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A “Holy Grail” sought in medical
treatment of obesity is to be able to

biologically reprogram their adipose tis-
sues to burn fat rather than store it.
White adipose tissue (WAT) stores fuel
and its expansion underlines insulin
resistance (IR) whereas brown adipose
tissue (BAT) burns fuel and stimulates
insulin sensitivity. These two types of
fats seesaw within our bodies via a regula-
tory mechanism that involves intricate
communication between adipocytes and
blood cells, particularly macrophages
that migrate into adipose deposits. The
coregulator, Receptor Interacting Protein
140 (RIP140), plays a key role in regulat-
ing this communication. In mice on a
high-fat diet, the level of RIP140 in mac-
rophages is dramatically elevated to acti-
vate their inflammatory M1 polarization
and enhance their recruitment into
WAT, facilitating IR. Conversely, lower-
ing the level of RIP140 in macrophages
not only reduces M1 macrophages but
also expands alternatively polarized, anti-
inflammatory M2 macrophages, trigger-
ing white adipose tissue browning, fat
burning, and restoration of insulin sensi-
tivity. This suggests a potential therapeu-
tic strategy for reversing IR, obesity, and
atherosclerotic or even cosmetic fat
deposits: therapeutic browning of white
adipose deposits by diminishing RIP140
levels in macrophages.

In lean mice and humans, alternatively
polarized, or M2 anti-inflammatory, Adi-
pose Tissue Macrophages (ATMs) pre-
dominate. Obesity induces the
accumulation of classically polarized, or
M1 inflammatory, ATMs, leading to a

proinflammatory state in adipose tissues
and to insulin resistance (IR).1-3 The regu-
lation of M1 vs. M2 macrophage polariza-
tion, especially in vivo, is a balancing act
that is still not entirely understood. In par-
ticular, the question of whether M1 or M2
polarization of macrophages occurs before
their recruitment to specific tissues, or the
polarization is determined by local envi-
ronment after their recruitment to adipose
tissues, is the subject of intense
investigation.

Recent studies have suggested that the
M1-M2 switch in adipose tissues is caused
by differential recruitment of various
monocyte subtypes.4-7 It is also known
that most monocytes/macrophages in the
adipose tissue are derived from bone mar-
row.7,8 Related to the development of
obesity, it is known that obesity can
induce myelopoiesis in bone marrow,
which could increase Ly6CCCCR2C cir-
culating monocytes primed for inflamma-
tory M1 polarization.8,9 In contrast, M2
ATMs come from circulating
Ly6C-CCR2- monocytes, which are anti-
inflammatory monocytes that usually exist
under healthy physiological condi-
tions.10,11 On a molecular level, the
CCR2 receptor is a key factor for mono-
cyte egress from bone marrow into the cir-
culation, via interacting with its
chemokine ligands CCL2/MCP-1 and
CCL7/MCP-3.12 Furthermore, Ly6CC

monocytes are not detected in CCR2
knockout mice, whose adipose tissues
have diminished M1 ATM infiltration
and are protected from obesity-induced
IR.4,6,13 The ensuing hypothesis that M1
macrophages are polarized and recruited
to adipose tissue by CCR2-Ly6C is sup-
ported by our recent data generated using
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a new animal model14—a mouse with
macrophage-specific knockdown of a reg-
ulatory protein important for M1 macro-
phage activation,15-17 RIP140. We found
that in the blood of our mwRIP140KD
mice Ly6CC monocytes are attenuated,
and their M1 ATMs are dramatically
reduced in number, even under a high fat
diet (HFD) that would otherwise induce
obesity and adipose inflammation. Also
consistent with the CCL2-Ly6C hypothe-
sis, in our mwRIP140KD mice the CCR2

receptor in monocytes and its chemokine
ligands (CCL2, CCL7, and CCL8) in adi-
pose tissue are both reduced.18 This result
not only supported the CCR2-Ly6C
molecular pathway’s role in macrophage
activation and recruitment, but also
suggested a new functional role for
RIP140 in promoting monocyte traf-
ficking to inflammatory tissues by regu-
lating the receptor (CCR2) and its
ligands (CCL2, CCL7, and CCL8). In
this study, we employed PKH26 dye-

labeled cells in bone marrow transplan-
tation, and directly monitored in vivo
infiltration of labeled monocytes-macro-
phages into adipose tissue. We found
that the process of adipose macrophage
recruitment is in fact also drastically
decreased in HFD-fed mwRIP140KD
mice.14 This established a new func-
tional role for RIP140 in directly regu-
lating monocyte recruitment/infiltration
into adipose tissues during the process
of inflammation.14

