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Porphyromonas gingivalis is an established pathogen in periodontal disease and an emerging pathogen in serious systemic con-
ditions, including some forms of cancer. We investigated the effect of P. gingivalis on �-catenin signaling, a major pathway in
the control of cell proliferation and tumorigenesis. Infection of gingival epithelial cells with P. gingivalis did not influence the
phosphorylation status of �-catenin but resulted in proteolytic processing. The use of mutants deficient in gingipain production,
along with gingipain-specific inhibitors, revealed that gingipain proteolytic activity was required for �-catenin processing. The
�-catenin destruction complex components Axin1, adenomatous polyposis coli (APC), and GSK3� were also proteolytically pro-
cessed by P. gingivalis gingipains. Cell fractionation and Western blotting demonstrated that �-catenin fragments were translo-
cated to the nucleus. The accumulation of �-catenin in the nucleus following P. gingivalis infection was confirmed by immuno-
fluorescence microscopy. A luciferase reporter assay showed that P. gingivalis increased the activity of the �-catenin-dependent
TCF/LEF promoter. P. gingivalis did not increase Wnt3a mRNA levels, a finding consistent with P. gingivalis-induced proteo-
lytic processing causing the increase in TCF/LEF promoter activity. Thus, our data indicate that P. gingivalis can induce the non-
canonical activation of �-catenin and disassociation of the �-catenin destruction complex by gingipain-dependent proteolytic
processing. �-Catenin activation in epithelial cells by P. gingivalis may contribute to a proliferative phenotype.

Porphyromonas gingivalis, a Gram-negative anaerobe, is a key-
stone pathogen in chronic and severe manifestations of peri-

odontal disease (1, 2). Among the first host cells encountered by P.
gingivalis in the gingival compartment are the epithelial cells that
line the crevice and provide both a physical barrier to microbial
intrusion and an interactive interface that signals the presence of
bacteria to the underlying cells of the immune system. P. gingivalis
and gingival epithelial cells engage in an intricate molecular dia-
logue that facilitates entry of P. gingivalis into the epithelial cell
cytoplasm, where internalized P. gingivalis remains viable and can
spread to adjacent cells (3–5). P. gingivalis also impinges upon
several aspects of innate immunity, creating a dysbiotic host re-
sponse that is unable to eliminate periodontal bacteria (6–9). Fur-
thermore, the misdirected inflammatory responses to P. gingivalis
favor the persistence of the organism by providing a source of
nutrients in the form of tissue breakdown products (10).

P. gingivalis is an asaccharolytic organism and requires the ac-
tion of proteolytic enzymes to provide the nitrogen and carbon
sources necessary for growth. A family of cysteine proteases com-
prising the arginine-specific gingipains RgpA and RgpB and the
lysine-specific gingipain Kgp is responsible for the majority of the
proteolytic activity of P. gingivalis (11, 12). Gingipains are also
major components of P. gingivalis outer membrane vesicles,
which may facilitate their penetration of the periodontal tissues
(13–15). These enzymes are directed to the bacterial cell surface
and secreted through the type IX pathway, which requires a C-ter-
minal secretion signal known as the CTD (12, 16). Gingipains can
degrade the structural components of periodontal tissues, im-
mune effector molecules, and host heme-sequestering proteins
and thus constitute major virulence factors of P. gingivalis (3, 17).

In addition to demonstrating a well-defined role for P. gingi-
valis in periodontal disease, epidemiological evidence is accumu-
lating that links P. gingivalis with serious systemic conditions, in-
cluding pancreatic cancer and oral squamous cell carcinoma
(OSCC) (18, 19). Processes that could be relevant to the develop-

ment of cancer include the ability of P. gingivalis to suppress apop-
tosis in gingival epithelial cells (20, 21) and accelerate progression
through the S phase of the cell cycle (22). Indeed, P. gingivalis
alters the expression and activity of a number of proteins involved
in cell cycle regulation, including several cyclins and cyclin-de-
pendent kinases (22). Furthermore, P. gingivalis infection differ-
entially regulates the expression of a large percentage of epithelial
cell genes and pathways (23), indicating a broadly based subver-
sion of host cell signal transduction and physiological status.

