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ABSTRACT

With the rising prevalence of obesity, hedonic eating has become an important theme in obesity research. Hedonic eating is thought to be

that driven by the reward of food consumption and not metabolic need, and this has focused attention on the brain reward system and how its

dysregulation may cause overeating and obesity. Here, we begin by examining the brain reward system and the evidence for its dysregulation

in human obesity. We then consider the issue of how individuals are able to control their hedonic eating in the present obesogenic

environment and compare 2 contrasting perspectives on the control of hedonic eating, specifically, enhanced control of intake via higher

cognitive control and loss of control over intake as captured by the food addiction model. We conclude by considering what these perspectives

offer in terms of directions for future research and for potential interventions to improve control over food intake at the population and

the individual levels. Adv Nutr 2015;6:474–86.
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Introduction
Obesity is a serious global public health concern (1) with
1.46 billion adults and 170 million children categorized as
obese (2). In the United States 1 in 3 adults and 1 in 5 chil-
dren are estimated to be obese (3). Obesity prevention and
treatment are important public health priorities in many in-
dustrialized nations. Unfortunately, thus far the results from
controlled clinical trials in this area are disappointing, and
macroenvironmental approaches (e.g., taxing or subsidizing
certain foods, modifying access to foods) for improving di-
etary choices or weight status remain contentious (4).

Important changes in the food environment in recent
decades have played a major role in this rising prevalence of
obesity (1). A key one is the easy availability of relatively inex-
pensive, highly palatable, energy-dense foods with little antic-
ipated risk of food scarcity (although not for all individuals).
Further, these environments are rich in cues targeted at pro-
moting food intake, for example, advertisements (5). Such
cues can induce overeating during periods of hunger by am-
plifying the salience of food rewards (6), and they retain this
motivational power even in the absence of hunger (7). In such
environments in which maintaining the homeostatic goals of
energy and nutrient balance do not present a challenge, over-
consumption is thought to be driven by a more hedonic form
of eating (8).

The term hedonic eating refers to intake driven not by
metabolic need but by the reward experienced by consuming
the food, particularly relevant for highly palatable energy-
dense foods (9). We use the term here as a useful shorthand
to describe this kind of food intake but acknowledge three
caveats. First, food is a primary reward, and there are hedonic
aspects to food intake in general. Second, hedonics is only one
aspect of reward (see next section) and is important to con-
sider the motivational and learning aspects of reward, which
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are more relevant to environmental cues. Third, when we
consider intake in excess of homeostatic need (more precisely
intake beyond the limits of the homeostatic system’s ability to
maintain balance over time without storing excess energy),
the term hedonic eating seems to capture both this excess
and its putative drivers, namely the rewarding aspects of
food consumption.

However, despite an overall rightward shift, a normal var-
iability remains in body weight to suggest that individuals
vary in their susceptibility to overconsumption. Although
this is likely mediated by multiple genetic and environmental
factors (10), including the degree of and susceptibility to ex-
posure to these environments, these factors ultimately affect
the extent to which the individual is able to control his or her
food intake. Over the past 2 decades interest has increased in
how alterations in food reward processing in the brain relate
to overeating and obesity (6). In this review we focus on the
brain reward system and its role in the control of food intake.
We begin with an overview of the system, which have been
elegantly characterized through animal studies, and then ex-
amine the human functional neuroimaging studies of these
systems in the context of obesity. After this we consider 2 dif-
ferent perspectives on the control of food intake: the first ex-
amines cognitive control of food intake and the second, loss
of control over intake in a specific model of dysregulated eat-
ing, namely food addiction (FOA)10. Finally, we consider what
research directions these perspectives suggest for the field and
for the development of potential treatment interventions.

Brain Systems Controlling Food Intake and
Eating Behavior
The brain’s reward and homeostatic systems are often con-
sidered separately when examining their roles in food intake
and eating behavior. However, these systems are not struc-
turally or functionally separate, so they are described to-
gether here.

The homeostatic system responsible for regulation of
energy balance is centered in the hypothalamus which in-
tegrates neural and nutrient signals with hormonal signals
that originate in the small intestine, pancreas, liver, adipose
tissue, and brainstem (11). Two neuronal populations are
critical in the arcuate nucleus of the hypothalamus: the orex-
igenic agouti related peptide (AGRP)/neuropeptide Y neu-
rons and the anorexigenic pro-opimelanocortin neurons.
The organization of the circuit safeguards consumption as
the preferred behavior, and destruction of the AGRP neu-
rons in adult animals results in cessation of eating and death
(11–13). Note however that animals can survive early life ab-
lation of these neurons, and even adult animals if kept alive
for a period can recover from such lesions (14). In close
proximity to the hypothalamus are critical nodes of the

reward circuitry centered on the ventral striatum (VS): the
nucleus accumbens (NAcc), ventral pallidum (VP), and
the ventral tegmental area (VTA). Both the hypothalamus
and VS receive inputs from the prefrontal (PFC) and orbito-
frontal cortex (OFC) (15), the amygdala, and the hippocam-
pus. The VS also receives inputs from the anterior cingulate
cortex and a large dopaminergic projection from the
midbrain (16).

