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ABSTRACT

Age-related sarcopenia, composed of myopenia (a decline in muscle mass) and dynapenia (a decline in muscle strength), can compromise

physical function, increase risk of disability, and lower quality of life in older adults. There are no available pharmaceutical treatments for this

condition, but evidence shows resistance training (RT) is a viable and relatively low-cost treatment with an exceptionally positive side effect

profile. Further evidence suggests that RT-induced increases in muscle mass, strength, and function can be enhanced by certain foods, nutrients,

or nutritional supplements. This brief review focuses on adjunctive nutritional strategies, which have a reasonable evidence base, to enhance

RT-induced gains in outcomes relevant to sarcopenia and to reducing risk of functional declines. Adv Nutr 2015;6:452–60.
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Introduction
Age-related sarcopenia begins in approximately the fifth de-
cade of life and proceeds, at a population level, at a rate
of ;0.8% annually (1). Declines in skeletal muscle strength
with sarcopenia, known as dynapenia, are more precipitous
at ;2–3% annually (2). The reduction in skeletal muscle
mass and strength with advancing age is associated with dis-
eased states including type 2 diabetes, cancer, metabolic syn-
drome (3), and reduced mobility and disability, as well as
mortality (4). Current estimates suggest that ~200 million
people worldwide will experience sarcopenia to a degree
that could affect their health over the next 4 decades (2).
Thus, the development of strategies to counteract the nega-
tive impact of sarcopenia is warranted.

Current Status of Knowledge
The mass of skeletal muscle is underpinned, to a large ex-
tent, by coordinated changes in the rates of muscle protein
synthesis (MPS)3 and muscle protein breakdown (MPB)
(5, 6). Both protein ingestion and resistance exercise are

potent stimuli for MPS; however, when combined there is
synergistic interaction between these stimuli that leads to
an accrual of skeletal muscle mass (7). There are now data
to suggest that aging is characterized by an attenuated re-
sponse of MPS (and possible MPB) to amino acid ingestion
(8) and also to exercise (9). The aim of this review is to ex-
amine how exercise and nutritional strategies can counteract
the negative impact of sarcopenia in older adults. Because of
space limitations it is not possible to discuss all areas relevant
to this topic and the interested reader is instead referred to
other informative reviews (10, 11).

Resistance Training
There are currently no viable pharmaceutical interventions
to slow progression of sarcopenia with the exception of tes-
tosterone administration (12). Resistance training (RT) is a
highly effective strategy to offset sarcopenia and it has nu-
merous beneficial “spillover” effects. The main RT-induced
outcomes relevant to this review are obvious increases in
muscle mass, strength, and functional performance in older
individuals (13–16). Resistance exercise stimulates MPS
through the mammalian (mechanistic) target of the rapa-
mycin complex 1–ribosomal protein of 70-kDa S6 kinase
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1 (mTORC1-p70S6K1) pathway (17). Over time, persistent
stimulation of this pathway via loaded contractions and
combined with adequate protein ingestion leads to lean
mass accretion. For example, in a 16-wk training trial in-
volving older adults between the ages of 65 and 75 y, RT in-
creased muscle mass by 1.5 kg and overall strength by 60%
(15). Similarly, leg lean mass increased by 3%, strength by
just over 40%, and sit-to-stand time decreased by ;20%
after a 24-wk RT program in older men and women (16).
Importantly, because type II muscle fiber atrophy and loss
predominates in sarcopenia (18), RT also resulted in in-
creased type II muscle fiber area (16). Furthermore, when
consumed in close temporal proximity to the resistance ex-
ercise session, protein can act synergistically with resistance
exercise to further heighten the MPS response (19–21). In
fact, a recent meta-analysis of randomized controlled trials
found that dietary protein supplementation during RT
(>6 wk) resulted in greater gains in lean body mass and
strength than RT alone in younger and older adults (7).
Whether age-related cell senescence may limit gain, lean
mass even with persistent RT is unclear; however, systematic
reviews indicate that the elderly >75 y of age are still capable
of hypertrophy and strength gains (22).

