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Objective  To investigate the global functional reorganization of the brain following spinal cord injury with graph 
theory based approach by creating whole brain functional connectivity networks from resting state-functional 
magnetic resonance imaging (rs-fMRI), characterizing the reorganization of these networks using graph 
theoretical metrics and to compare these metrics between patients with spinal cord injury (SCI) and age-matched 
controls.
Methods  Twenty patients with incomplete cervical SCI (14 males, 6 females; age, 55±14.1 years) and 20 healthy 
subjects (10 males, 10 females; age, 52.9±13.6 years) participated in this study. To analyze the characteristics of 
the whole brain network constructed with functional connectivity using rs-fMRI, graph theoretical measures were 
calculated including clustering coefficient, characteristic path length, global efficiency and small-worldness. 
Results  Clustering coefficient, global efficiency and small-worldness did not show any difference between 
controls and SCIs in all density ranges. The normalized characteristic path length to random network was higher 
in SCI patients than in controls and reached statistical significance at 12%–13% of density (p<0.05, uncorrected).
Conclusion  The graph theoretical approach in brain functional connectivity might be helpful to reveal the 
information processing after SCI. These findings imply that patients with SCI can build on preserved competent 
brain control. Further analyses, such as topological rearrangement and hub region identification, will be needed 
for better understanding of neuroplasticity in patients with SCI.
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INTRODUCTION

Spinal cord injury (SCI) can partially or fully discon-
nect the spinal cord from the brain. Recent advances in 
neuroimaging and brain mapping have enabled the study 
of neural connectivity changes in the human brain after 
SCI [1]. Unlike cortical injuries like stroke and traumatic 
brain injury, the brain structure remains grossly intact 
after SCI. Spinal cord atrophy, cortical atrophy and corti-
cal reorganization in the sensorimotor cortex are evident 
in patients with SCI [2-4]. The change in the supraspinal 
level of injury is an important factor for the expected level 
of recovery, although there are multilevel changes from 
below to above the site of injury [2,5]. Neuroimaging may 
be useful in revealing altered functional connectivity in 
the brain after a distant central nervous system (CNS) in-
jury [1]. 

In addition to task-evoked functional magnetic reso-
nance imaging (fMRI), resting state-fMRI (rs-fMRI) mea-
sures the endogenous or spontaneous brain activity as 
low-frequency fluctuations in blood oxygen level-depen-
dent (BOLD) signals. Also, it has become an important 
tool for delineating the functional network architecture 
of the brain [6]. 

Recently, using novel graph theory-based approaches, 
topological organization that support efficient infor-
mation processing were found in brain network [7]. In 
graph theory-based approaches, the brain is modeled as 
a complex network visually presenting with nodes and 
edges. In the virtual graph,nodes represent anatomical 
elements, such as brain regions, and edges indicate the 
relationships between nodes (e.g., connectivity). After 
the brain network modeling procedure, various kinds of 
graph theoretical metrics can reveal the brain network 
organization mechanism [7]. The graph theory-based 
approach is advantageous in that it quantitatively charac-
terizes the global organization in addition to visualizing 
the overall connectivity pattern among all the elements 
of the brain [7]. Moreover, it provides a vital framework 
to demonstrate the relationship between brain structure 
and function [8]. 

Furthermore, utility of graph-theory based techniques 
has been proven by an increasing number of studies to 
probe potential mechanisms involved in normal devel-
opment [9], aging [10], and various brain disorders like 
Alzheimer’s disease [11], schizophrenia [12], epilepsy, 

and traumatic brain injury [13]. However, no study has 
explored the connectivity change using rs-fMRI in pa-
tients with SCI using a graph-theory based approach.

Here, we investigated the global functional reorganiza-
tion of the brain following SCI with graph-theory based 
approach by creating whole brain functional connectivity 
networks from rs-fMRI data, characterizing the reorgani-
zation of these networks using graph theoretical metrics, 
and comparing these metrics between SCI patients and 
age matched controls.