Berridge and Kringelbach (17) describe three components
of reward, liking, wanting, and learning, that are linked but
yet dissociable in terms of their neural substrates. Liking and
wanting, respectively, refer to the hedonic impact of and the
motivation for a reward, and we focus on these 2 components
here. Learning comprises the associations with and predictions
about rewards. The animal literature implicates opioid and
cannabinoid systems in hedonic experience and dopamine
in the wanting and learning components (18). Distinct he-
donic hotspots have been identified in the reward circuitry,
sites where stimulation causes the amplification of hedonic
liking reactions (19). In the rodent brain, such hotspots
were identified in the NAcc, the VP, and the parabrachial nu-
cleus of the pons. In the medial shell of the NAcc is an opioid
hotspot, and stimulation here with opioid agonists produces
vigorous enhancement of liking reactions to a sweet taste
(20, 21). Interestingly, in the rest of the medial shell, opioi-
dergic stimulation amplifies wanting without enhancing
liking. An endocannabinoid hotspot that overlaps this opi-
oid hotspot was also identified (22). Another opioid hotspot
was identified in the posterior VP (23) which forms a bidi-
rectional circuit with the NAcc hotspot to generate liking
reactions (24). The VP hotspot appears to be the most cru-
cial because only its destruction leads to the loss of liking re-
actions and their conversion to disliking reactions (6). For
wanting, the mesolimbic dopamine system is the key neural
substrate. Dopaminergic or electrical stimulation in this re-
gion enhances wanting and motivational responding with
increased food consumption but with no enhancement of
liking reactions (25, 26). Sensitization of this system (e.g.,
by drugs of abuse) leads to enhanced wanting that can occur
in the absence of liking, even without declarative awareness
(27). Indeed, wanting can occur even when the hedonic ex-
perience is aversive; electrical stimulation in the lateral hy-
pothalamus causes increased intake alongside disliking
reactions to sucrose in rats (28).

As mentioned before, these systems are not separate. The
lateral hypothalamic area (LHA) is thought to integrate ho-
meostatic and reward-related information (29) and through
its projections, to modulate the VTA and brainstem nuclei
such as the nucleus tractus solitarius, critical in the modula-
tion of gut signals and satiety signaling (11). Another impor-
tant link is the endocannabinoid system. CB1 receptors in the
hypothalamus mediate the activity of the arcuate nucleus of
the hypothalamus and LHA neurons that project to the nu-
cleus accumbens (30, 31). Both systems are also modulated
by hormonal signals from the circulation. Leptin and insulin
modulate the activity of the AGRP and pro-opimelanocortin
neurons, serving as adiposity-negative feedback signals. Low
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concentrations signal lower peripheral energy stores and pro-
mote food consumption, with leptin having a much larger ef-
fect (11). The gastric peptide ghrelin serves as a hunger signal
at the hypothalamus and brainstem (32, 33), whereas gut
peptides such as cholecystokinin, glucagon-like peptide-1,
and peptide YY, serve as satiation signals (34, 35). These sig-
nals also act on the reward circuitry, either directly or via pro-
jections from the hypothalamus and brainstem nuclei such as
the nucleus tractus solitarius. Leptin LepRb neurons from the
LHA project to the VTA and NAcc (36). These projections
seem to inhibit VTA neurons and increase levels of tyrosine
hydroxylase and dopamine in the NAcc (37), allowing leptin
to modulate the incentive salience of food. Leptin-deficient
individuals show intense drives for food, with strong striatal
activation (using fMRI) that is unaffected by food consump-
tion. Leptin replacement restores the normal pattern of
activation and normalizes eating behavior (38). Glucagon-
like peptide-1 concentrations were shown to correlate with
increased blood flow in the dorsolateral PFC (dlPFC), sug-
gesting an enhancement of inhibitory control with satiation
(39). Experimentally replicating physiologic concentrations
of PYY3–36 produces activation in the left caudolateral OFC,
and this predicts subsequent food consumption (40). Ghrelin
was shown to directly potentiate the VTA in animal models
(41), and in humans supraphysiologic concentrations of ghre-
lin increase the neural response to food pictures compared with
nonfood pictures in the amygdala, OFC, insula, and striatum
(42). Finally, corticotropin-releasing factor and glucorticoids
play important roles in both systems, in their development
(43) and in mediating stress-related responses (6), but also
by affecting peripheral endocannabinoid signaling (44).