The Wnt/�-catenin pathway is a conserved signaling circuit
that plays a role in cell growth, differentiation, and survival (24).
In the absence of Wnt ligands, �-catenin is maintained in a de-
struction complex and targeted for proteasomal degradation. The
destruction complex is comprised of scaffold proteins, including
tumor suppressor adenomatous polyposis coli (APC) and Axin,
on which kinases, such as GSK3�, phosphorylate �-catenin
at N-terminal serine and threonine residues. Subsequently,
�-catenin is ubiquitinated and degraded by the 26S proteasome
(25). Conversely, binding of Wnt glycoproteins to Frizzled (Fzd)
receptors leads to phosphorylation of the LRP 5/6 coreceptors and
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recruitment of Axin and Dishevelled (Dvl) proteins to the
plasma membrane (24). Phosphoinactivation of GSK3� on the
serine 9 residue occurs, followed by functional disruption of
the destruction complex (26). Cytoplasmic �-catenin is stabilized
by phosphorylation of serine 552 (27) and is translocated to the
nucleus, where it binds the TCF/LEF transcription factors and
stimulates expression of Wnt/�-catenin target genes, including
Myc and cyclin D1 (28). Activated �-catenin promotes a prosur-
vival proliferative phenotype and is associated with epithelial-to-
mesenchymal transition (29). Accordingly, accumulation and nu-
clear translocation of �-catenin are observed in a number of
human cancers, including OSCC (30, 31).

Fusobacterium nucleatum, which is emerging as an important
pathogen in colorectal cancer, binds to E-cadherin and activates
�-catenin signaling with oncogenic responses (32). Although P.
gingivalis has been shown to affect a number of processes, such as
cell survival, that intersect with the Wnt/�-catenin pathway, little
is known regarding the impact of P. gingivalis cells on �-catenin
signaling. We investigated the influence of P. gingivalis on
�-catenin activation. The results indicate that P. gingivalis can
proteolytically process and activate �-catenin independent of Wnt
and suggest a novel mechanism by which P. gingivalis could con-
tribute to disruption of oral tissue homeostasis.

MATERIALS AND METHODS
Bacterial strains, eukaryotic cells, and growth conditions. The P. gingi-
valis strains used in the present study were W83, ATCC 33277 (33277),
and the �fimA (33), �rgpAB, �kgp, and �rgpAB �kgp (34, 35) isogenic
33277 mutants. Bacteria were cultured in Trypticase soy broth supple-
mented with yeast extract (1 mg/ml), hemin (5 �g/ml), and menadione (1
�g/ml). Medium was supplemented with antibiotics erythromycin (10
�g/ml), tetracycline (1 �g/ml), or chloramphenicol (20 �g/ml) as appro-
priate. Streptococcus gordonii strain DL1 was grown in Todd-Hewitt broth.
F. nucleatum strain ATCC 25586 was cultured in brain heart infusion
broth supplemented with hemin (5 �g/ml) and menadione (1 �g/ml). All
bacteria were cultured anaerobically at 37°C. Telomerase immortalized
gingival epithelial keratinocytes (TIGKs) derived from a primary gingival
epithelial cell line were maintained in DermaLife keratinocyte medium
with supplements (Lifeline Cell Technology, Carlsbad, CA) as described
previously (36). Cells between passages 10 and 20 were cultured to 80%
confluence and infected with P. gingivalis under tissue culture conditions
(5% CO2, 37°C). Where indicated, P. gingivalis was pretreated with TLCK
(N�-p-tosyl-L-lysine chloromethyl ketone; a gingipain inhibitor, 100
�M) for 2 h (37), and TIGK cells were pretreated with MG132 (a protea-
some inhibitor, 10 �M) for 2 h (38).