Contrary to belief and prescriptive guidelines for older
adults, it is not necessary to lift heavier loads in order to in-
duce muscle hypertrophy (23). Work from our laboratory
has shown similar gains in muscle mass in young adults after
12 wk of either low-load, high-repetition or high-load, low-
repetition RT (23) and recent reviews find little evidence for
a superiority of heavier weights in terms of inducing hyper-
trophy (24). In fact, a recent systematic review of RT in older
adults found that the only RT variable that influenced
outcome was the duration of the training program (25).
An important consideration for RT prescription at lower
intensities is loads that are lifted to the point of momentary
muscle failure or, more simply put, lifted with a high degree
of effort (26). Intensity, as it is usually defined in RT, is the
percentage of maximal strength or percentage of a single-
repetition maximum (1-RM); however, performance of
resistance exercise, even with lighter loads, with high effort
would also be considered/perceived to be intense. Although
muscle gains were similar, training-induced gains in muscle
strength in practiced tasks (isotonic maximal strength of ex-
ercises performed during the training regimen) were greater
in a higher-load, low-repetition group (23). However,
strength gains in an unpracticed task (isometric maximal
voluntary torque of the knee extensors tested pre- and
post-training only) were not different between groups
(23), which indicates that the differences in voluntary
strength observed were neural in nature. Similar results
have been found using low-load RT in older adults (27).
Of note, the RT protocol used in this study (27) involved
the participants completing the exercises at maximum vol-
untary velocity, putting emphasis on power (i.e., force $ ve-
locity) generating ability of the muscle. Similarly, Van Roie
and colleagues (28) compared 12 wk of high-load low repe-
titions, low-load high repetitions, and mixed low- and

moderate-load high repetitions (all sets being completed
to voluntary fatigue) and showed greater increases in
strength in the high-load and mixed low- and moderate-
load groups than those in the low-load group. However,
there were similar gains in muscle volume and knee extensor
peak torque in all groups (28), which is similar to our work
(23).

RT is effective in terms of promotion of gains or attenu-
ating loses in skeletal muscle as well as promoting gains
in strength and functional status. However, it is proposed
that RT regimens involving high load (i.e., 80% of 1-RM)
are not a requirement to achieve muscle hypertrophy,
strength gains, and/or improvements in functional perfor-
mance in older adults (29). Although recent meta-analyses
have found greater strength gains with higher-intensity (i.e.,
higher percentage of 1-RM) RT (29, 30), it is suggested that
such differences are functionally unimportant because they
did not translate into any differences in functional perfor-
mance in older adults.

Protein
Consumption of protein leading to hyperaminoacidemia
can act synergistically with resistance exercise to enhance
the MPS response (31). We also know that protein can
act independent of exercise to increase rates of MPS;
however, the ability of protein to stimulate MPS is blunted
in older adults (8). In fact, in older adults the ingestion
of 35 and 40 g of protein at rest (32) and after resistance
exercises (33), compared with 20 g in young individuals
(34), was needed to maximally stimulate MPS. Recently,
an attempt to define the protein dose, relative to body
mass, required on a per meal basis in young and older indivi-
duals was made (8). Briefly, data from 6 previously published
studies investigating dose-response effects of protein on
MPS in young and older individuals were analyzed using a
biphasic model (8). The findings from this study confirmed
different protein dose needs in young and older individuals
whereby MPS was maximally stimulated by 0.24 g of
protein $ kg21 $meal21 and 0.40 g of protein $ kg21 $meal21

in young and older individuals, respectively (8). Importantly,
the increased protein dose needed to maximally stimulate
MPS was not the result of differences in lean body mass be-
tween older and younger individuals because when expressed
relative to fat-free mass the protein dose was still greater in the
older adults: 0.60 compared with 0.25 g of protein $ kg fat-
free mass21 $meal21 (8). This evidence (8) is consistent
with protein dose-response studies that have shown an atten-
uated MPS response in the elderly to low, but not to higher,
protein doses (32). Other data show that a low dose (5 g) of
essential amino acids (EAAs) (35) was less effective than a
higher dose (15 g) of EAA (36) in stimulating MPS in the
elderly and, more importantly, that older adults achieved
rates of MPS when ingesting 15 g of EAA that were no dif-
ferent than those seen in the young individuals. In fact,
when the young individuals and elderly are compared
after ingestion of beef (30 g of protein) a similar result
was observed (37, 38), which is consistent with the protein
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dose-response of the elderly with beef ingestion (39). Thus,
the “anabolic resistance” of MPS to protein feeding seen in
older adults is evident at lower doses of protein (8). Evidence
from acute studies (35) would also suggest that a key amino
acid in the protein is likely the indispensable amino acid
Leu. Thus, it is likely more correct to say that rather than
lower doses of protein it is the Leu content of the ingested
proteins (35) that is likely critical. Figure 1 illustrates the
point that anabolic resistance of protein metabolism in aging
is only evident at lower doses of protein and that at higher
doses of ingested protein the elderly can overcome this resis-
tance and have a “youthful” MPS response. Viewed collec-
tively, these data (Figure 1) point to a recommendation
that, at least insofar as stimulation of MPS to maintain
muscle mass is concerned, the elderly have higher protein
requirements than the young individuals, which is in
agreement with position stands in other studies (40, 41).
Of issue is that although younger individuals are exceeding
the RDA, consuming ;1.3 g of protein $ kg21 $ d21 (42),
one-third of older adults are not meeting these requirements
and up to 10% of older women are not even meeting the Es-
timated Average Requirement for protein currently set by
nitrogen balance at 0.66 g of protein $ kg21 $ d21 (43, 44).
In fact, recent recommendations suggest that older adults
should consume 25–30 g of high-quality protein (2.5 g of
Leu per meal; see in the next section) at each meal to
attenuate age-associated muscle mass loss (40).