The aim here was to emphasize the connectedness of the
homeostatic and hedonic circuitry. Perhaps the most elegant
demonstration of this comes from the animal studies of salt
depletion-induced salt appetite. In this state, both the palat-
ability (45) and the neural coding of a normally aversive
salty taste in the VP (46) change to resemble the normal re-
sponse to an appetitive sweet taste. In addition, a cue that
previously signaled the aversive salty taste acquires motiva-
tional salience and is able to elicit the anticipatory behavior
previously elicited by the cue for the sweet taste (47), despite
having never been experienced in the salt-depleted state. Al-
terations in homeostatic state change reward processing and
behavior. A final point to emphasize is that the homeostatic
system safeguards food intake but is sensitive to satiation.
However, liking and wanting are go systems and, although
the go signaling may attenuate with satiation, it does not
switch to a stop state (6); that is, satiation may decrease lik-
ing for the food but does not make it aversive (48, 49)

Studying Reward Systems in Human Obesity
Over the past 2 decades functional neuroimaging has en-
abled the study of the reward circuit in humans and how
perturbations in these systems may occur in or lead to obe-
sity. The techniques used have been fMRI and, to a much
lesser extent, positron emission tomography (PET). PET
imaging uses radioactive tracers that include ligands for

specific receptors to examine regional blood flow and recep-
tor densities in the brain. fMRI relies on the changes in mag-
netic field that accompany blood flow changes in the brain
by using the blood oxygen level dependent response. By us-
ing cognitive or sensory tasks (e.g., tasting liquid rewards in
the scanner) targeted at specific processes, it is possible to
delineate the functional neuroanatomy of the circuits in-
volved in implementing those processes. This has mainly
been with fMRI which is noninvasive and has relatively
high spatiotemporal resolution but not of a level that allows
examination of specific hypothalamic nuclei or neuronal
subpopulations within a structure, which is an important
limitation in this area (50). The design principles and as-
sumptions of these fMRI experiments are shown in Table
1. The points made are not meant to detract from the find-
ings of neuroimaging experiments but to advocate caution
in their interpretation. Functional neuroimaging is an ex-
tremely useful tool that has great value in examining the
brain mechanisms and in evaluating different models of
brain function. What is measured in the scanner may not
necessarily reflect what happens in the normal free-living
state, for example, patterns of brain activation during peel-
ing an apple were different when subjects did this inside the
MRI scanner compared with when they did it outside the
scanner (51). However, a more appropriate evaluation of
the ecologic validity of fMRI findings is to establish their re-
lations with other measures or with outcomes in the real
world, that is, as explanatory or predictive variables.

Two broad approaches have been used in this field. The
first has sought to identify a perturbation(s) in reward re-
sponse that occurs in obese individuals but not in control
participants, suggesting that the perturbed process may be
relevant to obesity (as a cause, consequence, or correlation).
The second approach has sought to characterize the activity
of a particular part of the circuit and to examine its predic-
tive value in terms of determining future food intake or
weight gain. A third approach that may well become more
prominent in the coming years is from neuroeconomics
and food-related decision-making field (see next section).
Relatively little work has been done in obese populations
in this area, but this will no doubt happen shortly.

Presentation of food rewards as pictures (52), tastes (53),
or smells (54) produces increased brain activation in the
VS, caudate, putamen, and OFC. Not unexpectedly other
rewards such as drugs (55), sex (56, 57), music (58), and
money (59) produce similar responses. Studies have shown
differential activation to food pictures in obese individuals
compared with lean control participants in the VS and dor-
sal striatum, midbrain, OFC, and medial and lateral PFC
(52, 60–64). The issue is not with the individual findings
but with the lack of consistency among the different studies.
With similar (although not identical) experimental para-
digms, these studies have shown activations in different re-
gions and in different directions. The same is true for the
studies of anticipatory and consummatory food reward,
whereby the prediction (from the drug addiction literature)
was that of an enhanced anticipatory reward in obesity with
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a blunted consummatory response (53, 65–68). Although
studies have shown alterations in anticipatory or consum-
matory reward (not always in the predicted direction), there
is little consistent evidence for this specific pattern [see (69)
for a review]. Further, for most of these findings, given the
cross-sectional nature of studies, it is not possible to deter-
mine whether they are causal, correlational, or consequential.

The picture is more encouraging from the smaller group
of studies that have used the fMRI signal as a predictive
variable. Stice and colleagues (70) demonstrated that the
blunting of the striatal response to the receipt of choco-
late milkshake predicts weight gain over the subsequent
6 mo. This blunting of response was also related to polymor-
phisms of the Taq 1A allele (53) and more recently to a mul-
tilocus score of different dopamine-related genes (71).
Food cue-related activity in the NAcc was shown to relate
to subsequent snack food consumption in healthy women,
and neither of these was related to hunger or explicit want-
ing or liking for the snack. However, a relation with BMI was
only seen in women with lower self-control scores (72). Burger
and Stice (73) presented women with repeated exposures
to cues predicting imminent milkshake receipt. Subjects
with the greatest increase in VP responsivity to food reward
cues and greatest decrease in caudate response to the milk-
shake had significantly larger increases in BMI over the sub-
sequent 2 y. Indeed the decreased caudate response to
milkshake was shown to negatively correlate with BMI
(74). In adolescents greater striatal activation to food adver-
tisements was shown to correlate with weight gain over the
subsequent year (75). Collectively, these studies indicate the
potential value of fMRI as a tool to study vulnerabilities to
weight gain. They also urge caution in drawing direct links

between altered brain responses and obesity, given that
even here there seem to be other mediators such as impul-
sivity and self-control.