Figure 1. The function of ATM recruitment and contribution to adipose tissue. Left panel: In lean mice fed a normal diet (or ND), the function of ATMs as
M2 type maintains adipose tissue homeostasis and normal insulin sensitivity. Middle panel: In HFD-induced obese mice, RIP140 is overexpressed in
monocytes/macrophages compared with ND-fed WT mice, resulting in M1 over M2 ATM infiltration and in situ polarization, triggering WAT adiposity
and insulin resistance. Right panel: Attenuation of RIP140 in the monocytes/macrophages could result in M2 over M1 ATM polarization, triggering WAT
browning and alleviating HFD–induced insulin resistance.
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In addition to a decrease in M1 ATMs
in the mwRIP140KD adipose tissues, we
also found an expansion in M2 ATMs
without increasing M2 macrophage prolif-
eration (unpublished data). This revealed
that RIP140 not only regulates circulating
monocyte activation and trafficking but
also contributes to the homeostatic con-
trol of M1 vs. M2 ATM polarization
within healthy and/or diseased adipose tis-
sues. Supporting this finding, we previ-
ously found that the level of RIP140 is
dramatically elevated in macrophages of
HDF-induced obese mice.14,19 Thus,
HFD-associated obesity could involve ele-
vating RIP140 expression, which would
induce not only M1 monocyte recruit-
ment but also M1 ATM polarization (or
repress M2 ATM polarization). Con-
versely, reducing RIP140 levels in mono-
cytes would reduce M1 monocyte
recruitment and M1 ATM polarization
(or derepress M2 ATM polarization). For
this model to be established, it will require
evidence for a direct role of RIP140 in
regulating M2 ATM polarization. This is
under investigation.

In conclusion (Fig. 1), our recent study
showed that RIP140 is involved in regu-
lating monocyte recruitment to adipose
tissues.14 More recent unpublished results
indicate its additional function in regulat-
ing M2 expansion by a means other than
proliferation. As such, we propose that
RIP140 also has a direct role in suppress-
ing M2 macrophage polarization. Regard-
ing M1 or M2 polarization, most studies
show effects via environmental stimuli.
Based upon our studies, we propose that
RIP140 is a principal intrinsic factor that
tips the balance of M1 versus M2 polariza-
tion of the macrophage population.
Manipulating this important regulator
will gear the direction of macrophage. For
instance, dampening RIP140, as shown in
our mwRIP140KD mice, not only reduces
their M1 monocyte infiltration into vis-
ceral white adipose tissues (vWATs) but
also enhances their M2 macrophage polar-
ization within those adipose tissues, which
facilitates a dramatic switch in M1/M2
homeostasis of these mice even under
HFD feeding. The switch in macrophage
polarization results in a superior physio-
logical condition in animals, in spite of
HFD feeding, that triggers WAT

browning and increases thermogenesis
and energy expenditure, ultimately
improving insulin sensitivity.

Given these encouraging results, it is
tempting to speculate several potential
applications of targeting RIP140, or engi-
neering cells that express RIP140 such as
macrophages, to develop new therapeu-
tics. For instance, it may be possible to use
tailored macrophage with a certain level of
RIP140 as a therapeutic agent, such as in
cell therapy. Depending upon disease con-
ditions, which can benefit from an inflam-
matory response, or an anti-inflammatory
status, specific macrophages may be used
to combat these diseases. It may also be
possible to develop compounds targeting
the expression, or protein stability, of
RIP140, in treating those diseases where
RIP140 is overtly elevated. Recently, we
have obtained a preliminary result, testing
the benefit of injecting tailored macro-
phages, such as those derived from the
mwRIP140KD mice, in preventing HFD
induced I.R. This provides a proof-of-
concept that engineered macrophages
with altered RIP140 expression may be
used in treating Type II diabetes.
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