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Abstract
While human brains are specialized for complex and variable real world tasks, most neuro-

science studies reduce environmental complexity, which limits the range of behaviours that

can be explored. Motivated to overcome this limitation, we conducted a large-scale experi-

ment with electroencephalography (EEG) based brain-computer interface (BCI) technology

as part of an immersive multi-media science-art installation. Data from 523 participants

were collected in a single night. The exploratory experiment was designed as a collective

computer game where players manipulated mental states of relaxation and concentration

with neurofeedback targeting modulation of relative spectral power in alpha and beta fre-

quency ranges. Besides validating robust time-of-night effects, gender differences and dis-

tinct spectral power patterns for the two mental states, our results also show differences in

neurofeedback learning outcome. The unusually large sample size allowed us to detect

unprecedented speed of learning changes in the power spectrum (~ 1 min). Moreover, we

found that participants' baseline brain activity predicted subsequent neurofeedback beta

training, indicating state-dependent learning. Besides revealing these training effects,

which are relevant for BCI applications, our results validate a novel platform engaging art

and science and fostering the understanding of brains under natural conditions.

Introduction
Advances in cognitive neuroscience are increasingly engaging wider audiences. While tradi-
tional experiments in controlled laboratory conditions and simple paradigms have contributed
significant insights into brain function, it is also widely recognized that our understanding of
complex cognitive phenomena requires similarly complex realistic environments [1–4]. We
present here an electroencephalography (EEG) based brain-computer-interface (BCI) experi-
ment that was conducted as a part of a public art installation, ‘My Virtual Dream’, during Tor-
onto’s Nuit Blanche art festival on October 5, 2013 (scotiabanknuitblanche.ca). Our data
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acquisition framework was innovative at multiple levels: a) festival visitors were intrinsically
motivated to interact collectively with the large-scale immersive virtual environment; b) EEG-
based BCI data were collected from large number participants (N = 523) in a single night; c)
the simultaneous multi-subject (N = 20) EEG-BCI study occurred in a gaming environment
for individual and collective neurofeedback targeting two brain states, relaxation and
concentration.

Besides validating the novel experimental setup, our focus was to explore participants’ abil-
ity to rapidly learn to control their brain states in a complex environment. This, together with
art-exhibition related criteria, guided the experimental design. The controlled neurofeedback
participants received lasted less than 7 min, which is much shorter than typical neurofeedback
training experiments [5]. This was motivated by our hypothesis that the neurofeedback effects
could be detected early in training and that the large sample size would provide sufficient statis-
tical power to reveal them.

The technological maturity and aesthetic sophistication of multi-media, gaming, and virtual
reality position these platforms as perfect partners for neuroscience. Also EEG is expanding
into uses outside the laboratory ([6–10]) through therapeutic neurofeedback interventions and
BCI technology (e.g. [11–15]) as well as in consumer products such as wearable devices for
neurogaming, self-monitoring and self-optimization. Various BCI-based neurofeedback proto-
cols present promising practical utility with respect to learning, attention, and even creativity
[16].

The utility of BCI applications learning is enhanced if one can learn how to modulate one’s
brain activity in as little time as possible. Learning is associated with functional and structural
changes in the brain [17–22]. Despite continuous reorganization on the synaptic scale, large-
scale effects require time to manifest. Structural changes can be detected with non-invasive
imaging after 45 min to few hours of training [19], [23]. Sensory stimulation protocols yield
persisting reorganization of coupling between distributed brain areas after 30 min of stimula-
tion [16]. In terms of cognitive performance, singular neurofeedback training sessions can
mediate significant changes [24], [25]. In the setup of My Virtual Dream we aimed to provide
an inspirational learning environment and at the same time to achieve enough statistical power
to detect subtle early, learning-related changes of brain activity due to collective neurofeedback
training.

The inspiration for the installation came from The Virtual Brain project (http://
thevirtualbrain.org/tvb/zwei), a neuroinformatics platform for full brain computer simulations
[26–28]. My Virtual Dream, envisioned as a ‘portal into the mind’, was an immersive audiovi-
sual environment: an 18 m geodesic dome illuminated by dream-like artistic visuals and sound-
scapes driven by collective brain waves (Fig 1). Twenty participants at a time experienced a
two-part interaction in the dome, in front of 50 spectators. In the first part the participants
played a collective game, which required them to alternate between states of relaxation and
concentration as defined by their own EEG recording. The game lasted 6.5 min. After the
game, the participants proceeded into the ‘dream experience’. There were four thematic librar-
ies of ‘dream snippets’: animated video clips paired with pre-recorded musical clips. Each
‘dream’ accessed one of the four libraries and composed the audio-video assets in real time
based on the collective neurofeedback of all 20 dreamers. The dreams were projected onto the
entire 360° surface of the dome. The dream experience was further enhanced with live improvi-
sations from three musicians inspired by the brain-triggered dream sequences. In My Virtual
Dream, participants simultaneously reacted to, and changed the external environment. An
overview and the of the dreamer’s experience are captured in S1 Movie. For this article we con-
sidered only the data from the game sequence.
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Materials and Methods