In summary, we have encouraging findings of reward
dysfunction in obesity, but the lack of consistency does
not allow us to make firm conclusions about its nature at
present. Although some of these inconsistencies may relate
to experimental differences, a much more important factor
is likely to be the inherent heterogeneity of the obese pheno-
type in these studies. More precise phenotypes are needed in
which specific mechanisms can be examined and also for
newer methods that can be used in experimental settings
less restrictive and more ecologically valid than the MRI
scanner.

The Control of Hedonic Food Intake: Cognitive
Control
Cognitive control is the ability to orchestrate thought and
action in accordance with internal goals (76). Despite liking
and wanting being go systems embedded in environments
where highly rewarding foods are widely available, individuals
are able to control their hedonic intake (to varying degrees) in
line with ethical motivations, religious beliefs, and health and
fitness goals. Critical here is the ability to self-regulate con-
sumption (i.e., resist immediate food rewards) to achieve/
maintain long-term goals (77).

A widely held view of food-related decision making is
that we are rational, reflective, and goal-directed decision
makers. According to neuroeconomic models this involves
first assigning goal values to all options under consideration
and then selecting the one with the highest goal value (78).
This is implemented by a set of the critical nodes in the PFC:

TABLE 1 Design aspects of functional neuroimaging studies of reward processing in obesity1

Aspect Details Considerations

Design Case-control obese cases (BMI . 30)
vs. healthy weight controls.
Some studies have also included
bulimia and BED.

Obese cases are likely to represent heterogeneous
phenotypes rather than a homogeneous case
phenotype. This is particularly relevant in
studies with typical sample sizes of 10–30.
Cross-sectional designs cannot distinguish
between causation, correlation, or consequence.

Reward processes of
interest and
experimental paradigm

Anticipatory and consummatory
reward to cues predicting, and the
actual receipt of liquid reward
delivery compared with neutral
liquid delivery.

There are 2 assumptions here:
1. A brain process that is specifically targeted

by the experimental task is clearly defined.
2. The control condition (e.g. neutral liquid) adequately

captures any other processes activated by the task,
allowing attribution of any differences to the
variable of interest. This is not always clear
(e.g., differential responses to a picture of a
burger compared with picture of a whole
raw cabbage) can be due to a high- vs.
low-calorie, appetizing vs. bland, or edible
vs. not readily edible distinction or likely
a combination of the above.

Brain responses to pictures of
rewarding foods compared
with pictures of less rewarding
foods or neutral images.

Outcome measure Differential brain response to the test
condition compared with the control
condition, and how this differs between
the control and obese groups

The outcome measure depends on the
above factors and assumptions.

1 BED, binge eating disorder.
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the OFC integrates internal state information with the sen-
sory and reward aspects of foods, the dlPFC codes longer-
term attributes such as health and the expected taste reward
from the foods, and the ventromedial PFC computes the
goal values from these inputs (79, 80) and sends this output
to effector circuits (such as the motor cortex) that imple-
ment the decision. The dlPFC is also a key area for executive
functions, for example, inhibitory control, working mem-
ory, cognitive flexibility, and planning (81–83). Inhibitory
control is closely related to the personality trait of impulsiv-
ity, defined as behavior characterized by poor planning, pre-
mature actions, that may be risky or inappropriate to the
context, without due consideration of the (often undesir-
able) consequences (84). As Dalley et al. (84) have astutely
pointed out, this encompasses multiple components: acting
without due consideration of the available evidence (reflec-
tion impulsivity), failing to inhibit actions (impulsive ac-
tion), accepting smaller immediate rewards over larger
delayed rewards (impulsive choice/delay discounting), and
behavior that puts the individual at risk of harm. Although
there are different perspectives on how these functions and
their elements are conceptualized (85), in considering cogni-
tive control of food intake, we can think of the interplay
between executive control and impulsivity as a core aspect of
self-regulation, with executive control keeping longer-term
goals and consequences in mind and reining in the tendency
to impulsive choice and actions.