MATERIALS AND METHODS

Participants were 20 patients with incomplete cervi-
cal SCI (14 males, 6 females; age, 55±14.1 years) and 20 
healthy subjects (10 males, 10 females; age, 52.9±13.6 
years). The patients fulfilled the following inclusion cri-
teria: (1) a minimum of 3 months post-injury; (2) cervical 
SCI proven by MRI; (3) incomplete injury based on ASIA 
impairment Scale (AIS); (4) upper or lower limb impair-
ment; and (5) no head or brain lesion related with the 
trauma. At the point of study enrollment, bilateral up-
per and lower extremities motor power was evaluated by 
AIS. Experiments were conducted with written consent 
of each participant and the study was approved by the 
Institutional Review Board of the Kyungpook National 
University Hospital (IRB No. 2011-09-011). 

Acquisition of fMRI data
All MRI data were acquired with a Signa Excite HD 3.0T 

MR scanner (General Electric, Milwaukee, WI, USA). 
Resting-state BOLD images were obtained using an echo 
planar-imaging sequence (repetition time [TR], 2,000 ms; 
echo time [TE], 30 ms; flip angle, 90; matrix, 64×64; field 
of view [FOV], 210 mm; and 4 mm thickness with no gap). 
The subjects had no task to perform but were instructed 
to stay alert and keep their eyes closed during scanning. 
Anatomical T1-weighted images were obtained using a 
3D-fast spoiled gradient echo sequence (TR, 7.8 ms; TE, 
3 ms; flip angle, 20; matrix, 256×256; FOV, 210 mm; and 1.3 
mm thickness and no gap).

Preprocessing of rs-fMRI data
The preprocessing of rs-fMRI data was carried out with 

Analysis of Functional NeuroImages software (http://
afni.nimh.nih.gov/afni) [14]. The initial five volumes 
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from each functional image were discarded. The residual 
functional images were de-spiked and corrected for slice 
time acquisition differences and head motions [15]. The 
anatomical image was co-registered to the functional im-
ages using the affine registration with the local Pearson 
correlation cost function [16]. The corrected functional 
images carried out using the anatomy based correlation 
corrections (ANATICOR) method [17]. To remove noise 
from the data, data were regressed out as follows: 1) six 
parameters obtained by the rigid body correction of head 
motion, 2) the signal from the eroded large ventricle 
mask, and 3) signal from a region of the eroded local 
white matter mask (r=15 mm). Head coil and hardware 
artifacts were modeled with eroded local white matter 
and eroded large ventricle masks. To obtain the mask, 
each registered and non-uniformity corrected anatomi-
cal T1 image was classified into white matter, gray matter, 
cerebrospinal fluid, and background using an advanced 
neural-net classifier [18]. Additionally, four large ven-
tricles were automatically identified using automated 
non-linear image matching and anatomical labeling, a 

well-established non-linear warping algorithm that uses 
a multi-scale approach to deform one image to match a 
previously labeled template [19]. To reduce partial vol-
ume effects from gray matter on white matter and large 
ventricle masks, the white matter mask and the large 
ventricle mask were eroded by one voxel. Subsequently, 
the data were temporally band-pass filtered (0.009<f<0.08 
Hz). The GM mask was applied to reduce the inclusion 
of unwanted BOLD or other physiological signals that 
occur due to large draining vessels that tend to course 
on the outer surface of the gray matter. The images then 
underwent spatial smoothing with a 6-mm full width at 
half maximum Gaussian kernel and were normalized to a 
standard MNI152 template.