Further evidence supporting recommendations for
higher protein intakes in older adults comes from studies
showing that in older adults higher protein intakes are pro-
tective against mass (45) and lean mass loss (43) and are
positively associated with lean mass (46, 47). Furthermore,
the addition of 15 g of protein at breakfast and lunch, which
increased the protein content of these meals to at least 25 g

[the minimum recommended amount of protein per meal
for older adults (40)], increased strength and physical
performance in frail elderly persons (48). As mentioned pre-
viously, the combination of RT, which sensitizes the muscle-
to-protein intake for a long period of time, should then
provide a more potent stimulus for MPS and result in
greater hypertrophy or better attenuation of muscle loss.
This thesis is supported by findings of no increase in muscle
mass when RT was performed without protein supplemen-
tation compared with protein supplementation (30 g of pro-
tein: 15 g, twice daily) in frail elderly individuals (49).

Leucine
Protein quality is a function of protein amino acid content,
digestibility, and bioavailability. Proteins from animal
sources such as meat, poultry, fish, dairy, eggs, and isolated
soy protein are high-quality proteins given their complete
complement of EAA and digestibility. Thus, it is not sur-
prising that ingestion of these proteins provides a robust
increase in MPS on consumption. In addition, milk pro-
teins, particularly whey protein, have been shown to be
superior to other types of protein at stimulating MPS in
older men (50, 51). In particular, despite the equal (albeit
because of enforced truncation of scores at 1.0) protein
digestibility–corrected amino acid scores (PDCAASs) of
milk protein and soy, milk is better able to stimulate
MPS (20) and results in greater muscle hypertrophy after
RT when consumed postexercise, at least in younger per-
sons (52). However, it has been advocated that PDCAASs
be replaced by a newer protein scoring system: the digest-
ible indispensable amino acid score (DIAAS). The main
difference between the PDCAAS and DIAAS scoring sys-
tems is that DIAAS is not truncated and that the true illeal
digestibility (if known) of individual amino acids within
proteins is used (53). In fact, the most recent guidelines
state that “.dietary amino acids be treated as individual
nutrients and that wherever possible data for digestible
or bioavailable amino acids be given.,” which could
have important implications (53). The recognition placed
on individual amino acids as nutrients could explain why
isolated whey protein has been found to stimulate MPS
to a greater extent than casein (the other main milk protein)
in the elderly (50, 54). The differences between whey and
casein in terms of stimulating MPS are attributed to whey be-
ing digested more rapidly and to having a higher Leu content,
resulting in a more rapid and robust hyperaminoacidemia
and hyperleucinemia (55).

Although all of the EAAwould be needed to allowMPS to
occur with protein ingestion (56), Leu is the key amino acid
that triggers the stimulation of key regulatory proteins and
the initiation of MPS (57) from a state of net negative pro-
tein balance. The potency of Leu was shown when subjects
consumed a lower dose of protein (6 g), which had previ-
ously been shown to be less effective in stimulating MPS
(58), with added Leu, which effectively elicited the same
MPS response as an optimal dose (25 g) of protein, in young
individuals (59). Similarly, after a session of resistance

