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Brown adipose tissue (BAT) is a spe-
cialized organ responsible for ther-

mogenesis, a process required for
maintaining body temperature. Since the
discovery that BAT and brite/beige cells
are functional in adult humans, many
studies have been focusing on the physi-
ology and functionality of this organ.
The brain is controlling the maintenance
of body temperature through a complex
neuronal network. One of the candidates
to modulate thermogenesis at central
level is glucagon-like peptide-1 (GLP-1),
with GLP-1 receptors widely expressed
throughout the brain. Our group has
recently reported that stimulation of
brain GLP-1 receptors in the ventrome-
dial nucleus of the hypothalamus is
essential for the activation not only of
BAT thermogenesis, but also browning
of white fat. Notably, both actions are
mediated by specific inhibition of the
energy sensor AMP-activated protein
kinase (AMPK). In this commentary, we
summarize the latest results on this topic,
as well as the potential clinical relevance
of the brain GLP-1 system to treat
obesity.

The physiological relevance of the
brown adipose tissue (BAT) in humans
has been a matter of controversy during
decades. Initially, it was thought that BAT
was relevant only in rodents, hibernating
mammals, and newborn humans.1–4

However, novel evidence has clearly dem-
onstrated that BAT is located in dispersed
areas of the body in adult humans.2,5–8

Recently, 2 reports indicated that both
classical brown and recruitable brite/beige
adipocytes may be contained in adipose

tissue,9,10 with the latter initially reported
to appear in response to thermogenic
stimuli in white adipose tissue (WAT) due
to the so-called ‘browning’ process.11-13

The brain plays an essential role in the
maintenance of temperature.14,15 Among
the numerous brain areas involved in this
function, the hypothalamus occupies a
key position. The arcuate nucleus (ARC),
dorsomedial nucleus (DMH), lateral
hypothalamic area (LHA), paraventricular
nucleus (PVH) and the ventromedial
nucleus (VMH) have all been demon-
strated to modulate BAT.14,15 Indeed,
these hypothalamic areas are not directly
connected to the BAT, and a network of
other brain sites, such as the preoptic area
(POA) and rostral raphe pallidus (rRPa),
is also involved in this regulation. The fact
that the network involved in thermoregu-
lation is large and complex indicates its
physiological relevance and that a wide
range of factors will be able to affect BAT
function. Among those factors we can find
neurotransmitters, glucose and different
hormones.14,15

One of those factors is the hormone
glucagon-like peptide 1 (GLP-1), a post-
translational product of proglucagon, that
is endogenously released mainly from the
ileum after the ingestion of nutrients.
When postprandial GLP-1 increases it
augments glucose-induced insulin
release.16,17 In line with this, the secretion
of GLP-1 is impaired in patients with type
II diabetes mellitus and obesity.18,19 In
addition to its role in insulin secretion,
GLP-1 has many other biological actions,
and the GLP-1 receptor (GLP1-R) is
expressed in organs like pancreatic islets,
kidney, lung, heart, stomach, intestine,
pituitary, or skin.18 GLP-1 is also
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expressed in the brain, where GLP-1
receptors are also abundant.20,21 Recent
evidence has shown that brain GLP-1
modulates different metabolic actions, of
which one is the regulation of BAT ther-
mogenesis.22 Intracerebroventricular (ICV)
injection of GLP-1 reduced body weight
and increased BAT thermogenesis indepen-
dent of changes in feeding and insulin
responsiveness. Consistently, the expression
of genes involved in the activation of the
thermogenic program, such as those coding
for peroxisome proliferator-activated recep-
tor-gamma co-activator-1alpha (PGC1a)
and uncoupling protein-1 (UCP1), were
up-regulated in the BAT of wild type mice
centrally treated with GLP-1 receptor ago-
nists.22 In contrast, mice lacking the
GLP-1 receptor did not show any alter-
ation in BAT temperature or BAT gene
expression after the stimulation of the brain
GLP-1 system. The connection between
the brain and the BAT seems to be the
sympathetic nervous system, since acute
central injection of GLP-1R and glucagon
receptor agonists increases electrophysio-
logical activity of the sympathetic fibers
that innervate the iBAT.22