Network analysis using graph theoretical approach
To analyze the characteristics of the whole brain net-

work between normal and SCI patients, we calculated 
several graph theoretical measures. Graph-theoretical 
measures were calculated using the Brain Connectivity 
Toolbox (http://www.brain-connectivity-toolbox.net) 

Correlation

AAL atlas 90 (not cerebellum)

SCI (90x90x20) Controls (90x90x20)

Graph-theoretical metrics

Clustering coefficient
Shortest path length
Global efficiency
Small-worldness

Density: 6% 40% (increase 1%)

Fig. 1. Consecutive steps of functional connectivity analysis using resting state-functional magnetic resonance imaging 
(rs-fMRI) with graph theoretical approach. The whole brain was parcellated into 90 regions according to automated 
anatomical labeling (AAL) atlas. The correlations between rs-fMRI time-series were computed. The weighted correla-
tion matrix per subject was constructed for the controls and the spinal cord injuries (SCIs). The weighted correlation 
matrix was converted into binarized matrix by density thresholding from 0.06 to 0.4 (increase 1%). Random networks 
were also generated. Graph-theoretical metrics such as clustering coefficient, characteristic path length, global effi-
ciency, small-worldness were measured. 
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[20]. Nodes were defined by 90 regions of interest (ROIs) 
according to an automated anatomical labeling (AAL) 
template. In the AAL template, 45 ROIs in each hemi-
sphere, except the cerebellum, were defined [21] (Sup-
plementary Table 1). Then, a cross-correlation symmetry 
matrix (90×90) was obtained for each subject. The time 
series in each ROI was averaged and Pearson’s correla-
tion coefficients were calculated between every pair of 
ROIs. These correlation coefficients represent functional 
connections between nodes. Then, the cross-correlation 
symmetry matrixes were converted to a z-value using 
Fisher’s r-to-z transformation. Our analysis applied to a 
simple undirected and unweighted binary matrix. So, the 
matrix was then transformed into a binary matrix with a 
fixed density value. We applied a wide range of density 
(D), (6%≤D≤40%) with an incremental interval of 1%. 
Then, further network analysis was based on the bina-

rized matrices for each subject (Supplementary Fig. 1).
Four network measures−clustering coefficient, Cp; char-

acteristic path length, Lp; small world-ness parameters, σ; 
and global efficiency, Eglob were calculated to analyze the 
differences between normal and SCI patients. Clustering 
coefficient of a node i (Ci) is defined as the ratio of the 
number of connections between the neighbors of ROI i 
and the total number of possible connections between 
its neighbors. Clustering coefficient for a network (Cp) is 
defined as the average Ci from entire nodes in the net-
work and characteristic path length (Lp) is the mean the 
shortest distance between any two nodes in the network 
[22]. Global efficiency of the network (Eglob) was defined 
as the average inverse shortest path length for all node-
node pairs in the network [23]. To examine the small-
world properties, the normalized parameters γ=Cp

real/
Cp

rand and λ=Lp
real/Lp

rand were computed [22]. A network 

Table 1.  Demographic data and clinical values of the SCI subjects 

Subjects
Sex/age 

(yr)
Time since 
injury (wk)

Injury 
level

ASIA 
scale

ASIA motor 
score of U/E 

(Rt/Lt)

ASIA motor 
score of L/E 

(Rt/Lt)

ASIA sensory 
score of light 
touch (Rt/Lt)