FIGURE 1 Absolute protein dose-responses of skeletal muscle
myofibrillar protein synthesis in older (71 6 1 y; n = 43) and
younger (226 4 y; n = 65) men. Data are presented as means 6
SEMs and were analyzed with a 2-factor ANOVA, but within-
group dose differences are not indicated for the sake of clarity.
*Significantly different between groups, P , 0.05. FSR, fractional
synthetic rate. Adapted from reference 8 with permission.
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exercise, the addition of Leu to a protein/carbohydrate bev-
erage increased MPS to a greater extent than the protein/
carbohydrate beverage alone (60). These findings indicate
that proteins with higher Leu content would be more effec-
tive than those with lower Leu content at stimulating MPS
and this may be particularly true in the elderly in whom it
appears there is a reduced sensitivity to Leu (35). As such,
higher-quality proteins with high DIAAS scores and a high
Leu content would be the best sources with which to supple-
ment older adults.

To date, there have been 2 longer-term trials of Leu sup-
plementation in populations one would predict could bene-
fit from the ingestion of supplemental Leu (61, 62). The
studies did not involve resistance exercise but are reviewed
here because the results are relevant to how Leu may (or
may not) enhance muscle mass in older adults. One study
involved 3 mo of ingesting 7.5 g of Leu $ d21 (3 3
2.5 g $meal21) in elderly men (61), and the other study
lasted 6 mo with the same dosing regimen in older men
with type 2 diabetes (62). No benefit was observed in either
study in terms of Leu promoting lean mass or strength gains
(61, 62). There are reasons why Leu supplementation may
not have resulted in any change in muscle mass: participants
may already have been consuming adequate protein
(;1–1.1 g $ kg21 $ d21) so supplemental Leu was ineffective;
alternatively, provision of Leu alone resulted in a physiolog-
ically relevant reduction in systemic Val and Ile concentra-
tion because of branched-chain amino acid antagonism
(63); and/or despite 3–6 mo of supplementation this was
simply too short a period of time to see an effect on the ex-
pected change in lean mass. Regarding the last point, if we
consider that a 70-y-old man weighing 85 kg and having
;40–45 kg of skeletal muscle (i.e., ;60–62 kg of fat- and
bone-free mass) would lose muscle at a rate of 0.8% annu-
ally (1), there would be a reduction in total muscle mass
of ;160–180 g in a 6-mo period. Leu supplementation
may have been able, at best, to offset such a loss but this
would be difficult to detect using most commonly available
methods (i.e., DXA, MRI, and/or measures of muscle fiber
area). This last possibility also underscores recent observa-
tions that acute effects of many interventions, e.g., those
seen with Leu supplementation (35), on MPS fail to align
to changes in muscle lean mass accretion (64). Thus, it is
perhaps not surprising that these trials of Leu supplementa-
tion (61, 62) have not shown any effect on changes in muscle
mass in nonexercising older adults.

Creatine
Creatine is a nitrogenous organic acid that exists naturally in
the body, being synthesized in the liver and kidneys from the
amino acids Arg, Met, and Gly. Exogenous creatine is ob-
tained in the diet from consumption of meat or creatine sup-
plements, themost common being creatine monohydrate and
creatine hydrochloride. Creatine is stored in the muscle and
functions as an energy buffer during high-intensity exercise
and as part of the creatine-phosphocreatine system, where
it is reversibly converted to phosphocreatine by creatine

kinase during periods of low muscular activity (65). At the
onset of high-intensity exercise phosphocreatine donates a
high-energy phosphate to ADP, serving as an anaerobic en-
ergy source to support the exercise session; however, it can
be rapidly depleted within 15–30 s (65). As such, phosphocre-
atine is an important energy buffer in transitions from rest to
various workloads and is particularly important for short-
duration (<30 s), high-intensity activities, such as sprinting
and resistance exercise, allowing high-power outputs to be
achieved.

The ergogenic effects of creatine are mediated through
1 or more of the following mechanisms: increasing skeletal
muscle phosphocreatine stores, speeding up phosphocrea-
tine resynthesis, reducing muscle damage, and/or decreasing
the reliance on anaerobic glycolysis, thus, decreasing lactate
production [reviewed by Branch (65) and Rawson and
Venezia (66)]. Although the exact mechanism of how creatine
supplementation may augment exercise performance is
unknown, each of the hypothesized mechanisms would
allow a greater amount of work to be done during and/or a
more rapid recovery after an intense short-duration exercise
session.