Subjects
The event started at 7 pm on October 5, 2013 and lasted 12 hours. Throughout the night we
conducted 29 sessions, yielding a total of 577 participants. Our volunteers were instructed to
reject anyone who was visibly intoxicated. Average wait time in the lineup was 2 hours. We col-
lected age and sex of participants as demographic data. The minimum age for participation
was 18 years. In some cases EEG data was not correctly recorded (too short or failed neurofeed-
back calibration) and for two sessions demographic data was not collected by omission. From
the entire sample of 577 data sets, we extracted 523 fully usable data sets (314 females, 209
males). Ages ranged from 18 to 89 years, with an average age of 31.1(SD: 13.9).

Ethics statement
The experiment was approved by the Research Ethics Board at Baycrest, and all participants
gave informed written consent for their participation (following the guidelines of the Research
Ethics Board at Baycrest and the University of Toronto).

With respect to the filming of the event, the following Disclaimer was posted at all public
entrances to the event area, as approved by the Research Ethics Board at Baycrest:

Please be advised that by attending this event, you enter an area where photography, audio
and video recording will occur. Portions of today's event will be posted on promotional and
educational material (digital and print) created by Baycrest and University of Toronto. By
entering the event premises, you consent to: photography, audio recording, video recording

Fig 1. My Virtual Dream: the ‘dreamery’ and the stage. In front of an audience, twenty participants at a time experienced a two-part interaction within the
dome. Based on the collective neurofeedback of all 20 participants, the ‘dreamers’, artistic video animations were projected on the 360° surface of the semi-
transparent dome and soundscapes were generated based on a pre-recorded sound library and improvisations from live musicians.

doi:10.1371/journal.pone.0130129.g001
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and its/their release, publication, or reproduction to be used for inclusion on websites and
print publications by Baycrest and the University of Toronto and its affiliates and representa-
tives. You release Baycrest and the University of Toronto, its officers and employees, and each
and all persons involved, from any liability connected with the taking, recording, digitizing, or
publication of photographs, computer images, video and/or or sound recordings. By entering
the event premises, you waive all rights to any claims for payment or royalties in connection
with any streaming, or other publication of these materials, or other publication regardless of
whether a fee for admission is charged. You also waive any right to inspect or approve any
photo, video, or audio recording taken in these premises or the person or entity designated to
do so. You have been fully informed of your consent, waiver of liability, and release before
entering the event. If you do not want us to use a photo or video of you, please let us know
when you arrive at the event or e-mail myvirtualdream@research.baycrest.org

EEG acquisition
EEG data were collected using 20 wireless ‘Muse’ headsets which were provided by Interaxon
(http://interaxon.ca/). The headsets were manually assembled prototypes and specially fitted
with long lasting batteries to accommodate the requirements for our 12 hr event. Each headset
was first paired to a computer and assigned a Bluetooth serial port. Next, we initiated an
instance of Muse Connector, an accompanying interface software package, which collects data
from the Bluetooth serial port and forwards packets of EEG data in Open Sound Control
(OSC) format via User Datagram Protocol (UDP). The headsets were equipped with seven sen-
sors placed at mastoids (ear clips) and frontal regions Fp1 and Fp2. The remaining three sen-
sors were used as electrical reference. Muse headsets initially oversample EEG and
subsequently downsamples it to yield a selectable output sampling rate from 220 Hz to 500 Hz,
with 2uV (RMS) noise. The input range of AC coupled signal (low cut-off at 1 Hz) is 2 mV.

Procedure
Sixty volunteers assisted with instructions, setup and supervision of the experiment. Before
entering the dome, participants received a brief 10 min overview of the EEG headset technol-
ogy and the game they were about to play. The participants were made aware that the data
would be anonymized and collected for scientific purposes. They were given the option to dis-
allow use of their EEG recordings. This option was chosen in only four cases.