Antibodies, chemicals, and protease purification. All antibodies
were obtained from Cell Signaling (Danvers, MA). TLCK was obtained
from Sigma-Aldrich (St. Louis, MO). �-Catenin and MG132 were from
EMD Millipore (Billerica, MA). Wnt3a was obtained from R&D Systems
(Minneapolis, MN). RgpB was purified from P. gingivalis culture super-
natants by acetone precipitation, size-exclusion chromatography using
Sephadex G-150, and affinity chromatography on arginine-Sepharose as
described previously (37).

Western blot analysis. TIGKs were lysed with cold cell lysis buffer
containing PhosSTOP phosphatase inhibitor and protease inhibitor. Cy-
toplasmic and nuclear fractions were collected with a nuclear extract kit
(Active Motif, Carlsbad, CA) according to the manufacturer’s instruc-
tions. Proteins (20 ng) were separated by SDS–10% PAGE, blotted onto a
polyvinylidene difluoride membrane, and blocked using 5% bovine se-
rum albumin in Tris-buffered saline with 0.1% Tween 20. Blots were
reacted for 16 h with primary antibody at 4°C and 1 h with horseradish
peroxidase-conjugated secondary antibody at room temperature. The
membrane was developed using ECL detection, and densitometric analy-

ses were conducted using a ChemiDoc XRS Plus (Bio-Rad, Hercules, CA).
GAPDH (glyceraldehyde-3-phosphate dehydrogenase) was used as a
loading control.

Transfection and TCF/LEF reporter assay. TCF/LEF reporter plas-
mids (Qiagen, Valencia, CA) were transfected into TIGKs using 0.15%
Lipofectamine (Life Technologies, Grand Island, NY). At 48 h posttrans-
fection, cells were infected with P. gingivalis or mock treated. The lucifer-
ase activity was measured with the Dual-Glo luciferase assay system (Pro-
mega, Madison, WI) and normalized to the Renilla internal control.

Immunofluorescence and confocal microscopy. TIGKs on glass cov-
erslips were infected with P. gingivalis, washed twice in phosphate-buff-
ered saline, and fixed for 10 min in 4% paraformaldehyde. Permeabiliza-
tion was with 0.3% Triton X-100 for 10 min at room temperature, prior to
blocking in 10% goat serum for 1 h. �-Catenin was detected by reacting
with primary antibodies at 1:100 for 1 h, followed by fluorescein isothio-
cyanate-conjugated secondary antibody (1:200) for 1 h in the dark. Nu-
clear staining was with Hoechst 33342 (Life Technologies) at 1:2,000.
Slides were mounted with Vectashield and observed in a Leica SP8 con-
focal microscope, and z-stacks were obtained (20 layers/stack, 0.7-�m-
pore-size intervals) through the z-axis of cells (three z-stacks/coverslip).
The percent volume of �-catenin in the nucleus was calculated by using
Volocity 3D image analysis software (Perkin-Elmer, Waltham, MA).

qRT-PCR. Total RNA was isolated from P. gingivalis-infected or
mock-treated TIGKs with a Perfect Pure RNA cell kit (5Prime, Gaithers-
burg, MD) and reverse transcribed using a high-capacity cDNA reverse
transcription kit (Applied Biosystems, Grand Island, NY). TaqMan prim-
ers were obtained commercially (Applied Biosystems), and quantitative
reverse transcriptase PCR (qRT-PCR) was performed on an Applied Bio-
systems StepOne plus. mRNA levels were normalized with those of
GAPDH mRNA using the ��CT method as described previously (39).

