
DPSynthesizer: Differentially Private Data Synthesizer for 
Privacy Preserving Data Sharing

Haoran Li,
Math and Computer Science Department, Emory University, Atlanta, GA

Li Xiong,
Math and Computer Science Department, Emory University, Atlanta, GA

Lifan Zhang, and
Math and Computer Science Department, Emory University, Atlanta, GA

Xiaoqian Jiang
Biomedical Informatics Division, UC San Diego, La Jolla, CA

Haoran Li: hli57@emory.edu; Li Xiong: lxiong@emory.edu; Lifan Zhang: lzhan65@emory.edu; Xiaoqian Jiang: 
x1jiang@ucsd.edu

Abstract

Differential privacy has recently emerged in private statistical data release as one of the strongest 

privacy guarantees. Releasing synthetic data that mimic original data with Differential privacy 

provides a promising way for privacy preserving data sharing and analytics while providing a 

rigorous privacy guarantee. However, to this date there is no open-source tools that allow users to 

generate differentially private synthetic data, in particular, for high dimensional and large domain 

data. Most of the existing techniques that generate differentially private histograms or synthetic 

data only work well for single dimensional or low-dimensional histograms. They become 

problematic for high dimensional and large domain data due to increased perturbation error and 

computation complexity. We propose DPSynthesizer, a toolkit for differentially private data 

synthesization. The core of DPSynthesizer is DPCopula designed for high-dimensional and large-

domain data. DPCopula computes a differentially private copula function from which synthetic 

data can be sampled. Copula functions are used to describe the dependence between multivariate 

random vectors and allow us to build the multivariate joint distribution using one-dimensional 

marginal distributions. DPSynthesizer also implements a set of state-of-the-art methods for 

building differentially private histograms, suitable for low-dimensional data, from which synthetic 

data can be generated. We will demonstrate the system using DPCopula as well as other methods 

with various data sets and show the feasibility, utility, and efficiency of various methods.
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1. INTRODUCTION

Privacy preserving data analysis and publishing [2] has received considerable attention in 

recent years as a promising approach for sharing information while preserving data privacy. 

Differential privacy [5] has recently emerged as one of the strongest privacy guarantees for 

statistical data release. A statistical aggregation or computation is DP1 if the outcome is 

formally indistinguishable when run with and without any particular record in the dataset. 

The level of indistinguishability is quantified by a privacy parameter ε. A common 

mechanism to achieve Differential privacy is the Laplace mechanism [6] that injects 

calibrated noise to a statistical measure determined by the privacy parameter ε, and the 

sensitivity of the statistical measure inuenced by the inclusion and exclusion of a single 

record in the dataset. A lower privacy parameter requires larger noise to be added and 

provides a higher level of privacy.

There are two main settings for differentially private data sharing. The first one is interactive 

setting where data users send queries to the original database through an access mechanism 

which returns a perturbed query answer if the allowed privacy budget on the original dataset 

is not exhausted based on the composibility of Differential privacy [10]. This can be 

challenging in practice especially when multiple users need to pose a large number of 

queries for exploratory analysis. The second one is non-interactive setting where a statistical 

summary such as marginal or multi-dimensional histograms or a set of synthetic data that 

mimic the original data is publicly released in place of the original database with a given 

level of Differential privacy and users can arbitrarily access the released data for query and 

analysis purposes. For example, Figure 1 shows an example dataset and a one-dimensional 

marginal histogram for the attribute age.

Releasing synthetic data that mimic original data with Differential privacy provides a 

promising way for privacy preserving data sharing and analytics while providing a rigorous 

privacy guarantee. However, to this date there is no open-source tools that allow users to 

generate differentially private synthetic data, in particular, for high dimensional and large 

domain data. Most of the existing techniques that generate differentially private histograms 

or synthetic data only work well for single dimensional or low-dimensional histograms. 