A session started with the 20 participants being seated in a semicircle in front of the stage
and divided into four groups (‘pods’) of five. For each pod, EEG data were collected simulta-
neously from all 5 wireless headsets and streamed into a collective neurofeedback game dis-
played on a 48’ LCD screen. The display was mirrored on a computer screen facing away from
participants and towards the center of the semicircle where the main network switch and the
central hub computer were located and My Virtual Dream staff was seated for supervision. The
master of ceremonies coached the participants through the progression of the game.

Neurofeedback and game experience
Neurofeedback was implemented with custom-built software and was based on relative spectral
power (RSP) in alpha (8–12 Hz) and beta (18–30 Hz) bands. The tutorial part of the game was
used for personal calibration, i.e., to determine the upper and lower thresholds for both bands
of interest for each individual. Based on the individual thresholds, four types of neurofeedback
messages were sent to the game: whenever relative alpha power was higher (lower) than the
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upper(lower) alpha threshold, the driver sent a+ (a-) message, and analogously b+ (b-) for rela-
tive beta power (see details below).

Screenshots from different phases of the game are shown in Fig 2 and full game video cap-
ture is provided in S2 Movie. The game experience was divided into 6 phases:

1. EEG data observation. The screen was split into five color-coded vertical strips, each dis-
playing ongoing EEG data of the participants. This served two purposes: to enable assistants
to adjust the headsets if necessary and for participants to identify their own brain waves
(Fig 2A). During this phase, participants were encouraged to blink and move their face mus-
cles and observe the effects on the ongoing signal. The intention was to convince the partici-
pants that the displays were truly driven by their brain signals in real time. Assistants who
were operating the software on pod computers waited until they received a hand signal
from the central hub to indicate that everyone’s data had stabilized and to start the game.
Thus all 4 pods would start the game at approximately the same time. From here onwards,
the game unfolded automatically according to the timeline shown in Fig 3.

2. Welcome messages. At the very beginning of the game, before the onset of the tutorial, par-
ticipants saw several welcome messages for a total duration of 3.5 s. This interval was used
as the baseline for predicting subsequent beta learning in the post-hoc analysis (see Results).

3. Tutorial. The screen was still divided into five vertical strips and an instruction message
‘relax’ appeared and remained for 20 s. During this time the visual feedback was based on
alpha messages. The participants ‘gathered particles’ into an orb, and were rewarded with
more particles when exhibiting sustained increased alpha power (Fig 2B). The behind-the-
scenes alpha counter increased/decreased with the influx of a+/a-messages, and was
clamped to values> = 0. Player received positive feedback via more particles whenever the
counter surpassed a positive threshold, after which point the counter was reset to 0. There
was no negative feedback, i.e., the number of particles never decreased. Subsequently, the
instruction ‘concentrate’ appeared on the screen and remained for 20 s. During this time
participants ‘condensed energy’, that is, previously gathered particles brightened and inten-
sified according to the influx of b+/b-messages (Fig 2C). In this case, the behind-the-scenes

Fig 2. Game screenshots. (A) EEG data observation and welcomemessages. Players are ordered from left
to right. (B) Solo relax. Number of particles indicates cumulative relaxation result (e.g., players 4 and 5
accumulated large particle cloud). Ovals on the top of the screen represent additional feedback such that light
shading of the oval signifies a+ state (e.g. player 4). (C) Solo concentrate. Brightness of particles indicates
cumulative concentration result (e.g., players 1, 2 and 4 have good result). Dot inside an oval indicates that
player is in b+ state (e.g., players 1 and 4). (D)Group game, guided and freestyle.

doi:10.1371/journal.pone.0130129.g002
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beta counter operated in a similar fashion by rewarding sustained high beta power. After
the ‘concentrate’ period, each participant’s ‘energy orb’ was launched into a firework. The
height of the firework reflected the high alpha achievement during the ‘relax’ condition,
whereas the brightness of the firework indicated the participant’s performance with high
beta states during the ‘concentrate’ condition. No scores were displayed at any time as we
aimed to create a pleasant and collective experience and downplay the potential for compet-
itiveness. During the tutorial, alpha and beta messages were generated using default thresh-
olds. However, the data collected during the tutorial were stored and subsequently analyzed.
Individual thresholds were calculated from the mean alpha and beta relative power during
the tutorial: lower and upper alpha (beta) thresholds were set as 0.9 (1.0) and 1.1 (1.2) of the
mean alpha (beta) power. The remainder of the game was driven using the customized
thresholds.

