HPO4 concentrations (Figure 9B and C); the only regions 

exhibiting a strong tendency to fluctuate are the long loops connecting helices B and C and 

the N- and C-termini. This is in stark contrast with wt BfrB, where in addition to the BC 

loops and the N- and C-termini, the C-terminal half of helices D exhibit a strong tendency to 

fluctuate, followed by the N-terminal half of helix C (Figure 9 middle). A minimal assembly 

of six subunits containing a 3-fold pore (green star), a 4-fold pore (blue star), and a B-pore 

(red star), show that the regions with the highest fluctuations in a subunit of wt BfrB pack to 

form B- and 4-fold pores (Figure 9 bottom). In contrast, these regions are far less flexible in 

D34F and N148L BfrB (Figure 9B-C and supporting information movies S1-S3).

The structure of D34F BfrB shows that the F34 side chain partially occludes the B-pores and 

also packs against the L63 side chain. The MD simulations add insight by providing 

evidence for dampened flexibility in the B pores of the mutant relative to wt BfrB: Figures 

10A and 11A depict regions surrounding the B-pores during the MD simulations of wt BfrB, 

illustrating an unfolded state of the C-terminal section of helix D (cyan), which undergoes 

frequent folded/unfolded transitions. Such transitions are likely linked to the conformational 

exchange of D34 and F64 side chains observed in wt BfrB. Figures 10C and 11C, 

respectively, show the distributions of rotameric states (χ1, χ2) for the D34 and F64 side 

chains in wt BfrB. The dynamic conformational exchange exhibited by these side chains in 

wt BfrB contributes significantly to the breathing motions of the B-pores and facilitates the 

translocation of K+ across the B-pores (Table 2). In contrast, analyses of B-pores in the MD 

trajectories of D34F and N148L BfrB show a low-propensity for folding/unfolding 

transitions in the C-termini of helices D (Figures 10B and 11B), as well as dampened 

breathing motions of the B-pores (movies S1-S3). It is likely that the dampened motions in 

the B-pore of the D34F mutant stem from the hydrophobic packing between the F34 and 

L63 side chains (Figure 10B), which limits the conformational freedom of the F34 (Figure 

10D) and F64 (Figure 10B) side chains to only one rotamer. In the N148L mutation, 

hydrophobic packing of L148 side chains inside the 4-fold pores likely stabilizes the 

interactions of the four E-helices that form a 4-fold pore (Figure 11B). As a result the C-

terminal folding/unfolding transitions of helices D are nearly absent, as is the 

conformational freedom of the F64 side chains (Figure 11D). Thus, the packing between 

F34 and L63 in the B-pores of D34F, or the hydrophobic packing of L148 side chains in 

N148L, which stabilize interactions of the four E-helices that from a 4-fold pore, largely 

dampen the folding/unfolding transitions of the C-terminal portions of helices D and the 

breathing motions of the B-pores. This has the effect of reducing the permeability of B-pores 

to K+ ions that cross the BfrB shell using these channels (Table 2).

Structural perturbations in the 4-fold and B-pores affect the dynamics of distant 
ferroxidase centers

In the MD simulations of wt BfrB, the conformational agility of the H130 side chains is 

evident in the average density of H130 side chain conformations sampled during the 
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simulations (Figure 12A), which is located halfway between the gate-open (green) and gate-

closed (cyan) conformations observed in the as-isolated and Fe-soaked crystal structures. In 

contrast, in the MD simulations of the D34F and N148L mutants the flexibility of helix D is 

lower, and the average (conformation) density of H130 side chains matches the gate-open 

conformation (Figures 12B-C). These observations, which suggest low conformational 

freedom of the H130 side chain in the mutants, are in excellent agreement with the findings 

from the as-isolated and Fe-soaked structures, where only the gate open conformation is 

observed (Figure 7). Consequently, our results strongly suggest that flexibility in the C-

terminal half of helix D in wt BfrB functions to couple breathing motions in 4-fold and B-

pores with ferroxidase center ligands. It is likely that these networked motions facilitate 

efficient rearrangement of H130 side chains, thus enabling the gating function of this residue 

in Fe2+ capture and oxidation at the ferroxidase centers, and subsequent translocation of 

Fe3+ to the internal cavity for mineralization.