RESULTS
P. gingivalis infection results in cleavage of �-catenin in gingi-
val epithelial cells. The stability and location of �-catenin is con-
trolled by phosphorylation of specific amino acid residues. Since
P. gingivalis expresses phosphatases that can target eukaryotic pro-
teins (9, 40), we first assessed the impact of P. gingivalis infection
on �-catenin phosphorylation status in TIGKs by Western blot-
ting. As shown in Fig. 1, infection with P. gingivalis had no signif-
icant effect on phosphorylation of the S552 residue, which en-
hances stability of �-catenin (24). However, P. gingivalis infection
at multiplicities of infection (MOIs) of 50 and 100 induced a time-
dependent partial degradation of �-catenin. Processing of
�-catenin also occurred at an MOI of 10, although to a lesser
degree than was observed at the higher MOIs, and the production
of �-catenin fragments was maximal at 30 min. We also observed
a P. gingivalis-dependent partial degradation of GSK3�, indicat-
ing disruption of the �-catenin destruction complex. GSK3� is
inactivated by phosphorylation of the S9 residue (41); however,
the level of S9 phosphorylation of GSK3� was not altered by P.
gingivalis, indicating that P. gingivalis does not modulate GSK3�
signaling to affect the status of �-catenin. To confirm that the
ability of P. gingivalis to cleave �-catenin and GSK3� was not
restricted to the 33277 lineage, TIGK cells were also infected with
strain W83. Western blotting demonstrated that W83 incited pro-
cessing of �-catenin and GSK3� to the same extent as 33277
(Fig. 2).

P. gingivalis gingipains are involved in �-catenin processing.
An increase in the proteolysis of �-catenin could be the result of
the direct action of the P. gingivalis proteinases or elevated epithe-
lial cell proteasomal degradation. To distinguish between these
possibilities, P. gingivalis was preincubated with TLCK, a gin-
gipain inhibitor, or TIGKs were preincubated with MG132, an
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inhibitor of the eukaryotic proteasome, prior to infection. West-
ern blotting (Fig. 3) showed that TLCK completely prevented
cleavage of �-catenin by P. gingivalis, whereas MG132 had no
effect on the integrity of �-catenin. Moreover, proteolytic pro-
cessing of GSK3� was also inhibited by TLCK. These data suggest
that proteolysis of �-catenin and GSK3� is a direct action of the
gingipain proteases and not a consequence of increased protea-
somal activity in the host cells. To corroborate these data, we in-
vestigated the properties of mutants of P. gingivalis deficient in
gingipain production (Fig. 4). Loss of the arginine-specific pro-
teases RgpA and RgpB caused a significant reduction in the pro-
cessing of �-catenin, while in the absence of the lysine-specific
Kgp the reduction in �-catenin proteolysis was less pronounced.
These results were also reflected in the degradation pattern of
GSK3�. In contrast, loss of the structural subunit protein of the
major fimbriae (FimA) did not impair P. gingivalis-mediated pro-
cessing of �-catenin or GSK3�. The FimA fimbriae are required
for efficient invasion of epithelial cells by P. gingivalis (33), and
hence, collectively, these data indicate that P. gingivalis can cause
breakdown of �-catenin from an extracellular location through
the action of secreted gingipains, primarily the arginine-specific
proteases. The ability of cell-free gingipains to degrade �-catenin
was corroborated with the purified RgpB. As shown in Fig. S1A in
the supplemental material, RgpB was capable of proteolysis of
�-catenin in vitro. Moreover, culture supernatant from P. gingi-
valis wild type but not from the �rgpAB �kgp mutant caused deg-
radation of �-catenin (see Fig. S1B in the supplemental material).
In silico interrogation of the amino acid sequence of human
�-catenin (GenBank accession no. CAA61107) revealed 39 argi-
nine and 26 lysine residues in a total of 781 residues; hence,

�-catenin has the potential to act as a substrate for both arginine-
and lysine-specific gingipains.

P. gingivalis induces the degradation of the �-catenin de-
struction complex. The cleavage of GSK3� by P. gingivalis
prompted us to speculate that P. gingivalis gingipain activity in-
duces degradation and disassociation of the destruction complex.
In addition to GSK3, the cytoplasmic �-catenin destruction com-
plex contains the structural proteins Axin and APC. Western blots
(Fig. 5) showed that both Axin1 and APC are degraded by P.
gingivalis, and inhibition of degradation by TLCK implicates gin-
gipains as the effectors. The loss of structural integrity of the
�-catenin destruction complex will disrupt targeting to the pro-
teasome and release �-catenin into the cytoplasmic compartment.