4. Solo 1 and 2 games. These two stages of the game were qualitatively identical with the tuto-
rial, however individual neurofeedback thresholds were used and the ‘concentrate’ condi-
tions lasted 30 s.

5. Group—guided game. Here each ‘pod’ obtained feedback about the collective performance
in addition to the individual feedback. This was realized by moving the particle orbs of indi-
vidual participants into a semi-circular shape surrounding a ‘group orb’ at the center of the
screen (Fig 2D). The logic was the same as in solo fireworks, with 20 s of relaxation followed
by 30 s of concentration. In this case however, the group’s orb increased in size whenever 3
or more participants were in the target state. The idea here was to introduce the participants
to the common goal and the corresponding visual feedback. After the ‘concentrate’ condi-
tion, all orbs merged together and launched group fireworks, the height and brightness of
which was reflective of the pod’s performance.

Fig 3. Game timeline. Each phase of the game ended with fireworks display, size and brightness of which
were determined by the performance of the participants. Total duration of the game was 6.5 min. In the
Tutorial individual thresholds for alpha and beta were estimated based on guided ‘relax’ and ‘concentrate’
conditions. Participants obtained individual visual feedback on their performance to either increase alpha or
beta. Solo 1 and 2 games were qualitatively identical with the tutorial, however individual thresholds were
used. During the ‘group-guided’ game each ‘pod’ obtained feedback about the collective performance in
addition to the individual feedback. In the ‘Group—freestyle’ period, participants did not obtain specific
instructions other than to attempt to synchronize as a group by targeting the same brain state.

doi:10.1371/journal.pone.0130129.g003
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6. Group—freestyle game. This part of the game was similar to the guided group game, except
that there were no specific instructions and it lasted 90 s. Before the start, the participants
were instructed to synchronize with other members of the pod, that is, to either concentrate
or relax, whichever appeared appropriate at any given time. The group orb in the middle
increased in size whenever three or more participants were in the same state. The total num-
ber of synchrony events determined the size and brightness of the final group fireworks.

Data preprocessing and RSP
Bluetooth timing rectification. The BCI software recorded the incoming EEG data with

timestamps, while the game recorded timestamps for condition onsets and offsets. In theory,
this would allow us to epoch the data, i.e. extract condition-specific portions of EEG time
series. However, we detected timing and sampling issues with Bluetooth headsets. For each
EEG data set, we estimated the headset’s EEG sampling rate by dividing the number of
recorded data points with the time difference between the first and the last time stamp. Though
the target output sampling rate was chosen to be 220 Hz, all headsets had higher estimated
sampling rates with a mean of 229.5 Hz (SD: -11.8 Hz). The estimated individual headset sam-
pling rate was stable across recordings, with an SD of 0.34 Hz on average. The estimates were
based on 8 min of recording or more. However, the data came in bursts and at a slightly vari-
able sampling rate, due to the limitations of Bluetooth technology. Bursts of data with the same
time stamps consisted of 33 data points, on average. We assumed that accurate timestamps cor-
responded to endpoints of the bursts, so for the data acquired between two consecutive bursts,
we interpolated intermediate timestamps as if acquired with even sampling. Because our condi-
tions were at least 20 s long, this was acceptable accuracy in determining the condition onsets
and offsets.

Epoching. We defined 9 conditions in accordance with the game timeline. The condition
names and durations were: Tutorial-relax (20 s), Tutorial-concentrates (20 s), Solo1-relax (20
s), Solo1-concentrate (30 s), Solo2-relax (20 s), Solo2-concentrate (30 s), Group-guided-relax
(20 s), Group-guided-concentrate (30 s), and Group-freestyle (90 s). The freestyle condition
was not analyzed since it was distinctly longer and different than all other conditions. Also,
because some conditions were 30 s long, we always utilized only the first 20 s of each condition
segment. Condition specific segments were resampled to 256 Hz. For subsequent data analysis
we split the long segments into a series of overlapping 1s epochs, with 100 ms overlaps. For 20
s of continuous data resampled to 256 Hz this procedure resulted in 211 epochs. Temporal
mean was subtracted from each epoch.

Re-referencing and artifact rejection. The four channel data were re-referenced to mas-
toids by subtracting the average signal from ear electrodes. This resulted in two frontal chan-
nels and one average ear channel. Given the size of the data set (N = 523) we opted for an
automatic procedure for artifact rejection. The procedure sorted epochs within each condition
according to the sum of square amplitudes, and for each subject the first 100 epochs with the
lowest total amplitude were kept for further analysis. Visual inspection of randomly selected
epochs from the entire data collection confirmed that automatically selected EEG data were
reasonably clean (Fig 4). Data from two frontal channels were used in all subsequent analyses.