Discussion

A network of molecular fluctuations connecting 4-fold pores, B-pores and ferroxidase 
centers are crucial to BfrB function

Bacterioferritins serve as dynamic regulators of cytosolic iron concentrations by performing 

two functions: (i) iron storage, which is carried out by capturing Fe2+ followed by its 

oxidation to Fe3+ and storage as a ferric-phosphate mineral, and (ii) iron release, which 

requires reduction of the Fe3+ mineral, followed by Fe2+ mobilization from the interior 

cavity. The 24-mer spherical assemblies (Ftn and Ftn-like molecules) are typically referred 

to as protein cages, where iron can be stored. Although a protein cage may suggest a 

relatively rigid shell that protects the ferric mineral from the reducing potential of the 

cytosol, recent evidence suggests that the Bfr shell is highly dynamic. Application of a 

network-weaving algorithm coupled to normal mode analysis revealed long-range 

communication between ferroxidase centers and functionally related pores in Ftn-like 

molecules, which is mediated by a network of highly correlated residues, encompassing 

approximately 40% of residues in each subunit (9). In the case of eukaryotic Ftn (M Ftn), 

the network connects ferroxidase centers with 3-fold pores, an observation that is in 

agreement with the idea that the 3-fold pores of eukaryotic Ftn are conduits for iron traffic 

(25, 26). In comparison, the network of correlated residues in bacterial Ftn and Bfr, connect 

ferroxidase centers with 4-fold and B-pores. MD simulations carried out with BfrB showed 

that K+ ions move across the protein shell through B-pores, in a process that is largely aided 

by breathing motions driven by the folding/unfolding of the C-terminal half of the D-helices, 

which are coupled to lateral displacements of the E-helices that constitute the 4-fold pores 

(28). The lateral displacements of E-helices typically move two E-helices closer to one 

another, while the other two are separated further, thus narrowing the 4-fold pores. Although 

in the MD simulations the 4-fold pores do not permeate K+ ions, the lateral displacement of 

the E-helices, which is driven by the folding/unfolding transitions of the D-helices, enable 

periodic open/close transitions of the B-pores and facilitate K+ traffic. Hence, results 

obtained from coarse grain methods (normal mode analysis) and atomistic MD simulations 

suggest a model in which the Bfr function is intimately related to extended networks of 

coordinated motions that affect a large portion of the protein shell.
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In this work we tested the model with mutants designed to decrease pore flexibility: (i) The 

side chains of N148 and Q151, which coordinate a K+ ion in the 4-fold pores of wt BfrB 

(Figure 2), were replaced with Leu to install hydrophobic interactions, which were expected 

to affect the lateral displacement of the E-helices. (ii) The D34F mutation was carried out 

with the expectation of occluding the B-pores and installing hydrophobic packing that would 

reduce B-pore flexibility. Structural determinations reveal local structural perturbations that 

confirm the installment of hydrophobic packing in the 4-fold and B-pores of the mutants. A 

surprising finding is the significant loss of Fe2+ oxidation (ferroxidase) efficiency exhibited 

by the mutants, particularly the D34F mutant, which oxidizes and stores only 20% of the 

iron presented. Remarkably, the Fe-soaked structures of D34F, N148L and Q151L show that 

although iron loads onto the ferroxidase center, the diiron center is not coordinated by a full 

complement of ferroxidase ligands (Figure 7); E51 does not bridge Fe1 and Fe2, and the 

H130 side chain remains in its gate open conformation. Taken together, the observations 

indicate that mutations in the 4-fold and B-pores reduce the conformational agility of the 

ferroxidase center, thus reducing its catalytic efficiency. In this context, it is noteworthy that 

mutations outside the pores (C89S/K96C) do not have an effect on the efficiency of iron 

oxidation and storage, or in the conformational fitness of ferroxidase ligands, as evaluated 

by the conformational competency of E51 and H130 in crystallo (Figure 7A), and the 

unaffected efficiency of iron oxidation and uptake in solution exhibited by the double 

mutant.