The benefits of creatine are not confined to athletes be-
cause several trials have found an ergogenic effect of taking
creatine on its own or in combination with RT in older
adults. Some (67–69), but not all (70–72), trials investigating
the effects of creatine supplementation alone have found
positive effects on strength and functional performance in
older adults. A recently completed meta-analysis from our
group showed that creatine consumed concurrently with
RT had a greater effect than RT alone in improving body
composition, strength, and functional performance in older
men and women (73). This meta-analysis was based on the
findings from 8 randomized, placebo-controlled trials from
10 published reports that included a total of 252 older adults
as subjects. Although there was disparity in the results be-
tween trials, overall creatine supplementation increased
total-body fat-free mass by 1.5 kg (95% CI: 0.92, 2.02), chest
press strength by 1.7 kg (95% CI: 0.49, 2.98), and the num-
ber of chair stands in 30 s (a measure of functional perfor-
mance and an important measure of ability to perform
activities of daily living) by 2 repetitions (95% CI: 0.19,
3.67) more than with RT alone. The conclusions of this
meta-analysis (73) are concordant with similar analyses per-
formed by another group (74). These findings support a role
for creatine ingestion (;5 g $ d21) paired with RT to atten-
uate sarcopenia.

As mentioned previously, not all studies showed a greater
effect of creatine on its own or when added to RT to improve
body composition, strength, and/or performance (70–72,
75–80), indicating some degree of response variability be-
tween trials and/or subjects. Both trial and individual factors
might influence whether subjects respond to creatine and
include whether or not the RT regimen was progressive and
resulted in a greater training volume being completed by
the creatine group, whether muscle creatine stores increased
in response to the creatine supplementation, and whether
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creatine was consumed with a carbohydrate source. As such,
recommended creatine dosing strategies for older adults
would be to consume 5 g of creatine $ d21 with some carbo-
hydrate paired with a progressive RT program, recognizing
that those with naturally higher muscle creatine stores
before supplementation may not respond to creatine
supplementation.

b-Hydroxy-b-Methylbutyrate
The stimulatory impact of the branched-chain amino acid
Leu on MPS is well documented (57). This effect is associ-
ated with the ability of Leu to activate mTORC1, which sub-
sequently targets downstream signaling protein kinases such
as 4E binding protein 1 (4EBP1) and p70S6K1, both of
which facilitate translation initiation and stimulation of
MPS (81). The discovery that Leu positively influences skel-
etal muscle metabolism makes it perhaps unsurprising
that other molecules related to Leu, such as b-hydroxy-
b-methylbutyrate (b-HMB), a Leu metabolite, would also
possess anabolic properties capable of influencing skeletal
muscle protein turnover (82). Currently, b-HMB is a patent-
protected compound with a number of applications but
most relevant to this review are US patents: 5,348,979
(83), b-HMB is described as useful for promoting nitrogen
retention in humans; and 6,031,000 (84), which, among
other claims, is a compound stated as being used, “.to treat
disease-associated wasting of an animal..” In addition,
other patents list b-HMB (in combination with vitamin
D) as being useful in the promotion of muscular function
and strength (85). In a recent systematic review of trials in-
volving b-HMB in health and disease, Molfino et al. (82)
concluded that a meta-analysis of the effects of b-HMB sup-
plementation in the elderly was not possible mostly because
of the heterogeneity of trials and the lack of pure b-HMB
being compared with a placebo; nevertheless, a recent review
states that, “Essential amino acid (EAA) supplements, in-
cluding. b-hydroxy b-methylbutyric acid (HMB) supple-
ments, show some effects in improving muscle mass and
function parameters (86)”; thus, the trials relevant to aging
are reviewed here.

b-HMB is a metabolite of Leu and is produced in skeletal
muscle when Leu is transaminated to a-ketoisocaproic acid,
which is then converted to b-HMB by a-ketoisocaproic acid
dioxygenase. Oral supplementation with b-HMB increases
both plasma and intramuscular b-HMB concentrations
(87) and there are reports that supplementation with
b-HMB plus amino acids leads to improvements in both
skeletal muscle mass and function (88–90). For example,
supplementation with 3 g of b-HMB for 5 d before and dur-
ing 10 d of bed rest in older adults attenuated losses in skel-
etal muscle (91). Moreover, supplementing older women
with 2 g of b-HMB, 5 g of Arg, and 1.5 g of Lys for 12 wk
was shown to enhance muscle strength and function as de-
termined by a “get up and go” test when compared with pla-
cebo (90). There also are other reports of improved skeletal
muscle functionality associated with b-HMB supplementa-
tion when combined with resistance exercise (92, 93). As

such, b-HMB supplementation would appear to positively
affect skeletal muscle health in a variety of settings and in
different populations by as yet undetermined mechanisms.