ASIA sensory 
score of pin 

prick (Rt/Lt)
1 M/35 229 C1/C1 C 25/25 17/17 28/28 28/28

2 M/64 24 C2/C2 D 14/13 20/20 29/29 29/29

3 M/66 97 C2/C2 D 20/13 20/19 56/29 29/56

4 F/69 56 C3/C3 D 25/25 16/18 30/30 30/30

5 F/69 74 C3/C3 D 25/25 25/25 56/56 30/30

6 M/29 18 C4/C3 D 22/17 25/25 31/30 31/30

7 M/64 28 C4/C3 D 13/10 14/14 30/30 30/29

8 M/75 58 C4/C4 D 16/17 19/20 31/31 31/31

9 F/68 14 C4/C4 C 16/16 7/11 9/9 13/13

10 F/51 126 C4/C4 D 20/20 19/19 31/31 31/31

11 M/42 30 C4/C4 C 11/10 14/5 31/31 31/31

12 F/60 34 C4/C4 D 13/13 12/10 56/56 56/56

13 M/64 19 C4/C4 D 14/10 20/20 31/31 31/31

14 M/46 58 C4/C4 C 5/4 4/7 7/8 7/8

15 F/53 86 C5/C5 D 11/18 9/19 32/32 32/32

16 M/57 104 C5/C5 D 12/12 15/15 32/32 32/32

17 M/66 13 C5/C5 C 13/9 20/15 32/32 32/32

18 M/54 27 C5/C5 D 15/15 15/15 45/45 45/45

19 M/43 30 C7/C7 C 18/18 15/2 11/11 25/25

20 M/26 39 C8/C8 D 22/22 20/18 34/34 34/34

SCI, spinal cord injury; ASIA, American Spinal Injury Association; ASIA motor score, maximum 100 points; U/E, up-
per extremities; L/E, lower extremities; Rt, right; Lt, left; M, male; F, female; C, cervical; ASIA C, sensorimotor incom-
plete with half of key muscles below the neurological level have a muscle grade less than 3; ASIA D, at least half of key 
muscles have a muscle grade of 3 or more.
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is considered as a small-world network if it shows much 
higher Cp (γ>1) while similar Lp (λ≈1) in comparison with 
the matched random network. That is, small-world in-
dex σ=γ/λ is greater than 1 [24]. In the random networks, 
each edge was rewired 1,000 times and an average of 100. 
Small-worldness tests were done repeatedly over a range 
of density (Fig. 1). The comparison of network param-

eters between controls and SCIs was performed using a 
two-tailed two-sample t test (p<0.05). We did not make 
any correction for multiple comparisons because we 
tried to explore the general trends of between-group dif-
ferences through the wide range of density level. 
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Fig. 2. Results of clustering coefficient (A) and clustering coefficient scaled by random networks (B) in the controls and 
the spinal cord injuries (SCIs). (A) Clustering coefficient by density change is higher compared to random networks 
in all density range. (B) Clustering coefficient scaled by random networks did not show statistically significant change 
between the control and the SCIs at all densities. Green line denotes controls, the red line denotes SCI patients, and 
the blue line denotes the random networks. 
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Fig. 3. Results of characteristic path length (A) and characteristic path length scaled by random networks (B) in the 
controls and the spinal cord injuries (SCIs). (A) Characteristic path length by density change is longer compared with 
random networks. (B) The characteristic path length scaled by random networks of the SCIs is longer than that of the 
controls at the range of 12%-13% of density (*p<0.05, uncorrected). Green line denotes the controls, the red line de-
notes the SCI patients, and blue line denotes the random networks.
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RESULTS

No differences were evident between controls and 
SCI patients in age (controls: mean±standard deviation 
[SD], 52.9±13.6 years; SCI patients: mean±SD, 55±14.1 
years; p=0.627, obtained by two-tailed two-sample t test) 
and gender (controls, 10 males; SCI patients, 14 males; 
p=0.197, obtained by Pearson χ2 analysis). The time since 
SCI was 58.3±52.0 weeks. Demographic and clinical char-
acteristics of the 20 SCI patients are provided in Table 1. 
Severity of SCI was defined using the AIS. 

We first examined graph metrics obtained for function-
al brain networks constructed by thresholding (threshold 
values ranged from 0.06 to 0.4, with an increment of 0.01). 
The clustering coefficient in controls and SCI patients 
was high compared to random network through the den-
sity range. The normalized clustering coefficient in SCI 
was less than that of controls, but with no statistical sig-
nificance between two groups at all densities. The ratio of 
clustering coefficient to random networks tended to de-
crease as density increased (Fig. 2A, 2B). The character-
istic path length was longer in controls and SCI patients 
at all densities compared to the random network. The 
normalized characteristic path length to random network 
was higher in SCI patients than controls and reached 
statistical significance at 12%–13% of density (p<0.05, un-
corrected) (Fig. 3A, 3B).

Global efficiency in both of the controls and the SCIs 

did not show a statistically significant change between 
the control and the SCIs through the density range. When 
the density increased, the difference of global efficiency 
between random network and human network decreased 
(Fig. 4).

Small-worldness of the network in controls and SCIs 
exceeded 1 at all densities, indicating that each network 
had small-world characteristics (Fig. 5).