We suspected that the reduced fitness of the ferroxidase centers in the 4-fold and B-pore 

mutants may be related to changes in the dynamic properties of the pores resulting from the 

hydrophobic interactions installed by the mutations. Consequently, in search of additional 

insight, we turned to MD simulations. As previously revealed by our simulations of wt BfrB, 

folding/unfolding transitions of the C-terminal half or helices-D drive the dynamic behavior 

of 4-fold and B-pores. Given that H130 is near the center of helix D, we asked if the folding/

unfolding transitions of the helix affect the conformational flexibility of H130 side chains. 

The MD trajectory shows that in wt BfrB the average position of the H130 side chain is 

midway between the gate open and gate closed conformations (Figure 12A), a finding that is 

in agreement with the gating function of the H130 side chain in the binding of Fe2+ at 

ferroxidase centers, oxidation to a di-Fe3+ moiety, and subsequent entry of Fe3+ to the 

interior cavity (14, 21). In contrast, the MD trajectories obtained with the D34F and N148L 

mutants reveal that helices D exhibit low propensity to undergo folding/unfolding 

transitions, which results in dampening of motions at the 4-fold and B-pores relative to wt 

BfrB. Analysis of the conformational freedom of H130 in the mutants showed that the 

average position of the H130 side chains in the simulations is aligned with the gate-open 

conformation (Figures 12B-C) observed in the crystal structures. Consequently, it is 

reasonable to conclude that in BfrB the 4-fold pores, their surrounding B-pores, and the 

ferroxidase centers are connected by networked fluctuations, and that these motions enable 

the gating properties of the ferroxidase center and the ion permeation properties of the pores.

Iron traffic paths in BfrB

In previous work we showed that soaking crystals of wt BfrB in crystallization solution 

containing Fe2+ prior to X-ray diffraction reveal iron bound at the ferroxidase center, and 
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iron bound at the periphery of 4-fold pores in the interior cavity, now termed Fe4f-1 (Figure 

3A). Similar experiments conducted with each of the BfrB mutants allowed us to discover 

many additional iron binding sites in the interior surface of BfrB, and remarkably, within the 

B-pores. Visualizing all the iron sites simultaneously provides unprecedented insight into 

conduits used by iron as it traverses the BfrB shell, as well as the routes it may take on the 

surface of the interior cavity on its way to mineralization or cavity exit sites. It is noteworthy 

that all Fe sites except Fe4f-3 are observed in the structure C89S/K96C BfrB, which allows 

comparison of the relative thermal factors for the experimentally observed sites (Table 3), 

and Figure 13 depicts these iron sites as spheres, color-coded by B-factor range. Since 

atomic occupancies and B-factors are highly correlated parameters (55), Fe ions were 

refined with occupancy factors of 1.0 and the isotropic B-factors were examined in an effort 

to distinguish fully occupied and partially occupied/transient ions. Note that iron sites 

ubiquitously found in all Fe-soaked structures (Fe1, Fe2, and Fe4f-1) have the lowest B-

factors (red), which are comparable in magnitude to the protein and heme thermal factors. 

Together the observations suggest that iron at these sites is relatively stable and nearly 100% 

occupied. Iron in the B-pores (FeB-1/FeB-2) and iron near the entrance to 3-fold pores (Fe3f) 

exhibit B-factors nearly twice as large (orange), which suggests these sites as more transient. 