The neuroanatomical organization of
the core thermoregulatory network
involved in the actions of GLP-1 remains
largely unknown, but a recent study from
our group intended to show the first clues
in this aspect. By doing an acute central
injection of a GLP-1 receptor agonist,
namely liraglutide, we confirmed previous
results indicating that the brain GLP-1
system increases the thermogenic activa-
tion of BAT independently of feeding
behavior.23 In addition, we also observed
that the central injection of liraglutide
increased browning of WAT. As it is well
known that within the central nervous sys-
tem (CNS), numerous neuronal popula-
tions express GLP-1R, including
hypothalamic nuclei crucial for the regula-
tion of energy balance,21,24 we next inves-
tigated which hypothalamic area was
mediating the central effects of liraglutide
on BAT and WAT. Thus, we specifically
injected liraglutide into the following
hypothalamic nuclei in rats; arcuate
nucleus (ARC), LHA, PVH, DMH, or
VMH, all of which express GLP-1R in a
greater or lesser extent. Interestingly, only
the specific stimulation of the GLP-1

system within the VMH was able to reca-
pitulate the effects found after ICV injec-
tion of liraglutide.23

A role of the VMH is in thermoregula-
tion is supported by anatomical data,
demonstrating a link between the VMH
and BAT.25 VMH neurons relay to mod-
ulate the sympathetic nervous system in
brainstem areas such as the raphe pallidus
(RPa) and inferior olive (IO), 2 nuclei
which have been functionally linked to
the regulation of BAT thermogenesis.26–28

Gene-modulation studies also support a
role for the VMH in thermoregulation,
with VMH-specific knockout of steroido-
genic factor-1 (SF-1) displaying lower
energy expenditure and expression of
UCP1 in BAT.29,30 In this sense, our
group and others have previously reported
that AMPK in the VMH is a key negative
regulator of sympathetically activated
BAT thermogenesis, integrating periph-
eral signals, such as thyroid hormone,
estradiol, leptin, and bone morphogenetic
protein 8b (BPM8b), as well as drugs such
as nicotine.31-34 Liraglutide is now a new
member of this list, because mice treated
centrally with liraglutide showed lower
levels of hypothalamic pAMPK and its
downstream target pACC in comparison
to saline-treated mice.23 Consistently,
both the pharmacological AMPK activator
AICAR and an adenoviral vector encoding
constitutively active isoforms of the cata-
lytic subunit AMPKa injected into the
VMH, were able to completely blunt the
actions of liraglutide on BAT and WAT.
Altogether these results indicate that brain
GLP-1 actions on BAT thermogenesis
and WAT browning are mediated by a
reduction in hypothalamic AMPK, specif-
ically within the VMH.23

It is important to highlight that these
results indicate that GLP-1 activation in
the VMH not only modulates BAT ther-
mogenesis (an effect shown for several
other factors, such as thyroid hormones,
estrogens, leptin BMP8b, nicotine, etc.),
but also controls the thermogenic pro-
gram in WAT (not demonstrated for the
other factors). So far, not many studies
have assessed the central control of brown-
ing of white fat. In one study, the brain
SIRT1 was demonstrated to play an
important role. The lack of SIRT1 in
POMC neurons caused a reduction in

sympathetic nerve activity, brown-fat-like
characteristics and UCP-1 expression in
perigonadal WAT.35 Another recent and
elegant study also indicated that O-
GlcNAc transferase (OGT) in agouti-
related peptide (AgRP) neurons within
the ARC suppress browning of white
fat.36