�-Catenin cleavage products translocate to the nucleus. Al-
though P. gingivalis cleaved �-catenin, complete degradation did
not occur. However, the phosphorylation status of �-catenin did
not change following P. gingivalis infection, and thus the question
remained as to whether the �-catenin fragments were stable and
could be translocated to the nucleus or whether they were ulti-
mately degraded by the proteasome. To address this issue, we first
prepared nuclear and cytoplasmic fractions of infected TIGKs and
probed with �-catenin antibodies by Western blotting. As shown
in Fig. 6, �-catenin fragments were identified in the nuclear frac-
tion after P. gingivalis infection, and there was also a significant
drop in the level of cytoplasmic �-catenin. To obtain further sup-
port for these results, we visualized and quantified the level of
�-catenin in the nucleus using confocal microscopy (Fig. 7). At a
low MOI, there was no significant increase in detection of
�-catenin; however, at an MOI of 100 P. gingivalis induced a sig-

FIG 1 P. gingivalis induces cleavage of �-catenin and GSK3�. TIGKs were infected with P. gingivalis 33277 at the MOIs and times indicated. Control cells (lanes
C) were not infected. Immunoblots of cell lysates were probed with the antibodies shown. Composite images are representative of four biological replicates.

FIG 2 P. gingivalis-induced cleavage of �-catenin is not strain dependent.
TIGKs were infected with P. gingivalis strain 33277 or W83 for 2 h at the MOIs
indicated. Control cells (lane C) were not infected. Immunoblots of cell lysates
were probed with the antibodies shown. Images are representative of three
biological replicates.

FIG 3 TLCK prevents cleavage of �-catenin and GSK3� by P. gingivalis. Im-
munoblots of lysates of TIGK cells infected with P. gingivalis 33277 (Pg) for 2 h
at an MOI of 100. P. gingivalis was pretreated with/without TLCK (100 �M,
gingipain inhibitor), and TIGK cells were pretreated with or without MG132
(10 �M, proteasome inhibitor). Control cells were not infected. Blots were
probed with the antibodies shown. The image is representative of three bio-
logical replicates.
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nificantly higher level of �-catenin in the nuclear area of TIGKs. In
contrast, the triple gingipain mutant of P. gingivalis at an MOI of
100 was unable to increase the amount of �-catenin in the nucleus.
Hence, P. gingivalis gingipain-processed �-catenin remains capa-
ble of recognition by the nuclear transport machinery.

P. gingivalis-processed �-catenin is functionally active. To
assess the functional consequences of �-catenin proteolytic
processing following P. gingivalis infection, we performed a pro-
moter-reporter assay using the TCF/LEF-responsive element as
the target. Figure 8 shows that P. gingivalis infection of TIGKs
induces luciferase promoter activity, indicating that P. gingivalis-
processed �-catenin remains capable of activating responsive
genes. The role of gingipains in the activation of �-catenin was
verified by the finding that the RgpA/B- and Kgp-deficient mutant
of P. gingivalis did not activate the promoter, whereas purified
RgpB was functionally active. In addition, preincubation of P.
gingivalis or RgpB with the gingipain inhibitor TLCK prevented
promoter activity. The prevalent oral organisms S. gordonii and
F. nucleatum, which do not produce gingipains, did not activate
the �-catenin-responsive reporter (Fig. 8), indicating specific-
ity of this response for P. gingivalis.

P. gingivalis does not increase Wnt levels. To ensure that
activation of �-catenin by P. gingivalis is not the result of indepen-
dent upregulation of Wnt, we tested mRNA and protein levels of
Wnt3a in TIGK cells (Fig. 9). No increase in expression of Wnt3a
protein or mRNA was observed following P. gingivalis infection.
Rather, P. gingivalis modestly suppressed expression of Wnt3a
over a 15- to 120-min time period. Collectively, therefore, our
results indicate that proteolytic processing of �-catenin, along
with disassociation of the destruction complex, allows the release
of �-catenin fragments and recognition by the nuclear transloca-
tion machinery. Within the nucleus, the processed �-catenin re-

mains functionally active, and transcription of �-catenin-respon-
sive genes will ensue.