Finally, the Feb-fc and Fe4f-2 sites (yellow) show thermal factors four- to five-fold larger 

than the protein B-factors, which suggests that these sites are only transiently occupied. To 

aid visualization of the full-complement of iron sites observed in this study, in Figure 13 we 

also include Fe4f-3 (orange), the iron site observed immediately above the entrance to 4-fold 

pores in Fe-soaked N148L BfrB (see Figure 3-C). The iron ions in Figure 13 are superposed 

on the structure of the Fe-soaked D34 mutant, which was selected because it is one of the 

structures where the H130 side chains remain in the gate open position even after iron loads 

onto the ferroxidase center. With the H130 side chain in the gate open position, it is possible 

to observe the ferroxidase iron ions Fe1 and Fe2 (red) within ferroxidase centers, and how 

the gate open conformation of H130 may enable translocation of Fe2 into the interior cavity, 

where it binds to H46 at site Feb-fc (yellow). This is most evident in the ferroxidase centers 

located at the extreme left or top sections of Figure 13. Residues lining the B-pores are 

colored in cyan and their inspection illustrates how B-pores may function as conduits for 

iron traffic across the Bfr shell, with two iron ions (FeB-1, FeB-2, orange) aligned along the 

length of the channels (see also Figure 6E). Residues delineating the 4-fold pores are colored 

in magenta. The 4-fold pore at the center of the figure illustrates the three layers of iron 

binding sites located around the external perimeter of the pore inside the BfrB cavity (see 

also Figure 3): (1) Four Fe4f-1 ions (red) surround the largest diameter of the pore, where the 

pore wall meets the interior surface. (2) Four Fe4f-2 ions (yellow) surround the narrowest 

perimeter of the pore, where the pore wall meets the interior cavity. (3) One Fe4f-3 ion 

(orange) is located immediately above the entrance to the pore from the interior cavity. 

Remarkably, iron ions are not observed inside 4-fold pores, which in our structures always 

bind K+, with the exception of the pores in the Q151L structure. Residues lining the 3-fold 

pores are blue. Note how each of the sulfate ions at the entrance to each of the pores from 

the interior cavity (green and red sticks) is surrounded by three Fe3f ions (orange; see also 

Figure 4).
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The picture that emerges from this analysis suggests that iron ions can enter the BfrB cavity 

via ferroxidase centers or through B-pores. Iron processed through ferroxidase centers will 

likely enter the cavity as Fe3+, which may then be transported by coordinating residues on 

the interior surface to mineralization sites, or toward 3-fold pores where it binds phosphate 

ions accessing the interior cavity via 3-fold pores, prior to mineralization. Iron entering 

through B-pores is likely in the ferrous oxidation state. Given the large number of B-pores 

(24 in total) on the Bfr structure, Fe2+ accessing the interior cavity via B-pores would be in 

relative close proximity to a ferroxidase center, where it can be oxidized by electron 

exchange with Fe3+ bound to the ferroxidase sites, or, at the growing Fe3+ mineral, as has 

been proposed for eukaryotic Ftn (56) and E. coli Bfr (57). It is noteworthy that in spite of 

the cumulative large number of iron binding sites we have been able to observe, we have not 

yet found evidence of iron ions inside the 4-fold pores of BfrB. Instead, the structures reveal 

several iron ions bound to the external perimeter of these pores inside the BfrB cavity, 

which could have reached those sites after accessing the interior cavity via B-pores. Hence, 

although we cannot rule out the possibility that iron ions traverse BfrB using 4-fold pores, it 

is tempting to speculate that the 4-fold pores in BfrB function mainly as binding sites for 

Fe2+ in the interior cavity, prior to oxidation at ferroxidase centers, or as nucleation sites for 

incorporation of iron ions into a growing Fe3+ mineral. The data also suggest that iron and 

phosphate combine near the 3-fold pores, which seem to be the channels used by the anion 

to traverse the BfrB shell.

In conclusion, our approach, which combined biochemistry with X-ray crystallography and 