RSP. To obtain RSP estimate for each condition we calculated relative spectral power in
the 1–50 Hz frequency range. The power spectrum P was calculated for each frontal channel.

Next, relative power for each frequency i = 1:50 Hz was calculated:PrelðiÞ ¼ PðiÞ=
X50

j¼3
PðjÞ:

Final RSP estimate was obtained by averaging Prel across epochs and taking log transform with
natural logarithm.

'My Virtual Dream': Collective Neurofeedback
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Baseline RSP. To estimate baseline RSP we used the EEG data prior to any training from a
3.5 s interval during the welcome messages at the very start of the game. Preprocessing was
similar as for the relaxation and concentration conditions, only here we compensated for
shorter interval by epoching with only 20 ms overlap. This produced 406 epochs, and we
obtained RSP estimate by averaging over 100 epochs with the lowest total amplitude, then tak-
ing the natural logarithm.

Multivariate statistics. Group and condition effects were analyzed by Partial Least
Squares (PLS), a multivariate statistical toolbox [29], [30]. Here we describe briefly two types of
PLS: task PLS and behavioral PLS. Task PLS computes a covariance matrix of brain data (e.g.,

Fig 4. Results of the automated artifact rejection procedure. EEG traces from the left frontal channel of 5 randomly selected participants are shown
during the first 20 s of the Solo 1-concentrate condition. Shaded areas indicate rejected intervals.

doi:10.1371/journal.pone.0130129.g004
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RSP values across channels and frequencies) and a set of design contrasts (e.g., group and/or
condition effects). In the data driven implementation, the design contrasts are obtained by per-
forming singular value decomposition (SVD) on the covariance matrix into a set of orthogonal
latent variables, LV’s. Each LV consists of a pair of optimally related patterns: a left singular
vector (brain pattern) and a right singular vector (group/condition effect), and a singular value
(size of the effect). In the hypothesis driven implementation, the user selects a set of design
contrasts, which are then projected onto the brain data. In both implementations, the reliability
of the relationship between the paired brain patterns and design contrasts is assessed using
split-half resampling [30], which produces two p-values: pbrain estimating the reliability of the
brain pattern given the design contrast, and pdesign estimating the reliability of the design con-
trast given the brain pattern. In the present study, effects are considered reliable if maximum of
the two p values, denoted maxp, is< .05. Additionally, PLS assesses reliability of individual
components of the brain patterns via bootstrapping resampling of participants with replace-
ment. For each brain data component (e.g., channel at a specific frequency) PLS calculates a
bootstrap ratio as a component’s loading divided by standard error of the loading across boot-
strap samples, akin to a z-score. Bootstrap ratio was considered stable when its absolute value
was greater than Sidak’s threshold [31]. Behavioral PLS computes a correlation between the
brain data matrix and some dependent measure(s) such as behavior or age. In this case SVD
decomposes the correlation matrix, while the reliability of the resulting latent variables (brain
patterns with associated correlation patterns) is examined in the same way as in task PLS. In all
PLS analyses we used 100 permutations, 100 split-half samples and 500 bootstrap samples. For
each LV participant scores are obtained by multiplying the brain data for each condition (in
our case RSP values) by the left singular vector. Group/condition effect is depicted by mean
participant scores, together with confidence intervals (CI’s) based on bootstrap resampling.

Global effects. In the confirmatory analyses we were interested in global patterns of corre-
lation between the brain data and demographic variables, regardless of conditions. We thus
folded all condition specific RSP measurements as observations. In other words, for each par-
ticipant, the brain data included the full collection of RSP values across all conditions together.
The correlation structure between the brain data and each of the demographic variables (age,
sex and time-of-night) was analyzed using behavioral PLS.

Headset effect. Since wireless headsets were manually assembled prototypes, we first
investigated differences between headsets. We divided subjects into 20 groups, according to the
headset, and ran task PLS for group differences. The analysis detected several strong and reli-
able effects (results not shown). We considered the headset effects as nuisance variables and
regressed them from all subsequent analyses. This was done by extracting participant scores
for all non-zero latent variables and regressing them out from RSP data across subjects.