Although the impact of protein/Leu on MPS is a topic of
intense research, there is comparably less information re-
garding the cellular and molecular processes by which
b-HMB influences muscle protein turnover. In a recent
study by Wilkinson et al. (87) oral consumption of 3.42 g
of the free-acid form of b-HMB increased rates of MPS
(;70%) as well as simultaneously decreasing MPB
(;57%) 150 min after ingestion in young resistance-trained
males. b-HMB consumption also resulted in an increase in
p70S6K1 and 4EBP1 phosphorylation; however, the sup-
pression of MPB was not congruent with measures of prote-
olytic activity. Interestingly, in the same study (87), as a
positive control, Leu ingestion (3.42 g) resulted in similar ef-
fects as b-HMB regarding a stimulation of MPS. Neverthe-
less, taken together (89–91, 93) what this study shows is that
b-HMB ingestion exerts a synergistic impact on MPS in
humans; however, Leu is at least equally as potent (on a
gram-for-gram basis) in this regard (87). Such findings
could have clinical relevance for those individuals who un-
dergo short-term periods of muscle disuse, e.g., hospitaliza-
tion, when reductions in postprandial MPS and smaller but
transient increase in MPB drive skeletal muscle disuse atro-
phy (10). It is important to acknowledge, however, that
changes in MPS in humans in response to b-HMB ingestion
are not always detected (91).

Importantly, a relevant question is whether b-HMB is a
useful compound in promoting muscle mass gains and/or
retention in the elderly. In older persons (>65 y of age),
randomized controlled trials with b-HMB are relatively
few and highly heterogeneous in the health of the popula-
tions studied, the interventions used such as bed rest (91),
or combined with RT (94), and the unknown influence of
amino acids included with b-HMB [Arg and Lys (89, 90,
95)]. Because EAA and the potentially vasoactive amino
acid Arg were given in addition to b-HMB, it is not possible
to isolate the effect of b-HMB because the placebo group in
these trials received the same amino acids. In the longest
b-HMB–Arg–Lys supplementation trial in older adults
published to date, Baier et al. (89) reported that older per-
sons receiving an Lys–Arg–b-HMB combination (2 g of
b-HMB, 5 g of Arg, and 1.5 g of Lys) showed greater
strength gains than those receiving an isonitrogenous
(5.6 g of Ala, 0.9 g of glutamate, 3.1 g of Gly, and 2.2 g of
Ser) placebo. These authors reported greater gains (after
12 mo of supplementation) in the lysine–Arg–b-HMB–
supplemented group in fat-free mass (;0.75 kg), total cell mass
(;0.45 kg; both by single-frequency bioelectrical impedance
analysis), and ;0.37 kg of fat- and bone-free mass by DXA.
Importantly, there were no associated functional gains asso-
ciated with these differential changes in body composition.
In a reanalysis of the same trial (89) only those receiving
the Lys–Arg–b-HMB supplement with a clinically deficient
(<30 ng $mL21) concentration of vitamin D showed greater
strength gains; however, the Lys–Arg–b-HMB–supplemented
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group had a baseline strength that was less than one-half that
of the similarly vitamin D–deficient elderly subjects in the pla-
cebo group. In studies in which b-HMB (or combinations of
b-HMB plus amino acids) has been supplemented in addition
to RT, none have reported differential strength or functional
gains compared with a control group. Thus, b-HMB does
not augment RT-induced gains in muscle strength or function,
with a possible exception of those that are starting with very
low strength and clinically deficient concentrations of vitamin
D. In summary, currently available evidence shows that supple-
mentation with b-HMB would not influence gains in lean
mass in older adults or to a trivial degree (i.e., <0.4 kg of
lean mass) if there is an effect, and it has no effect on changing
muscle function or mobility.

v-3 PUFAs
v-3 (n–3) PUFAs are critical components of cell membranes
serving as substrates for the production of lipid signaling
molecules as well as favorably modulating the biophysical
properties of the cell membrane. Classically, n–3 PUFAs,
specifically the 2 key FAs EPA (20:5–3) and DHA (22:6n–3),
have been linked with improved cardiovascular health
largely because of their anti-inflammatory properties (96).
Given that sarcopenia has been reported to be associated
with chronic low-grade inflammation (97), the use of n–3
PUFA supplementation to counter inflammation and to
potentially affect sarcopenic muscle loss means that supple-
mentation with n–3 PUFAs in older persons is receiving
more attention. However, to date, very few studies have
characterized the impact of n–3 PUFA supplementation
on skeletal muscle in older populations or in those who ex-
perience muscle disuse atrophy.