DISCUSSION

In this study, we demonstrate graph theoretical ap-
proaches to reveal the efficiency of information process-
ing of the whole brain network with region based analysis 
in patients with cervical incomplete SCI using rs-fMRI. 

To delineate the pathophysiological mechanisms of 
brain plasticity following SCI, neuroimaging has been 
done in experimental models and humans. The results 
have been contradictory using task-evoked fMRI after 
SCI. Some fMRI studies revealed an expansion of task 
related brain activation [25,26]. Ghosh et al. [27] demon-
strated increased cortical responses to forepaw stimuli in 
incomplete cervical SCI model of rats 1 week after using 
fMRI. Others showed unaltered brain activity during an 
arm task [28,29] as well as reduced brain activation in pa-
tients with SCI with persistent motor deficit [30]. Shoham 
et al. [28] demonstrated that motor-cortical activation 
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closely follows normal somatotopic organization in the 
primary and non-primary sensorimotor areas using task-
evoked fMRI. These results were compatible with our 
finding of unaltered local efficiency and global efficiency 
in general. 

Brain connectivity is classified into structural connec-
tivity, which measures anatomical link, and functional 
connectivity, which is statistically dependent. Functional 
connectivity using rs-fMRI measures the temporal corre-
lation of spontaneous low frequency fluctuation in brain 
activity. Various brain networks including motor [6], au-
ditory [31], visual [32], language [33], default mode [34], 
and attention system [35] have been identified using rs-
fMRI. From the perspective of network science, the anal-
ysis of brain functional connectivity with graph theory 
has demonstrated the characteristics of topologically or-
ganized brain network that supports efficient information 
processing. Brain network analysis with graph theoretical 
approach models the brain as a complex network visually 
presenting with nodes and edges. In a graph, anatomi-
cal elements (e.g., brain regions) are represented by a 
node, and the connectivity between nodes is represented 
by edges. After constructing the brain network, various 
graph theoretical metrics are measured to demonstrate 
the organization mechanism underlying the relevant net-
works. In contrast to another methodological approach, 
such as seed-based functional connectivity and indepen-
dent component analysis, the graph theoretical approach 
has an advantage to visualize overall connectivity patterns 
and to characterize the topology of brain connectivity. 

To comprehensively demonstrate the topological prop-
erties of network, we analyzed multiple, frequently-used 
network parameters (i.e., clustering coefficient, shortest 
path length, global efficiency, and small-worldness) over 
a range of densities, which revealed the capability of a 
network in both specialized (or modular) processing in 
local neighborhoods and integrated (or distributed) pro-
cessing over the entire network .

In this study, there was no significant difference in pa-
tients with SCI compared to controls in measurements 
of functional segregation, such as clustering coefficient, 
functional integration, such as global efficiency, and eco-
nomic efficiency, such as small-worldness. The finding 
of generally unaltered topological properties of the whole 
brain network might suggest the relative intact brain in-
formation processing after SCI. To our knowledge, there 

has been no previous report of the functional connectivi-
ty in SCI with graph theoretical approach except only one 
report with electroencephalogram (EEG) analysis. De 
Vico Fallani et al. [36] demonstrated the increased local 
efficiency but not in the global efficiency in patients with 
SCI compared to the controls in their motor network. This 
finding suggested that the motor networks in SCI tend 
to have regular configuration. In our study, there was 
no change in local efficiency measured with clustering 
coefficient. This discrepancy may be explained several 
ways. First is the methodological difference between the 
rs-fMRI and the EEG. Rs-fMRI captures the BOLD signal 
changes, whereas EEG records a neural electrical activity 
along the scalp. The different spatial field of signal mea-
surement can be a cause of this discrepancy. Secondly, 
in the process of analysis, the AAL atlas was used to the 
whole brain parcellation, whereas the aforementioned 
study [36] analyzed only motor network constructed with 
multiple ROIs, which is relevant with the motor network. 
The difference between whole brain analysis and local 
brain analysis might influence the result of discrepancy 
in local efficiency. 