Time-of-night effect. Since data acquisition started at 7pm and ended at 7am on the fol-
lowing morning, we expected to see an effect of sleep deprivation. Although we did not collect
any sleep related data from the participants, it is reasonable to assume that sleep deprivation
increased as night progressed. To probe this effect we correlated EEG data with session number
1–29, where 1 corresponded to the first session at 7pm and 29 corresponded to the last session
around 6:35 am. We then analyzed the correlation between RSP and time-of-night using
behavioral PLS. Once again, we considered this effect as nuisance variable and regressed out
the session number from brain data in subsequent analyses.

Age effect. We used the entire sample to correlate RSP and age and applied behavioral
PLS.

Sex effect. Sex differences in RSP were analyzed as a group effect with task PLS. Prior to
the analysis, we regressed out headset and time-of-night effects. We also regressed age and
repeated the analysis a second time. Both analyses showed virtually identical results.

'My Virtual Dream': Collective Neurofeedback
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Neurofeedback effects
Relaxation vs. concentration. To examine the main effect of relaxation vs. concentration,

we ran data driven task PLS on RSP values across all guided conditions: Tutorial-relax, Tuto-
rial-concentrate, Solo1-relax, Solo1-concentrate, Solo2-relax, Solo2-concentrate, Group-
guided-relax, Group-guided-concentrate.

Training effects. For the analysis of training effects for concentration and relaxation, the
data were first cleared of nuisance variables related to headset, time-of-night, and age, as
described above. We ran two data driven task PLS analyses, first with Tutorial-relax, Solo1-re-
lax, and Solo2-relax conditions, and second with Tutorial-concentrate, Solo1-concentrate, and
Solo2-concnetrate conditions.

To examine the impact of sample size on detectability of training effects, we repeated the
analyses with lower number of randomly selected participants. We focused on the concentra-
tion training effect and performed a series of PLS analyses with the number of participants, N,
ranging from 10 to 500 in multiples of 10. For each N, participants were chosen at random, and
we tested a fixed contrast coding for the training effect, [-1 0 1], corresponding to Tutorial-con-
centrate, Solo1-concentrate, and Solo2-concentrate conditions. Randomization was repeated
50 times and meanmaxp was calculated as an estimate of the training effect reliability for N
participants.

Neurofeedback performance measures. We defined two performance measures based on
the ability of the participants to maintain the desired state. Relaxation maintenance, i.e., alpha
performance aP, was operationally defined as the ratio of the total number of a+ states divided
by the total number of a- states during a relax condition, where a+ (a-) correspond to high
(low) power in alpha range. This provided an estimate of the player’s maintenance of high
alpha power. Concentration maintenance, i.e., beta performance bP, was defined analogously
and good beta performance during concentration blocks was associated with high values of bP.
Both measures were evaluated across all conditions.

Since we found large variations in beta learning (see Results), we divided subjects into two
groups, beta learners and beta non-learners and used task PLS to test for group differences in
baseline RSP. We also tested the differences in aP and bP between beta learners and non-learn-
ers by running two separate PLS analyses across all conditions.

Results

Neurofeedback learning of the target brain states
The omnibus data driven analysis of condition effects in relative spectral power identified the
dominant reliable effect distinguishing relaxation vs. concentration blocks (Fig 5). As expected
[32], power in beta range was higher for concentrate conditions, whereas the power in the
alpha range was higher in relax conditions. Moreover, in the solo games the differentiation
between relaxation and concentration increased with training and reached maximum differ-
ence during Solo2.

We further investigated training effects for each target brain state separately. The analysis of
the three solo relaxation conditions (Fig 6A) showed gradual decreases in mid range and high fre-
quencies (8–20 Hz and 35–45 Hz). By contrast, concentration training (Fig 5B) revealed gradual
increases in beta range and decreases in low frequencies (< 3 Hz). In other words, participants
were learning to modulate their relative spectral power within only 60 s and 80 s training periods,
for relaxation and concentration respectively (the total time for the three solo conditions).

Pilot experiments leading to the public event consistently identified the main relaxation vs.
concentration effect, even with very small numbers of participants (N< = 10, data not shown).

'My Virtual Dream': Collective Neurofeedback
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Based on this, we hypothesized that early yet subtle brain activity changes associated with short
neurofeedback training protocol would become detectable with larger sample sizes if present.
We investigated the impact of the sample size on the statistical reliability for the concentration
training effect. Results shown in Fig 6C confirm that training effects are reliable exclusively for
large sample sizes N>>200.