DISCUSSION

The results of the present study suggest a novel noncanonical
mechanism of �-catenin activation by proteolytic processing. We
show that infection of epithelial cells with P. gingivalis does not
significantly impact the phosphorylation status of �-catenin but
rather results in its cleavage. The proteolytically processed
products of �-catenin are translocated into the nucleus, where
they can activate the TCF/LEF promoter element. Although ma-
nipulation of Wnt/�-catenin signaling by pathogenic bacteria has
been established previously, the mechanisms identified thus far do
not involve direct action on the stability of �-catenin. For exam-
ple, Salmonella strains can impair �-catenin signaling by causing
an upregulation of GSK3�-dependent phosphorylation with con-

FIG 6 P. gingivalis induces nuclear translocation of �-catenin. (A) TIGK cells
pretreated with/without Wnt3a (100 ng/ml, a positive control for nuclear
translocation of �-catenin) for 2 h were infected with P. gingivalis 33277 at an
MOI of 100 for 2 h. Control cells were not infected. Nuclear and cytoplasmic
fractions were prepared and immunoblotted with the antibodies indicated.
Fibrillarin is a control for nuclear fraction loading and MEK1 is a control for
cytoplasmic fraction loading (74, 75). (B) Quantitative scanning densitometry
of the images in panel A. The data are representative of three biological repli-
cates.

FIG 4 Mutation of the gingipain genes reduces P. gingivalis-induced processing of �-catenin and GSK3�. Immunoblots of lysates of TIGK cells infected with P.
gingivalis 33277 or isogenic mutants for 2 h at the MOIs indicated are shown. Control cells (lane C) were not infected. Blots were probed with the antibodies
shown. Composite images (the �fimA mutant results are from a different blot) are representative of three biological replicates.

FIG 5 P. gingivalis infection causes loss of APC and Axin1. Immunoblots of
lysates of TIGK cells infected with P. gingivalis 33277 for 2 h at the MOIs
indicated are shown. P. gingivalis was treated with or without TLCK (100 �M)
for 2 h. Control cells (lanes C) were not infected. Blots were probed with the
antibodies shown. The composite image is representative of three biological
replicates.

Zhou et al.

3198 iai.asm.org August 2015 Volume 83 Number 8Infection and Immunity

http://iai.asm.org


sequent increased proteasomal degradation (42). Interestingly,
Salmonella strains expressing AvrA can activate �-catenin, as the
deubiquitinase activity of AvrA prevents ubiquitination and deg-
radation (43, 44). �-Catenin activation is also antagonized by the
edema toxin of Bacillus anthracis, which prevents the Wnt-depen-
dent phosphoinactivation of GSK3� (45), and by the Clostridium
difficile toxin A (TcdA) through the inactivation of Rho GTPases
(46).

In addition to the hierarchical system of posttranslational
modifications that regulate �-catenin, localization and activity
can also be controlled by proteolytic activity in the cell. Matrilysin
(MMP-7) has been demonstrated to release �-catenin from the
cell membrane, after which the �-catenin is degraded in the cyto-
sol. However, in the presence of a �-catenin-stabilizing Wnt sig-
nal, �-catenin can be translocated in active form to the nucleus
(47). P. gingivalis is an asaccharolytic organism and requires the
action of proteolytic enzymes to provide nutritional substrates.
The arginine-specific gingipains RgpA and RgpB and the lysine-
specific gingipain Kgp are secreted by the organism and are the
predominant extracellular proteinases of P. gingivalis (11). Gin-
gipains can also enter host epithelial cells, both from the extracel-