They become problematic for high dimensional and large domain data due to increased 

perturbation error and computation complexity. The main approaches of existing work can 

be illustrated by Figure 2(a) and classified into two categories: 1) parametric methods that fit 

the original data to a multivariate distribution and makes inferences about the parameters of 

the distribution (e.g. [9]). 2) non-parametric methods that learn empirical distributions from 

the data through histograms (e.g. [7, 12, 3, 4]). Most of these work well for single 

dimensional or low-order data, but become problematic for data with high dimensions and 

large attribute domains. This is due to the facts that:

1. The underlying distribution of the data may be unknown in many cases or different 

from the assumed distribution, especially for data with arbitrary margins and high 

1we shorten differentially private as DP
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dimensions, leading the synthetic data generated by the parametric methods not 

useful;

2. The high dimensions and large attribute domains result in a large number of 

histogram bins that may have skewed distributions or extremely low counts, 

leading to significant perturbation or estimation errors in the non-parametric 

histogram methods;

3.
The large domain space 2 (i.e. the number of histogram bins) incurs a 

high computation complexity both in time and space. For DP histogram methods 

that use the original histogram as inputs, it is infeasible to read all histogram bins 

into memory simultaneously due to memory constraints, and external algorithms 

need to be considered.

In this demo, we present DPSynthesizer, a toolkit for differentially private data 

synthesization. The core of DPSynthesizer is DPCopula, a novel differentially private data 

synthesization method for high dimensional and large domain data using copula functions. 

The system implements and extends our recent work [8] as well as several state-of-the-art 

histogram methods and presents several contributions.

First, DPSynthesizer implements DPCopula [8] for generating high-dimensional and large 

domain DP synthetic data using copula functions. Copula functions are a family of 

distribution functions representing the dependence structure implicit in a multivariate 

random vector. Intuitively, any high-dimensional data can be modeled as two parts: 1) 

marginal distributions of each individual dimension, and 2) the dependence among the 

dimensions. Copula functions have been shown to be effective for modeling high-

dimensional joint distributions based on continuous marginal distributions. The key 

innovation of DPCopula is that it utilizes semi-parametric copula functions to separately 

consider the marginal histograms (non-parametric) for each single dimension and the joint 

dependence (parametric) among all dimensions, as shown in figure 2(b). One of the 

advantage of DPCopula is that it can utilize any state-of-the-art histogram method for 

building marginal DP histograms. In addition, DPCopula allows direct sampling for the 

synthetic data from the generated DP joint distribution. Although existing histogram 

techniques can be used to generate DP synthetic data, post-processing is required to enforce 

non-negative histogram counts or consistencies between counts resulting in either degraded 

accuracy or high computation complexity.

Second, DPSynthesizer includes a set of representative histogram methods, which can be 

used as a component of DPCopula for generating marginal histograms, or can be used as 

independent methods for generating histograms and synthetic data for low-dimensional 

datasets. We will demonstrate the system using various real datasets and show the 

feasibility, utility, and efficiency of various methods.

2We define  as the domain space of all dimensions, where |Ai| is the domain size of the ith attribute and m is the number of 
attributes

Li et al. Page 3

Proceedings VLDB Endowment. Author manuscript; available in PMC 2015 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Finally, DPSynthesizer provides an easy-to-use web-based interface. Through the interface, 

users can upload their own datasets, configure parameter settings, visualize original and 

generated synthetic data, examine utility results, and compare different methods.

2. SYSTEM OVERVIEW

In this section, we present DPCopula, the core of DPSynthesizer, and its key steps. As seen 

in Figure 1(a), the input data is a relational data table while the output is a differentially 

private synthetic data table. DPCopula consists of several key steps: 1) estimate marginal 

empirical distributions via private marginal histograms, 2) estimate private dependence 

using gaussian copula function and the original data, 3) sample synthetic data from the 

marginal distributions and copula function. Below we describe each step with some 

technical details.

2.1 Computing DP marginal histograms

As a first step, we compute DP marginal histograms for each attribute. Several state-of-the-

art techniques have been proposed for computing one-dimensional DP histograms 

effectively and efficiently, such as PSD [3], Privelet [11], NoiseFirst and StructureFirst [12], 

EFPA [1]. An important feature of DPCopula is that it can take advantage of any existing 

methods to compute private marginal histograms for each dimension, which can be then 

used to obtain empirical marginal distributions.