Inhibitory control and trait impulsivity are the most
studied areas in the human literature. By using question-
naire measures of trait impulsivity or laboratory measures
such as the stop-signal reaction task, it has been shown
that obese adults and children have higher impulsivity (86
87), and this relates to greater intake, weight gain, and
poorer response to weight reduction treatments (88–90).
Obese individuals show steeper delay discounting, even
with monetary rewards (91). A recent systematic review of
executive function studies in obese adults found overall an
executive impairment, but the variability in the measures
used did not permit the determination of a consistent pat-
tern (92). A systematic review of studies in children and ad-
olescents is more compelling. Once again, there is the issue
of the variability of measures used, but inhibitory control in
particular emerges as a strong factor. Two points are partic-
ularly striking. First, impairments in executive function are
seen in obese children from a young age. Second, poorer ex-
ecutive function is related to BMI later in childhood and
adolescence. Better inhibitory control (particularly from
a young age) seems to protect individuals from future weight
gain. Studies of self-regulation and the ability to delay grat-
ification in young children have shown that better perfor-
mance on these measures is predictive of lower subsequent
weight gain in adolescence and adulthood (93–95). Further,
the degree to which an individual is able to develop this ca-
pacity can determine their ability to lose weight and more
critically maintain weight loss. Obese individuals show
lower levels of dlPFC activation in response to food (96,
97) and higher levels of disinhibited eating (98). However,

formerly obese individuals who successfully maintain their
weight loss show greater dlPFC activation in response to
food (99, 100), lower levels of disinhibited eating, and
greater dietary restraint (101–104), suggesting that these
mechanisms can be successfully learned.

Do these cognitive impairments cause obesity or vice
versa? This is unlikely to be straightforward, given the mul-
tiple mechanisms involved in the development of obesity.
However, these may be interacting mechanisms (i.e., poorer
inhibitory control causes overeating) which worsens the
cognitive impairment (105). The determinants of these
mechanisms likely extend into the prenatal period. Feeding
rat mothers a diet rich in fatty, sugary, and salty snacks dur-
ing pregnancy and lactation enhances the preference for
junk food and increases the propensity for obesity in the off-
spring (106). Extensive animal work shows the deleterious
effect of overeating, particularly of high-fat and -carbohydrate
foods, on brain structure and function [for a review see (107)].
Of particular note is the finding that rats fed a Western diet
exhibited cognitive impairments even before developing
substantial excess body weight gain (108). Less direct evi-
dence comes from the human studies that show an associa-
tion between obesity and decreased brain volume (109, 110)
and the association between obesity and later life cognitive
decline and dementias (111).

Although there is strong focus on goal-directed decision
making in food choice and intake, given that we make sev-
eral food-related decisions everyday [as many as 200–250 by
some estimates (112)], it is extremely unlikely that every
single decision is a considered goal-directed one. In fact, it is
likely that many of these decisions are more habitual, driven
by internal (e.g., hunger, stress) and external (e.g., advertise-
ments, foods) cues without much deliberation (80, 113).
This is certainly a more rapid and efficient way to make
these decisions but a less flexible one [although it is possible
that cognitive control mechanisms can be triggered uncon-
sciously (114, 115)]. We emphasize this point because these
cognitive control mechanisms may, to some extent, be en-
during personality traits and cognitive styles that endow in-
dividuals with varying degrees of control over their habitual
choices and intake, thus determining their weight trajecto-
ries perhaps even from early childhood. However, they can
also be successfully learned as demonstrated by formerly
obese individuals who maintain their weight loss.

Loss of Control over Hedonic Food Intake: FOA
At perhaps the other extreme from using strong cognitive
control for weight loss and maintenance is the idea of
FOA, inherent in which is loss of control over intake. Two
ideas in the literature are key as to what FOA is (70, 116).
The first is that certain foods, specifically highly palatable
foods rich in fat and sugar, are addictive and like drugs of
abuse activate brain reward systems and induce patterns of
overeating that resemble drug addiction. The second is
that certain individuals (with obesity) show a pattern of
food-related behavior characterized by loss of control over
intake and compulsive consumption despite adverse

478 Ziauddeen et al.



consequences, which strongly resembles the behavioral syn-
drome of drug addiction. We shall consider both of these in
turn but emphasize that they are not mutually exclusive.

Can certain foods be potentially addictive? Rats allowed
intermittent access to high-sugar and high-fat foods develop
escalating, binge-like eating (117, 118). Enforced abstinence
from sugar and administration of the opioid antagonist nal-
oxone results in a withdrawal syndrome with a behavioral
(enhanced anxiety, teeth chattering, forepaw tremor, and
head shakes) (119) and neural profile (low levels of dopamine
and high levels of acetylcholine in NAcc) similar to that seen
in drug withdrawal (119, 120). This is not seen in animal
models of intermittent access to fat (118). Importantly, these
animals do not become obese (121) because their daily intake
remains unchanged, but a larger proportion of it occurs dur-
ing the intermittent access period (117, 118). However, when
fat and sugar are combined in cafeteria diets with foods such
as bacon and cheesecake, animals increase their intake and
gain weight (122–124). Their eating becomes compulsive,
and they continue to seek food despite aversive consequences
such as electric foot shock (122–124).