We also found the characteristic path length is longer 
than those of matched random network at the range of 
density (12%–13%). The characteristic path length mea-
sures the distance between any pair of nodes in a network 
or the extent of overall communication efficiency of a 
network. A shorter distance characterizes higher efficien-
cy because information exchange can be possible though 
only fewer steps. This finding might imply that whole 
brain network after SCI decreases the parallel informa-
tion processing at the specific density level. However, its 
effect is minimal and limited. Cautions must be taken to 
interpret this result. The characteristic path length is in-
verse of global efficiency however, in this result the global 
efficiency normalized to matched random networks did 
not demonstrate the change between two groups in all 
range of densities. The cause of this discrepancy need to 
be elucidated in the future study. 

Small-worldness is a model that originated from other 
complex network systems, such as social, economic and 
biological networks. It characterizes the organization 
principles with respect to specialized and integrated in-
formation processing, and also maximizes the efficiency 
of information processing at a lower wiring cost [37]. In 
many complex brain networks, small-world topology has 
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been demonstrated across multiple species in both of 
healthy and disease states [38]. The small world topology 
is a robust organizational principal governing the global 
pattern in spontaneous neural activity, regardless of mul-
tiple level scales, such as region level or voxel level [7]. A 
small-worldness can be described by high local cluster-
ing and low minimum path length between any pair of 
nodes [22]. A network would have the characteristics of 
small-worldness if it meets the following two conditions: 

γ=Cp
real/Cp

rand and λ=Lp
real/Lp

rand, respectively. These two 
conditions can also be characterized as a simple quanti-
tative measurement, small-worldness, σ=γ/λ>1 [24]. In 
this study, small-worldness in SCI and controls exceeded 
1 at all densities, which means the whole brain network 
exhibits economical small-world topology. This result 
suggests that the economical small-world topology is not 
disturbed from the distance CNS injury, such as SCI. 

Neurological rehabilitation after SCI is challenging in 
terms of its effectiveness. Other recent treatment options, 
such as brain-computer interface (BCI) and transcranial 
direct current stimulation based on neuroplastic recov-
ery, have drawn attention [39]. Neural interface technolo-
gy is a direct communication pathway between the brain 
and an external device that has the potential to promote 
neuroplasticity and functional recovery. In a typical BCI, 
neural signals that are recorded and decoded can be used 
to control movement of a computer cursor or other exter-
nal device, such as a robotic arm or a communication aid 
(i.e., controlling a computer for typing). Therefore, our 
study has clinical significance to identify local and global 
efficiency in brain after SCI. This study might be funda-
mentally important in revealing the information process 
in brain in patients with SCI. These findings also imply 
that patients with SCI can build on preserved competent 
brain control. 

This study has some limitations. First, it included ch
ronic incomplete cervical SCI patients. Therefore, the re-
sults cannot be generalized to other types of SCI, such as 
complete SCI, or other SCI levels. We have plans to com-
pare the difference between complete injury and incom-
plete injury in terms of the change of brain network after 
SCI. Second, in this study, we analyzed the whole brain 
connectivity with parcellating the whole brain into 90 re-
gions using an AAL template. But, it excluded the regions 
of the cerebellum, which are important for information 
processing in motor recovery. Previous studies have 

shown the role of cerebellum of recovery after CNS injury 
such as stroke [40]. Further studies should include the 
cerebellum as ROI to reveal the change of information 
processing after SCI. Third, we applied the region based 
resting-state brain networks using an AAL template. The 
result of analysis with intrinsic large scale functional 
brain networks might be biased by predefined anatomi-
cal structures. Therefore, voxel-based network analysis is 
needed to overcome the potential bias. 

In conclusion, the graph theoretical approach in brain 
functional connectivity might be helpful to reveal infor-
mation processing after SCI. These findings imply that 
patients with SCI can build on preserved competent 
brain control. Further analysis, such as topological rear-
rangement and hub region identification, are needed for 
better understanding of the neuroplasticity in patients 
with SCI in the view of network science.
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