Despite the lack of data, there are studies that do show a
positive effect of n–3 PUFA supplementation on skeletal
muscle. In one such study (98), it was demonstrated that
supplementing older women with fish oil, containing 2 g
of EPA/DHA, enhanced muscle strength during 90 d of
RT. Moreover, 8 wk of n–3 PUFA–containing fish oil
supplementation was shown to potentiate MPS in response
to a hyperaminoacidemic-hyperinsulinemic clamp in young,
middle-aged (99), and older adults (100). Interestingly, in
the latter study, the potentiation of MPS was accompanied
by enhanced mechanistic target of rapamycin (mTOR)-
p70S6K1 phosphorylation. In this regard, there also is evi-
dence that only 4 wk of n–3 PUFA supplementation
increases the expression of the mechanically sensitive pro-
tein focal adhesion kinase in skeletal muscle (101). However,
it is important to acknowledge that in the latter study, and in
that of Rodacki et al. (98), no placebo group or measures of
changes in skeletal muscle mass were made. In addition, al-
though the potentiation of MPS and anabolic signaling in
response to a hyperaminoacidemic-hyperinsulinemic clamp
after fish oil supplementation provides excellent proof of
concept data, the consumption of amino acids in the real-
world setting does not occur via an intravenous infusion.
Thus, future studies that identify if fish oil supplementation
renders skeletal muscle more anabolically sensitive to

hyperaminoacidemia that are accompanied by concomitant
assessments of changes in skeletal muscle mass and func-
tion, particularly in older adults, would be of interest.

Other important questions also still remain with regard
to how n–3 PUFA supplementation impacts skeletal muscle
anabolism and function. Although the time course of
changes in skeletal muscle EPA and DHA composition
with fish oil supplementation have been established in youn-
ger, healthy persons (Figure 2) (101), similar time course
changes in the skeletal muscle of older adults have not
been determined. If n–3 PUFA supplementation is to be pre-
scribed as a viable strategy to counteract the detrimental
effects of sarcopenia, then these questions will need to be
answered.

Conclusions
Sarcopenia and dynapenia are serious health issues that in-
crease disease and disability risk in our rapidly aging socie-
ties. The age-related decline in skeletal muscle mass is
complex and multifaceted; however, it is proposed that by
engaging in appropriate nutritional and exercise strategies
such as the consumption of high-quality protein and partic-
ipation in RT, older adults may partially be able to sustain
skeletal muscle mass and function and thus enhance their
quality of life. In this regard, data reviewed here show that
enhancements of RT-induced skeletal muscle mass and
function could reasonably be achieved by supplementation
with protein and creatine. Emerging data are suggestive
that the n–3 class of PUFAs may render skeletal muscle
more sensitive to the anabolic effects of resistance exercise
and feeding and this is an area that is ripe for research. Given
the reduced sensitivity of MPS in older individuals to lower
doses of protein intake, increasing the n–3 PUFA content of

FIGURE 2 Time course changes in skeletal muscle and RBC
EPA plus DHA composition during 4 wk of 5 g $ d21

supplementation with n–3 PUFAs in younger men. Data
presented as means 6 SEMs and were analyzed using 1-factor
ANOVA for both muscle and blood within RBCs or skeletal
muscle, means without a common letter differ, P , 0.05.
Adapted from reference 101 with permission.
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the diet may be one method by which to combat sarcopenia
and associated conditions. At present, it appears that a key
amino acid in protein is Leu, but that supplementation
with this amino acid alone is not likely to yield benefits.
Studies that have used b-HMB with or without other amino
acids are heterogeneous but suggestive of effects on muscle
mass, with no indication of improvements in muscle func-
tion. In addition, increasing both the quality and the
amount of daily protein intake, especially when combined
with RT, may also be efficacious. More work in the clinical
setting is now required to experimentally test these promis-
ing adjunctive nutritional and supplement-based strategies
to offset sarcopenia.
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