Persistent neurofeedback learning effects
We evaluated the two performance measures across all conditions. Besides the overall differ-
ence between aP and bP due to different threshold settings, we observed striking training-
related differences between the two performance measures: while aPmostly stayed at the base-
line level throughout the game, bP steadily increased, though with large standard error actross
the entire sample (Fig 7A). Percent increase in bP from the start to the end, i.e., from Tutorial-
relax to Group-freestyle was taken as the beta training effect, bTE. The mean value of bTE was
87% (SE: 9%). To better understand the large variability in bTE we split the sample into two

Fig 5. Relaxation vs. concentration states (example left frontal channel). (A)Mean RSP curves across 8 guided conditions in alpha and beta frequency
ranges. (B) Left: mean participant scores with respect to the main effect of relaxation vs. concentration across 1–50 Hz frequency range. Error bars indicate
95% confidence intervals (CI) Right: frequency pattern associated with the main effect. Frequencies with reliable positive (negative) bootstrap ratios
exhibited greater (lower) RSP for concentration conditions compared to relaxation conditions and are indicated by red (blue) circles. As hypothesized,
concentrate conditions showed more power in beta range and less power in alpha range, compared to relax conditions.

doi:10.1371/journal.pone.0130129.g005
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groups, ‘beta learners’ and ‘beta non-learners’, which we defined according to bTE> 0 and
bTE< = 0. There were 201 non-learners and 322 learners. The mean bTE for learners and
non-learners were 169% (SE: 13%) and -44% (SE: 2%), respectively, and were statstically differ-
ent according to the t-test at p<0.001.

For learners, effects of concentration training in beta band persisted even during the non-
concentration blocks, suggesting learning-related changes in the brain. By contrast, beta non-
learners showed steady bP decrease. PLS analyses of group differences in performance mea-
sures, aP and bP, produced reliable latent variables (Fig 7A). The effect size for bP, however,
was 5.8 times greater than for aP.

Fig 6. Training effects on brain states (example left frontal channel). (A) Relaxation training effect. Left: mean participant scores with respect to the
relaxation training effect, with error bars representing 95% CI. Right: associated frequency pattern with reliable positive (negative) bootstrap ratios indicated
by red (blue) circles. Overall effect of relaxation training is a decrease in 17–18 Hz and 35–45 Hz frequency range. (B) Concentration training effect. Left:
mean participant scores with error bars representing 95%CI. Right: associated frequency pattern with reliable positive (negative) bootstrap ratios indicated
by red (blue) circles. Overall effect of concentration training is an increase in beta power (20–40 Hz frequency range) and a decrease in delta power (<3 Hz).
(C) Reliability of concentration training effect across a series of analyses with varying number of participants, N. For each N we plotted mean estimate of the
reliability measuremaxp. Reliable results (maxp < 0.05, i.e., below the red dotted line) are consistently obtained when the number of participants is >>200.

doi:10.1371/journal.pone.0130129.g006

'My Virtual Dream': Collective Neurofeedback

PLOS ONE | DOI:10.1371/journal.pone.0130129 July 8, 2015 12 / 18



Given the striking difference in the learning trajectories for beta learners and non-learners
we investigated whether power spectrum at baseline (time interval directly preceding the onset
of the neurofeedback training) could predict beta learning. Indeed, the two groups were found
to be statistically different at baseline such that learners had less relative power in beta/gamma
range and more power in delta range, compared to non-learners (Fig 7B). No relationship
between beta learning and demographic factors were found.

Time-of-night and demographic factors
The time-of-night effect was statistically reliable and the results remained virtually unchanged
after regressing out age. We found that as night progressed, the participants were showing a
gradual shift towards more relative power in high frequencies and less in low frequencies
(Fig 8). Initially we detected a relationship between RSP and age, however the effect disap-
peared after regressing the time-of-night effect. Notably, the correlation between time-of-night
and age was -0.22 with 95 percent CI = [-0.13–0.31], meaning that older people participated
mainly during earlier part of the night. We also detected sex differences whereby females
showed more power in beta and gamma ranges (Fig 9).