What neural mechanisms underlie these changes? In
animals binging on high sugar and fat, even those who are
sham fed (food is consumed orally but is removed immedi-
ately via a gastric cannula), the enhanced dopamine release
in the NAcc that occurs with food exposure fails to habituate
with loss of novelty (125–127). Animals on cafeteria diets
show reductions in presynaptic dopamine and, although pal-
atable foods still produce a dopamine response, the response
to standard chow is blunted (128). In the sugar-binging and
the cafeteria diet animals, striatal dopamine D2 receptor values
fall (119, 122). In the latter animals, brain self-stimulation
thresholds (the minimum intensity of electrical stimulation in
the lateral hypothalamus that will maintain self-administration
of the stimulation by the animal) increase and remain el-
evated 2 weeks after cessation of the diet. This indicates early
and persistent alteration of reward thresholds (122), suggestive
of the development of a reward deficiency state similar to drug
addiction (129). The overall picture shows strong similarities
to animal models of drug addiction. An important conceptual
issue to consider is that, although these changes occur in areas
implicated in drug addiction, in drug addiction they are
thought to represent a hijacking of the food reward circuitry
by drugs of abuse, so it is not surprising to see similar areas
here. However, Carelli et al. (130, 131) have shown that dis-
tinct populations within the accumbens respond to food and
drug rewards, but we do not have sufficient spatial resolution
to detect these subpopulations with human neuroimaging.

The animal literature presents compelling proof of con-
cept for the FOA model with the combination of high fat
and sugar producing the most striking phenotype. This is
important but unfortunately does not help us identify a pu-
tative agent which becomes an important issue as we move
on to consider the human literature on FOAwhich is mainly
based on the behavioral syndrome of FOA (132). This is
modeled on the criteria for substance dependence from
the Diagnostic and Statistical Manual of Mental Disorders,

Fourth Edition (DSM-IV) (136), which were translated
into equivalents for food, but this translation is not entirely
satisfactory (Table 2).

Three conceptual issues are important to consider [for a
review see (116)]. The first issue is that DSM-IV substance
dependence criteria (136) are defined as behavioral criteria
for an addictive agent, and it is difficult to apply them with-
out such an agent. The FOA literature considers hyperpalat-
able and/or highly processed foods to be key (137–139),
although these are not an explicit part of the criteria. To re-
fine this model and to develop interventions that are based
on it, a more precise definition of the addictive agent(s) will
be necessary to be able to say what composition of a com-
mon food, such as cheesecake, would make it hyperpalatable
and addictive. The second issue is that, although these clin-
ical criteria are behavioral, they have been validated by a
large body of neuroscientific research that has examined
their neural underpinnings, and this broader understanding
is part of the clinical syndrome; that is, both the syndrome
and the term addiction imply a specific set of underlying
neural mechanisms. Behaviors that look like addiction
would suggest, but do not on their own confirm, the possi-
bility of an addiction syndrome (i.e., anatine morphology
alone does not confirm anatine identity). We emphasize
this because FOA does derive some legitimacy from compar-
isons with this broader understanding of drug addiction.
The third issue is that drug addiction results from the com-
bination of an addictive agent, an individual with vulnerabil-
ities to drug addiction, and time. Only 15% of individuals
who use drugs develop dependence (140). This is especially
critical when the substance (food) is universally consumed
(although not necessarily in the aforementioned hyperpalat-
able forms), but some individuals may develop a FOA. This
is not easily examined in a body of work that, given the in-
fancy of the field, is almost entirely cross-sectional in design. It
is acknowledged that FOA is not a general mechanism to ex-
plain overeating and obesity, but one that may be relevant to
specific subgroups with obesity (although theoretically an indi-
vidual could be addicted to food and not, or not yet, be obese),
the strongest candidate being binge eating disorder (BED)
(141). However, the case has been made that such potentially
addictive foods present a risk to the population at large (142).

The human model of FOAwas operationalized in the now
widely used Yale Food Addiction Scale (YFAS) for adults
(139) and more recently for children (143). However, the
scale has certain limitations [Table 2; for a review see
(116)]. Without a clear addictive agent it is difficult to iden-
tify features of its consumption that discriminate use from
abuse/addiction. The scale applies severity thresholds
and an overall distress/impairment criterion to determine
whether an individual is addicted. There is also a danger of
circularity. The YFAS is designed to capture eating behaviors
that may be addiction-like, so certain aspects of its validity
hinge on the degree to which FOA is a valid model of disor-
dered eating. The potential circularity is as follows: FOA ex-
ists because certain people are defined as food addicts on the
YFAS; the YFAS is valid because it can identify FOA.
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The YFAS is nevertheless a popular research tool, and nu-
merous studies have used it to examine the prevalence of
FOA in different populations. We focus here on the studies
that have sought to validate the model and to examine its
mechanisms. Much of this work focused on an association
with BED (133, 141), which is classified as an eating disorder
in the DSM. BED is characterized by recurrent episodes
(binges) of uncontrolled, often rapid consumption of large
amounts of food, usually in isolation, even in the absence
of hunger. Eating persists despite physical discomfort, and
binges are associated with marked distress, guilt, and dis-
gust. Binges can be triggered by negative mood states that
are not necessarily ameliorated by the binge (144). Here,
we have a behavioral syndrome, more convincingly like
that of drug addiction, including loss of control of eating,
escalating consumption, and possibly consuming to amelio-
rate dysphoric and negative effects (145). It appears that
the face validity of the FOA construct is strongest when it
is applied to certain (although not all) individuals with
BED (133, 141). An important caveat is that, although
BED is associated with obesity, a substantial number of peo-
ple who show binge eating behavior are not obese, and most
obese people do not have BED (146). Three studies found

high values of comorbidity between BED and FOA as de-
fined by the YFAS as follows: 72% (141), 56.8% (133),
and 41.5% (134). The considerable overlap between FOA
and BED and also other eating disorders such as anorexia and
bulimia nervosa (147–149) raises the following important
question: is FOA a unique nosological entity?