MD simulations, provides unprecedented insight into Bfr function. Our findings demonstrate 

that a vast network of concerted motions connecting 4-fold and B-pores with ferroxidase 

centers is crucial for efficient ferroxidase activity and for permeation of ions across the Bfr 

cavity. Our results also reveal a large number of iron binding sites in the interior cavity, 

which aid in the traffic, oxidation and mineralization of the iron, and that the 3-fold pores 

are the likely conduits of phosphate, which is necessary to form the ferric phosphate mineral 

core in Bfr.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structural organization of BfrB (PDB:3IS8). (A) Subunit dimer and associated heme; each 

subunit is composed of a four-helix bundle (A-D), a perpendicular short helix (E), and a 

loop connecting the B and C helices (green). The location of the two iron ions in the 

ferroxidase center of each subunit is shown as orange spheres. (B) Cross sectional view of 

the 24-mer assembly illustrating the internal cavity where mineral iron is stored; heme 

molecules are shown in sphere representation (green). (C) Overlay of ferroxidase center 

residues from the as-isolated (gray) and Fe-soaked (green) wt BfrB structures, illustrating 

the conformational rearrangements of E51 and H130 upon binding iron.
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Figure 2. 
A 24-mer BfrB viewed (A) down one of the eight 3-fold pores, and (B) down one of the six 

4fold pores; four B-pores surrounding a 4-fold pore are highlighted by black circles. (C) 

Zoomed-in view of a 3-fold pore illustrating the alternating arrangement of positively and 

negatively charged residues, (D) a 4-fold pore and associated potassium ion (purple sphere) 

coordinated by the side chains of N148 and Q151, and (E) a B-pore and associated sodium 

ion (yellow sphere) coordinated by D34, D132 and T136.
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Figure 3. 
Zoomed in view of a 4-fold pore in wt and mutant BfrB molecules. The top row depicts 

views from the interior cavities, while the bottom row shows cross-sectional views with a 

subunit removed. Fe4f-1 iron ions are shown as orange spheres, Fe4f-2 iron ions as blue 

spheres, Fe4f-3 iron ions as cyan spheres, water molecules as yellow spheres, and potassium 

ions as purple spheres, nitrogen in blue and oxygen in red.
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Figure 4. 
View of a 3-fold pore in wt BfrB and mutants. The top row shows cross sectional views of 

the 3-fold pores in the as-isolated structures. The middle row depicts an identical cross-

section view of the 3-fold pores in the Fe-soaked structures, with Fe3f iron ions rendered as 

orange spheres, sulfate ions as green (S) and red (O) spheres, and structured water as yellow 

spheres. The bottom row depicts the 3-fold pores viewed from the interior cavity, to 

illustrate the network of interactions involving iron, sulfate and protein side chains.
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Figure 5. 
Comparison of 3-fold pores in (A) as-isolated-2 and (B) Fe-soaked C89S/K96C BfrB 

suggests a possible path for the ingress of sulfate to the interior cavity. Sulfate is shown as 

blue (sulfur) and red (oxygen) spheres, and Fe3f ions as orange spheres. Key side chains are 

shown in sticks with nitrogen in blue and oxygen in red.
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Figure 6. 
Zoomed-in view of B-fold pores in wt BfrB and mutants. The top row depicts the pores 

viewed from the protein exterior and the bottom row shows cross-sectional views with the 

wheat subunit omitted. FeB-1 iron ions are shown as magenta spheres, the FeB-2 iron ion is 

shown as a cyan sphere, water molecules as yellow spheres, nitrogen in blue and oxygen in 

red.
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Figure 7. 
2Fo-Fc electron density map of the ferroxidase ligands (blue mesh) contoured at 1σ and 

phased anomalous difference map of the ferroxidase center iron atoms (orange mesh) 

contoured at 3σ for the following BfrB mutant structures: A) C89S/K96C, B) N148L C) 

Q151L and D) D34F. Ferroxidase centers from as isolated proteins (devoid of iron) are on 

the left (gray sticks), and ferroxidase centers from iron-soaked structures are on the right 

(green sticks). Iron atoms are drawn as orange spheres and contacts to the ferroxidase center 

ligands are represented as dashed lines.
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Figure 8. 
The iron ions below the ferroxidase centers, Feb-fc (magenta spheres) in the Fe-soaked 

structure of C89S/K96C BfrB are coordinated by H46. In subunit A (grey) H46 adopts two 

conformations, one of which coordinates Feb-fc; H130 also adopts two conformations, one 