lular milieu and packaged in outer membrane vesicles (48, 49).
The observations with gingipain mutants of P. gingivalis suggest
that the RgpA/B gingipains are more potent than Kgp at process-
ing of �-catenin by P. gingivalis, although the presence of all three
enzymes was required for maximal �-catenin breakdown. Al-
though care should be exercised in the interpretation of data from
gingipain mutant experiments, since the enzymes are involved in
the processing of a number of cell surface proteins of P. gingivalis,
the finding that TLCK, a broad-spectrum inhibitor of gingipains,
also reduced the level of �-catenin degradation lends support to
the central role of RgpA/B. In addition to activation of �-catenin
signaling, gingipains potentially play a multimodal role in the dis-
ruption of cellular and inflammatory homeostasis. In established
OSCC cell lines, P. gingivalis gingipains activate PAR2 and PAR4,
leading to the phosphorylation of I�B, the nuclear translocation of
NF-�B, and increased production of proMMP9 (50, 51). In addi-
tion, gingipains can cleave proMMP9, generating the mature ac-
tive enzyme (52), which is important for cancer cell invasion and
metastasis. Gingipains can also proteolytically process proteins on
the epithelial cell surface, causing release and redistribution, with
consequent effects on signal transduction and inflammatory re-

FIG 7 Immunofluorescent staining of nuclear �-catenin. TIGK cells were left uninfected (A and B), were infected with P. gingivalis 33277 (WT) at an MOI of 10 (C
and D) or 100 (E and F), or were infected with P. gingivalis �rgpAB �kgp at an MOI of 100 (G and H) for 2 h. The cells were fixed, stained with Hoechst 33342,
and probed with �-catenin antibodies. Panels A, C, E, and G show images of �-catenin (green), and panels B, D, F, and H show merged images of �-catenin
(green) and nuclei (blue). Cells were imaged at magnification �63 and are shown as representative confocal projections. (I) Quantitative analysis of confocal
image stacks showing �-catenin in the nuclear area of TIGK cells infected with P. gingivalis WT or �rgpAB �kgp strains at the MOIs and times shown or left
uninfected (column C). The data are means, and error bars indicate standard deviations (n � 100 cells analyzed under each condition; ***, P 	 0.005 by ANOVA
with Tukey multiple-comparison test). The data are representative of three biological replicates.
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sponses (53, 54). Intracellularly, P. gingivalis gingipains can de-
grade mammalian target of rapamycin (mTOR), thus disrupting
the mTOR pathway which regulates the cytoskeleton, as well as
cleave �-actin directly (55, 56). In trophoblasts, gingipains can
degrade P53 and the E3 ubiquitin protein ligase homolog protein
(MDM2) and modulate the activity of multiple signaling path-
ways, resulting in both cell cycle arrest and cell death (57). The
capacity of gingipains to regulate the expression of inflammatory
mediators at the mRNA level has also been demonstrated. In gin-
gival fibroblasts, gingipains increase TGF� gene expression, while
suppressing the expression of CXCL8 (58).

P. gingivalis is a host-adapted organism that occupies several
microenvironments in the oral cavity, including the subgingival
biofilm on the root surfaces of the teeth, and the crevicular fluid, as
well as in and on the epithelial cells that line the gingival crevice.
Several distinct lineages can be recovered in vivo, which can vary in
a number of properties, including fimbriation state and capsule
production. Strain 33277 is fimbriated, but it does not produce a
discrete capsule, whereas strain W83 is afimbriate but encapsu-
lated (59, 60). 33277 and W83 showed similar activities, a finding

consistent with a role for proteases in �-catenin processing. In-
deed, clinical isolates of P. gingivalis are generally strongly proteo-
lytic (61); hence, the ability to activate �-catenin may be widely
conserved in the species. Furthermore, as gingipains are secreted,
the organism does not require a close association with epithelial
cells to impact �-catenin signaling. This concept is supported by
the result with the FimA-deficient mutant, which, while unable to
instigate fimbrial attachment and intracellular invasion, was as
effective as 33277 in the cleavage of �-catenin.