Determining the underlying mechanisms may help
answer this question. Davis and colleagues (150) found
that participants who met YFAS criteria for FOA showed a
distinct composite genetic index of dopamine signaling, sug-
gesting that these individuals may have some degree of up-
regulation in the dopamine system, a finding complemented
by the demonstration that the genetic profile’s effect on YFAS
scores was mediated by craving, bingeing, and emotion. The
evidence most cited in support of the model however comes
from the field of neuroimaging, from PET and fMRI studies
of obese individuals. The first and most influential finding
was the demonstration of lower values of striatal D2 recep-
tors in obese individuals than in control participants, a pat-
tern similar to that seen in drug-dependent individuals
(151). This study compared severely obese individuals
(BMI > 40 kg/m2) with controls (BMI < 30 kg/m2) and there
was a considerable overlap between the groups. Since then,

TABLE 2 Comparison of the DSM-IV substance use criteria and the YFAS1

DSM-IV criteria for substance dependence YFAS equivalent Comment

Persistent desire for and unsuccessful
attempts to cut drug use.

Persistent desire for food and unsuccessful at-
tempts to cut down the amount of food eaten.

Without a clear agent or substance this
criterion requires the application of
severity and impairment thresholds to
be meaningful. The YFAS asks about
certain foods and gives examples of
energy-dense and fast foods and does
indeed apply severity and impairment
thresholds.

Larger amounts of drug are taken than intended. Larger amounts of food are eaten than intended. As above.
Substance use is continued despite knowledge
of having a persistent or recurrent physical
or psychological problem caused or
exacerbated by the drug.

Overeating is maintained despite knowledge of
adverse physical and psychological conse-
quences caused by excessive food
consumption.

As above.

Great deal of time spent on getting, using, or
recovering from using the substance.

Great deal of time is spent eating. As above. Less useful to distinguish use
from abuse or addiction for foods,
given their easy availability in most
developed societies.

Important social, occupational, or recreational
activities are given up or reduced because
of substance abuse.

Activities are given up because of overeating or
recovering from overeating.

Tolerance: increasing amounts of drug are required
to reach intoxication.

Tolerance: increased amounts of food are re-
quired to get the same pleasure or relief from
negative emotions.

Tolerance and withdrawal have not been
demonstrated for any foods. The pro-
posed equivalents are not convincing,
particularly given that in substance
dependence these relate to physio-
logic adaptations that occur with sus-
tained substance use.

Withdrawal symptoms on drug discontinuation,
including dysphoria and autonomic symptoms
(such as shakes and sweats).

Withdrawal symptoms such as anxiety, agitation,
or other physical symptoms.

Importantly, tolerance and withdrawal are
not seen with all substances and may
not be relevant to foods at all.
However, despite being poorly char-
acterized by the YFAS, these criteria are
strongly endorsed by participants in
studies that use this measure (133–
135).

1 DSM-IV, Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition; YFAS, Yale Food Addiction Scale.
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this finding has been replicated twice with different ap-
proaches (152, 153), although at least 3 studies have failed
to replicate it (154–156). The 1 study that specifically looked
at individuals with BED did not find any difference in D2
receptor binding in this group compared with non-BED
obese individuals (157). With the use of PET, Guo et al.
(158) showed that increasing BMI is related to increased D2
receptor binding in the dorsal striatum and decreased binding
in the ventromedial striatum. As already described in the func-
tional neuroimaging section, no single mechanism has been
consistently implicated in obesity, let alone an addictive one.
To date only 1 study has specifically examined people pheno-
typed with the YFAS and found that individuals with higher
FOA scores showed greater responses to anticipation of food
in the anterior cingulate cortex, OFC, and amygdala (159).
However, these findings were not entirely as predicted, and
some of these effects were driven by a decreased response
to the control taste rather than an increased response to
the food. More importantly, 46 of 48 subjects did not qualify
for a YFAS diagnosis of FOA, so the scores were treated as a
continuous variable and the sample was divided into high
and low scorers in the analyses. Interpretation of these find-
ings therefore depends on the validity of the scale and the
extent to which the scores do represent a real continuous
variable, and any conclusions must necessarily be tentative.