2.2 Computing DP dependence

We model the dependence via Gaussian copula function, a commonly used elliptical class of 

copula families modeling the Gaussian dependence, with its density function denoted as

(1)

where P is a correlation matrix3, I is the identity matrix, ϕ−1 is the inverse CDF of a 

univariate standard Gaussian distribution.

We implemented two methods, DPCopula-MLE (maximum likelihood estimation) and 

DPCopula-Kendall [8], to estimate the correlation matrix P in equation (1). An overview of 

DPCopula-MLE and DPCopula-Kendall is illustrated in figure 3, where the original data set 

contains three attributes: age, hours/week, and income, and the dependence structure is 

modeled by Gaussian copula.

In DPCopula-MLE, it partitions the original data D horizontally into l disjoint partitions of 

records each, computes a correlation matrix Pi (1 ≤ i ≤ l) on each partition using MLE, and 

then releases the average of these estimated matrices with some small additive noise injected 

3Here P must be a positive definite matrix to ensure that P−1 exists
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to each entry. The noise follows Laplace distribution which is , where Λ is 

the diameter of each correlation coefficient space Θ with a value of 2.

In DPCopula-Kendall, the differentially private estimator P̃ of the general correlation matrix 

is estimated by calculating noisy pairwise Kendall' τ correlation coefficients matrix. From 

the original data vector (X1, …, Xm), we can compute a noisy Kendall's τ coefficient of any 

arbitrary two attributes Xj and Xk by the standard sample Kendall's τ coefficient ρ̃τ (Xj, Xk) 

using Laplace mechanism that guarantees Differential privacy. We then construct a noisy 

Kendall' τ matrix ρ̃τ with each element defined by . Finally, we construct 

the noisy correlation matrix estimator as  with all diagonal entries being 1.

2.3 Sampling DP synthetic data

Once the DP marginal histograms and DP correlation matrix are generated from the previous 

two steps, we can sample synthetic data. We first generate DP pseudo-copula synthetic data 

(T̃1, …, T̃m) by generating a multivariate random vector (X̃1, …, X̃m) following Gaussian 

joint distribution Φ(0, P̃), then transforming (X̃1, …, X̃m) to (T̃1, …, T̃m) ∈ [0, 1]n × m. Here, 

P ̃ is the DP correlation matrix from the second step, and T̃j = ϕ(X̃j), j = 1, …, m and ϕ(X̃j) is 

the standard Gaussian distribution. Second, we compute DP synthetic data D̃ via 

, where  is the output of the first step, the inverse of DP 

empirical marginal distribution function generated from the jth DP marginal histogram.

2.4 DPCopulahybrid

Although DPCopula can model continuous attributes and discrete attributes with a large 

domain (e.g. attributes with the number of values no less than 10), it cannot directly handle 

attributes with small domains. DPSynthesizer also contains a DPCopula-hybrid method, 

which first partitions the original dataset based on small-domain attributes (i.e. gender) and 

computes the number of records for each partition in a differentially private way, then 

applies DPCopula-MLE or DPCopula-Kendall on each partition.

3. SYSTEM DEMONSTRATION

DPSynthesizer is a web-based application implemented with Django Framework on python. 

It can invoke binaries of DPCopula and other different methods. For example, current 

DPCopula is implemented in Matlab. The web interface is still a work in progress. A 

preliminary version can be accessed at http://www.mathcs.emory.edu/aims/DPSynthesizer.

Our demo mainly includes two scenarios: 1) data synthesization using DPCopula with 

visualization of the original, intermediate, and released DP synthetic data, 2) utility analysis 

and comparison of different data synthesization methods.
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3.1 Data sets

We prepared two real datasets for the demonstration purposes: Brazil Census dataset 

(https://international.ipums.org) and US census dataset (http://www.ipums.org). The Brazil 

census dataset has 188,846 records after filtering out records with missing values and eight 

attributes: age, gender, disability, nativity, working hours per week, education, number of 

years residing in the current location, and annual income. We generalized the domain of 

income to 586. The US Census dataset has a randomly selected 100,000 records from the 

original 10 million records and four attributes: age, occupation, income and gender. For 

nominal attributes, we converted them to numeric attributes by imposing a total order on the 

domain of the attribute.