Purified lipopolysaccharide (LPS) from P. gingivalis has been
shown to both increase the phosphoinactivation of GSK3� and
attenuate �-catenin activity in human stem cells from the apical
papilla (62) and activate �-catenin through decreasing phospho-
inactivation of GSK3� in rat bone marrow mesenchymal cells
(63). In addition, P. gingivalis LPS can inhibit osteoblast differen-
tiation by promoting the expression of Notch target genes and
suppressing canonical Wnt/�-catenin signaling through GSK3�
(64). In gingival epithelial cells challenged with whole cells of P.
gingivalis we did not observe an effect on GSK3� phosphorylation.
However, processing of GSK3� occurred, which was also depen-
dent on the activity of the P. gingivalis gingipains. Although
GSK3� partial degradation products can remain catalytically ac-
tive (65), we postulate that GSK3� proteolysis negatively affected
the integrity of the destruction complex. This notion was sup-
ported by the finding that P. gingivalis caused degradation of the
scaffolding proteins Axin1 and APC. Disassociation of the de-
struction complex will divert �-catenin from the proteasomal
pathway and allow access to the nuclear translocation machinery.

�-Catenin controls the expression of a number of genes in-
volved in cell proliferation (Myc and cyclin D1) and migration

FIG 8 P. gingivalis gingipains upregulate the activity of a �-catenin-respon-
sive promoter. TIGKs were transiently transfected with the TCF/LEF promot-
er-luciferase reporter plasmid or a constitutively expressing Renilla luciferase
reporter. The TCF/LEF luciferase activity was normalized to the level of Renilla
luciferase. (A) Transfected cells were infected with P. gingivalis 33277 at the
MOIs and times indicated or were left uninfected (column C). (B) Transfected
cells were infected for 1 h at an MOI of 100 with P. gingivalis 33277 with or
without pretreatment with TLCK (100 �M, 2 h), P. gingivalis �rgpAB �kgp, S.
gordonii, or F. nucleatum strains. (C) Transfected cells were reacted with puri-
fied RgpB, with or without TLCK (100 �M), at the concentration indicated for
1 h. Control cells received no exogenous protein. The data are means, and error
bars indicate the standard deviations (n � 3; *, P 	 0.01; **, P 	 0.005; ***,
P 	 0.001 by ANOVA with Tukey multiple-comparison test). The data are
representative of three biological replicates.

FIG 9 P. gingivalis infection downregulates Wnt3a. TIGK cells were infected
with P. gingivalis 33277 at an MOI of 100 for the times indicated. (A) Wnt3a
mRNA levels were measured by qRT-PCR. The data were normalized to
GAPDH mRNA and are expressed relative to noninfected controls (column
C). The results are means, and error bars indicate standard deviations (n � 3;
**, P 	 0.005; ***, P 	 0.001 by ANOVA with Tukey multiple-comparison
test). The data are representative of three biological replicates. (B) Western
blot of cell lysates probed with Wnt3a or GAPDH antibodies. The image is
representative of three biological replicates.
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(MMP-7) (66). Aberrant �-catenin signaling is associated with the
development of malignancies, including OSCC (67–69), and
�-catenin activation and nuclear localization are correlated with
progression of the severity of OSCC (70, 71). P. gingivalis is a
dysbiotic organism that is becoming increasingly associated with
cancer, pancreatic cancer and OSCC in particular (18, 19). P. gin-
givalis can be recovered from OSCC surfaces in significantly
higher numbers than from contiguous healthy mucosa (72) and
detected by immunohistochemistry in gingival carcinomas (73).
Hence, the results of the present study suggest that noncanonical
activation of �-catenin signaling by P. gingivalis may be a potential
mechanism by which P. gingivalis could contribute to tumorigen-
esis.

The P. gingivalis-epithelial cell interface is dynamic and multi-
dimensional, and the properties of infected cells will reflect the
collective output of the interaction between host signaling path-
ways and a number of bioactive P. gingivalis molecules, including
fimbriae, LPS, and phosphatases, as well as proteases. In the pres-
ent study we demonstrate that the gingipain proteases can proteo-
lytically process �-catenin and GSK3� in gingival epithelial cells.
Processed �-catenin can enter the nucleus and activate the TCF/
LEF promoter element. Further characterization of the role of
noncanonical activation of �-catenin may provide novel insights
into the pathogenesis of local and systemic diseases associated
with P. gingivalis.
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