(gate closed) coordinates Fe2 (orange), while the second (gate open) is thought to enable its 

translocation into the interior cavity, aided by H46. In the remainder subunits of the 

asymmetric unit (B, C and D), H46 and H130 are observed only coordinated to Feb-fc, and 

Fe2, respectively. The heme is shown in two orientations, which are made evident by the 

relatively high resolution (1.80 Å) of the structure.
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Figure 9. 
Flexibility in the wt and mutant BfrB molecules. The top row shows plots of per-residue 

backbone RMSF in system E2 (red), E10 (green), and E40 (blue). The middle row depicts 

the per-residue backbone RMSF (systems E2) mapped onto a BfrB subunit, and the bottom 

row shows per-residue backbone RMSF mapped on six subunits of the 24-mer assembly to 

illustrate relative flexibility at the 4-fold (blue stars), 3-fold (green stars) and B-pores (red 

stars). Flexibility increases in the color scale from white to red.
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Figure 10. 
Close up view of a B-pore taken during the MD simulations of (A) wt and (B) D34F BfrB. 

In wt BfrB, the three rotameric states of the F64 side chain in wt BfrB are depicted by white, 

yellow and magenta sticks in (A), and the three rotameric states of D34 are indicated in the 

plot shown in (C). The rotameric exchange of D34 and F64 contributes to the breathing 

motions of the B-pores as well as ion traffic across B-pores in wt BfrB. In the D34F strcture 

packing of F34 against L63 (spheres) likely contributes to the lower flexibility of B-pores in 

the mutant, which is manifested in only one conformational rotamer of the F34 side chain 

(D), and only one conformation of the F64 side chain, wheat sticks in (B).
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Figure 11. 
Snapshot obtained from MD simulations illustrating the packing of residues 148 in the 4-

fold-pores of (A) wt and (B) N148L BfrB. The comparison of torsion angles sampled by 

F64 in the wt (C) and N148L (D) simulations are indicative of the dampened B-pore 

breathing motions observed in the N148L MD simulation relative to those observed in the 

wt BfrB simulation. Side chains of residue 148 in the 4-fold pores are rendered in spheres, 

whereas the side chains of D34, L63, and F64 in the B-pores are shown in stick 

representation.
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Figure 12. 
The average heavy atom density of side chain conformations sampled by ferroxidase center 

residues during the MD simulations is shown as red mesh for wt (A), N148L (B), and D34F 

BfrB (C). The H130 side chains in the “gate-open” (green) and “gate-closed” (cyan) 

conformations are shown in sticks. The view is from the exterior surface.
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Figure 13. 
Transverse view of the BfrB interior cavity depicting all iron sites observed in the crystal 

structure of Fe-soaked C89S/K96C BfrB, color coded according to the corresponding B-

factor ranges listed in Table 3; red (Fe1, Fe2, Fe4f-1, Feheme), orange (Fe3f, FeB-1, FeB-2) and 

yellow (Fe4f-2, Feb-fc). The Fe4f-3 iron, shown immediately on top of the 4-fold pore in the 

center of the figure is from the Fe-soaked N148L structure, rendered in orange to reflect the 

range of thermal factors exhibited by these iron ions) (31-54 Å2 relative to those in Table 3. 

Residues lining 4-fold pores are in magenta, residues lining 3fold pores are in blue and those 

lining B-pores are in cyan. Sulfate ions are in green and red sticks and heme molecules are 

rendered as wheat sticks.
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Table 2

Number of K+ ions escaped from the BfrB shell during the simulations

E2 E10 E40

WT 63 63 0

N148L 5 14 4

D34F 30 22 8
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Table 3
Thermal factors of iron ions in the Fe soak C89S/K96C BfrB structure

Iron site Location B-factor range (Å2) Color in Figure 12

Feheme heme 26-28 red

Fe4f-1 4-fold pore 18-25 red

Fe4f-2 4-fold pore 81-105 yellow

Fe3f 3-fold pore 37-40 orange

FeB1, FeB2 B pore 45-63 orange

Fe1, Fe2 fc1 18-30 red

Feb-fc below fc 56-81 yellow

1
fc: ferroxidase center
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