In order to show the impact of other factors on the utility and scalability of DPCopula and 

other methods in DPSynthesizer to the audience, such as distribution, dimensionality of the 

datasets, we also prepared synthetic datasets with 50000 records. The default attribute 

domain size is 1000 and each margin follows the Gaussian distribution by default.

3.2 Basic Data Synthesization Functionalities

DPSynthesizer is an easy-to-use web system that guides users to accomplish their data 

synthesization tasks under Differential privacy. The DPSynthesizer interface allows users to 

select and load original datasets, to enter different parameters, to choose different types of 

methods according to their data needs, and to examine intermediate as well as final results. It 

also allows audience to visualize the original data and private released synthetic data, 

generate the synthetic data to a user-defined file format, and issue queries to the synthetic 

data for evaluating the utility.

We will start by guiding the audience through the settings of DPCopula. The users will have 

an opportunity to specify values for some parameters such as the overall privacy guarantee, 

i.e. ε, and the sampling rate in compute Kendall' τ correlation matrix, while these and the 

remaining parameters can be also automatically computed or set to default values. The 

system will then generate and write the released data into a file with different formats, such 

as “.csv”. Users can select their own file path and preferred file format.

3.3 Data Visualization

DPSynthesizer provides an interface for visualization of the original and private synthetic 

data through histograms. For original or released synthetic data with one or two dimensions, 

it directly visualizes them through one or two dimensional histograms. For data with more 

than two dimensions, it visualizes the marginal histograms for each dimension and the 

correlation matrix among all dimensions. Future development of the system includes 

integration of visualization techniques for high-dimensional data. During the running 

process of DPCopula, all intermediate results, such as private marginal histograms and 

correlation matrix, can be also visualized. Figure 3 shows examples of the visualized 

marginal histograms of the attribute “Age”, “Hours/week”, and “Income” using the US 

census data, correlation matrix, and dependence structures.

Li et al. Page 6

Proceedings VLDB Endowment. Author manuscript; available in PMC 2015 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://international.ipums.org
http://www.ipums.org


3.4 Utility Analysis and Comparison

DPSynthesizer also includes the implementations of the state-of-the-art histogram methods, 

such as PSD (Private Spatial Decomposition), KD-hybrid methods [3], Privelet+ [11], Filter 

Priority (FP) with consistency checks [4], and P-HP [1]. Users can select one or more 

methods and compare their utility and efficiency on selected datasets and directly observe 

differences in results and performance.

For utility analysis, we issue random range-count queries with random query predicates on 

both original data and the synthesized data. The queries are defined as: Select COUNT(*) 

from D Where A1 ∈ I1 and A2 ∈ I2 and … and Am ∈ Im. For each attribute Ai, Ii is a random 

interval generated from the domain of Ai.

The query accuracy is primarily measured by the relative error. For a query q, Aact(q) is the 

true answer to q on the original data. Anoisy(q) denotes the answer to q when using DP 

synthetic data generated from DPCopula or the DP histogram constructed by other methods. 

Then the relative error is defined as:

where s is a sanity bound to mitigate the effects of queries with extremely small query 

answers (a commonly used evaluation method from existing literatures, e.g. [11]). While we 

primarily use relative error, we also use absolute error when it is more appropriate and clear 

to show the results for extremely sparse data, in which case, the true answers are extremely 

small. The absolute error is defined as ABS(q) = |Anoisy(q) − Aact(q)|.

Through the user interface, the audience can freely issue predicate queries using different 

parameter settings and observe the result. Figure 4 provides a visualization example for the 

error comparison result between DPCopula and other methods. The released synthetic data 

can be also used for learning tasks such as construction of decision tree and regression 

analysis. We will use classification and linear regression analysis as examples to illustrate 

the utility of the released synthetic data.
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Figure 1. 
Dataset vs. histogram illustration

Li et al. Page 9

Proceedings VLDB Endowment. Author manuscript; available in PMC 2015 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Synthetic data generation
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Figure 3. 
DPCopula techniques overview
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Figure 4. 
Comparison with other methods

Li et al. Page 12

Proceedings VLDB Endowment. Author manuscript; available in PMC 2015 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