In summary, the animal evidence for the FOA model is
supportive. The human evidence is still preliminary, and
this may relate to the relative infancy of the field (69, 160,
161). Nevertheless, it is a compelling idea and perhaps
most importantly offers an explanation for individuals
who struggle to control their food intake and casts their dif-
ficulties in a more sympathetic light to others (162). Some
investigators have suggested recently that instead of FOA,
it may be more useful to think of an eating addiction
(163) more akin to behavioral addictions, although some
of the conceptual concerns raised in this section may apply
here too.

Toward Future Research and Treatment
Strategies
The FOA perspective. Preclinical studies may be the most
rigorous way to determine what the addictive agent/food
might be. Synthesizing the data from the growing number
of YFAS studies may help determine which criteria are
most informative and discriminatory. It may well transpire
that a precise addictive agent may not be critical and that
substance addiction is not the most appropriate human
model for FOA. Longer-term prospective studies would
help define the natural history of FOA and refine the pheno-
type. One valuable approach may be to study individuals
who score highly on the YFAS as an extreme phenotype of
FOA. Such work in extreme phenotypes could be performed
in parallel in animal models and may offer critical insights
into the syndrome and its underlying mechanisms.

What about potential interventions? If it could be estab-
lished that certain foods are addictive, this could reasonably
demand a policy response that would look at the important

issues of availability of and access to such foods, particularly
in vulnerable groups such as children (142, 164). The issue is
not that we lack evidence from other lines of health research
to justify such policies, but that there are multiple chal-
lenges, including political will, industry agreement, issues
of individual choice, and restricting access to particular
groups and individuals. However, a confirmed FOA may
change the picture because it invokes a specific model of
state responsibility as for other substances (142). At the in-
dividual level, if FOA can be validated as a clinical disorder, it
could suggest different treatment approaches for these indi-
viduals. These may include controlled consumption of or
abstinence from specific foods, psychological treatments
such as individual cognitive behavior therapy or 12-step
programs to help individuals gain control over their eating.
It is important to note that cognitive behavior therapy ap-
proaches for binge eating do not advocate avoidance or ab-
stinence as addiction treatments do, but instead they focus
on decreasing dietary restraint and enhancing the individ-
ual’s sense of control over food (165).

The cognitive control perspective. Although a lot of re-
search into the mechanisms of cognitive control have been
done, large-scale intervention trials in overeating and obe-
sity are few, though some of the preliminary evidence is
compelling (166). Given the link between impulsivity and
inhibitory control and obesity, this would be a good treat-
ment target. Another potentially valuable strategy is to cap-
italize on the shared neurocognitive links between physical
activity and eating behaviors. Habitual physical activity
and healthy diet appear to share an interactive and reinforc-
ing relation (167, 168), and physically active individuals
were observed to exercise higher cognitive restraint of appe-
tite (169). In addition, physical activity may potentially build
cognitive resources or inhibitory control to down-regulate
or reduce sensitivity to impulsive drives that underlie over-
eating (168). Aerobic fitness has been shown to correlate
with cognitive control and its neural substrates in both chil-
dren and adults (170). This hypothesis needs direct investi-
gation to demonstrate this important additional benefit of
physical activity. Finally, there is the possibility of modulat-
ing food reward via strategies based on cognitive enhance-
ment, which include a growing list of nonpharmacologic
options, such as foods/nutrients, physical activity, sleep,
and computerized training (171). A key area of further re-
search in this field is the identification of treatment targets
and the development of interventions that can be evaluated,
and this is an aspect of the field that is still at an early stage.

A particular appeal of successful cognitive control ap-
proaches is their potential to be developed as preventative
public health interventions. The data on the role of early
life inhibitory control in determining BMI strongly support
the ongoing interest in intervening in childhood. The devel-
opment of a validated treatment approach that could be in-
cluded in school curricula as a group level intervention/
training to improve inhibitory control, for example, could
have an important population-level effect over time, not
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only on weight but possibly on other health-related behav-
iors such as substance use.

Conclusions
In this concluding paragraph we return to the food environ-
ment and particularly to food-related cues, which remain a
relative constant whether we consider the addictive potential
of certain foods or the ability to exercise cognitive control
over intake. Such cues are ubiquitous, on television, street
signs, and in the media. They can motivate consumption
even in the absence of hunger and bias choices toward
them (172). Advertising fosters associations between these
cues and activities such as sport and socializing, and the rela-
tion between branding and advertising and food intake has
been demonstrated (75, 173, 174). Although we may think
of ourselves as rational arbitrators of food-related decisions,
much of our food decisions are probably habitual, established
by experience and driven by environmental cues (80, 113),
which are not in short supply. The challenge for the individ-
ual is to control his or her intake in the face of an onslaught of
such cues, and this would be particularly difficult for individ-
uals with particular neurocognitive vulnerabilities such as
poor inhibitory control. However, changing the food envi-
ronment will be a major challenge that will require a collab-
orative effort by scientists, health care workers, industry, and
lawmakers. Certainly, one appeal of the FOA idea is that, if
this were to be conclusively demonstrated, it would provide
an important and different impetus to this effort.
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