Fig 7. Neurofeedback performancemeasures. (A)Group mean alpha performance aP and beta performance bP for all participants taken together (yellow
bullets), with 95% CI’s shown as error bars, beta learners (gray bullets) and non-learners (white bullets). Conditions where neurofeedback did not depend on
the respective band of interest are shown in desaturated color. Black asterisks indicate conditions which expressed reliable PLS difference between learners
and non-learners. (B) Analysis of differences in baseline RSP between beta learners and non-learners. Top: mean participant scores with error bars
representing 95% CI. Bottom: associated frequency pattern for the left frontal channel with reliable positive (negative) bootstrap ratios indicated by red (blue)
circles. High power in delta range and low power in beta/gamma range during baseline predicted subsequent beta learning.

doi:10.1371/journal.pone.0130129.g007
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Fig 8. Time-of-night effect (example left frontal channel). (A)Mean RSP curves from 29 sessions during Tutorial-relax condition. (B) Top: omnibus
correlation between RSP values and time-of-night across all guided conditions. Error bar indicates 95% CI based on bootstrap resampling. Bottom:
associated frequency pattern, represented with bootstrap ratios across conditions. Reliable positive (negative) bootstrap ratios are positively (negatively)
correlated with time-of-night and are indicated by red (blue) circles. As the night progressed, there was as a gradual shift towards more power in high
frequencies and less in low frequencies.

doi:10.1371/journal.pone.0130129.g008

Fig 9. Sex differences in RSP (example left frontal channel). (A)Mean RSP curves for males and females during Solo2-concentrate condition. (B) Sex
effect across all guided conditions. Top: mean participant scores with error bars representing 95% CI. Bottom: associated frequency pattern, represented
with bootstrap ratios across conditions. Reliable positive bootstrap indicated by red (blue) circles identify frequencies (35–45 Hz) where females have more
power compared to males. Weak trend by which males exhibit more power alpha range (blue bootstrap ratios) is not consistently reliable across conditions.

doi:10.1371/journal.pone.0130129.g009
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Discussion
By accessing a large number of participants we found subtle brain activity modifications that
were taking place within approximately 1 minute of training, i.e., neurofeedback learning at a
speed that has not been demonstrated before. Concentration training elicited a particularly
salient effect of relative spectral power increase in beta range and decrease in frequencies< 8
Hz. The training effect was strong, yet subtle and could be detected only with large sample sizes
(N>> 200). Besides overall power spectrum changes we also evaluated the actual neurofeed-
back performance. Approximately 3/5 of the participants showed steep beta neurofeedback
learning across concentration blocks, with persistent changes affecting even relaxation blocks,
i.e., periods without beta-based neurofeedback. The remaining participants showed opposite
effect, such that their beta performance worsened with training. We further found that the two
groups were significantly different at baseline, i.e., just before the onset of the neurofeedback
training, in agreement with recent observations indicating that baseline states as measured by
EEG predict learning [20], [21] and that regulation of those states via neurofeedback can mod-
ulate cognitive functions [33–35]. There is no explanation why the non-learners showed more
power in beta/gamma range at baseline. It may imply that the non-learners were already very
good at concentration at the beginning of the experiment. To better understand the reason for
the difference between the two groups, the subjects’ ability of concentration at baseline could
be tested in a future study.

Taking into account the novelty of the acquisition framework both in terms of the environ-
ment and the EEG-BCI technology, we performed a number of analyses in order to validate the
data and reproduce effects that have been reported previously in the literature. Straightforward
analysis of spectral power in response to neurofeedback instructions yielded the expected strong
differentiation between ‘relax’ and ‘concentrate’ brain states (Fig 3) in terms of relative spectral
power. Moreover, our results showed bias between frequency bands, which is common in neu-
rofeedback, [36]. For example, concentration training targeted exclusively beta band, but was
also accompanied by decrease in power for frequencies below 10Hz. In terms of global effects,
we found a time-of-night effect, which can be interpreted as an extended wakefulness effect
similar to findings in [37]. We also replicated previously reported sex differences [38], [39].

In conclusion, both confirmatory and novel findings fromMy Virtual Dream have provided
necessary proof-of-concept for a novel neuroscience research framework. In our experimental
design, we tested a tradeoff between the lack of formal control for confounding variables such as
substance use and history of neurological problems, and access to massive sample size in a single
session. Participants waited for 2 hours on average, although there were many other installations
nearby with very little or no wait time. This fact, although not an explicit part of the design, can
be taken as an indication that the participants were highly motivated. By combining art, perfor-
mance and BCI we are now in a position to approach questions of complex real-life social cogni-
tion that otherwise are not accessible in lab settings. It has been pointed out that the traditional
approach to studying the mind disregards the mind's central feature of being intrinsically sub-
jective [40]. We believe that My Virtual Dream opens exciting new avenues for neuroscience
research taking into account individuality, complexity and sociability of the human mind.

Supporting Information
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