A key question is if the mechanistic
aspects related to brain GLP-1 and ther-
mogenesis will be of potential clinical rele-
vance. Liraglutide improves glycemic
control in type 2 diabetic patients with
the additional benefits of weight loss and a
low risk of hypoglycemia.37,38 As GLP-1R
agonists start to be included in treatment
guidelines, they are generally being recom-
mended as second- or third-line therapies
after the failure of one or more oral antidi-
abetic drugs.39 Besides its well-known
anti-diabetic properties, liraglutide has
been recommended for approval by the
US Food and Drug Administration
(FDA) committee also for the treatment
of obesity. The specific proposed indica-
tion is “ for chronic weight management in
individuals with a body mass index of
30 kg/m2 or greater, or 27 kg/m2 or greater
in the presence of at least 1 weight-related
comorbidity.” In an analysis involving
3731 patients, the liraglutide group lost
an average 8% of body weight vs 2.6%
with placebo at 56 weeks, thereby meeting
the FDA benchmark for weight-loss drugs
of a 5% difference between active treat-
ment and placebo. Whether this decrease
in body weight is linked to decreased food
intake or increase energy expenditure is
not yet clear in human subjects.40 As a
pilot study, we provided data from a
cohort of obese patients with T2D who
had been treated for 1 y with the antidia-
betic drugs metformin and metformin in
combination with the GLP-1R agonists
exenatide and liraglutide. As expected,
after 1 y of antidiabetic treatment, all
study groups showed a decrease in fasting
plasma glucose and insulin concentra-
tions. In addition, the groups treated with
metformin combined with exenatide or
liraglutide showed a significant decrease in
BMI and in total body fat percentage and
a significant increase in fat free mass.23

Accordingly, resting energy expenditure
adjusted for fat free mass was significantly
increased in patients treated with
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metformin in combination with exenatide
or liraglutide; but not in patients treated
only with metformin. Although it is still
too early to state that the hypothalamic
stimulation of the GLP-1 receptors is, at
least partially, responsible of the anti-obe-
sity effects of this drug, we cannot rule out
the possibility that an increase in resting
energy expenditure might be mediated by
peripheral stimulation of GLP-1 recep-
tors. Anyhow, taking into account all our
findings, rats and humans, it is tempting
to suggest that in addition to its anorexi-
genic effect, liraglutide works through spe-
cific central pathway to increase energy
expenditure that ultimately lead to a fur-
ther reduction in body weight. Rodent
studies assessing the same drug combina-
tions used in patients using both wild type
mice and brain specific GLP-1 receptor
knockout mice will be needed to solve this
question. The relevance of the central
effects of GLP1-agonists is highlighted by
the findings that liraglutide treatment of
mice lacking GLP-1 receptors in the brain
improved glucose metabolism, which
occurred without any major changes in
food intake or body weight in animals fed
a chow diet or high fat diet.41 However,
the actions of liraglutide on the browning
of white fat were not tested in this
experiment.

Whether the same mechanisms are
shared between liraglutide and new pepti-
des that are agonists to both GLP-1- and
other related hormone receptors remains
to be fully established. Initial reports using
this strategy showed very promising
results. A peptide with agonism at the glu-
cagon and GLP-1 receptors reduced body
weight gain, improved glucose metabo-
lism and ameliorated hepatic steatosis in
diet-induced obese mice.42 Another pep-
tide with potent co-agonism at both GLP-
1 and glucose-dependent insulinotropic
polypeptide (GIP) was efficient in several
models of obesity and diabetes, including
rodents, monkeys and humans.43

Although these peptides were not tested at
central level, it seems plausible to hypoth-
esize that part of their metabolic actions
may be mediated by the CNS, but again,
further studies are needed to confirm at
what extent the stimulation of brain GLP-
1 receptors is necessary for the efficacy of
these new promising therapeutic

Figure 1. Schematic representation of the biological action of the brain GLP-1 system. Brain GLP-1
reduces food intake through both homeostatic and hedonic mechanisms; increases thermogenesis
in brown adipose tissue; and stimulates lipid mobilization in white adipose tissue. Under hypergly-
cemic and hyperinsulinemic conditions, brain GLP-1 increases insulin secretion in pancreatic islets;
reduces glucose utilization in muscle and suppresses hepatic glucose production. Whether other
important actions of GLP-1 such as cardiovascular or bone metabolism are also regulated by brain
GLP-1 remain to be elucidated.
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strategies. In addition, these findings raise
the possibility that other well documented
effects of GLP-1 receptor activation such
as gastrointestinal motility, gastrointesti-
nal secretion, blood pressure, modulation
of innate immune-mediated inflammation
or bone metabolism could also be exerted
to some extent at central level (Fig. 1). In
summary, based on their incretin effects,
potent GLP-1 agonists were developed
and are at present at the forefront in the
management of type 2 diabetic patients.
Clinical experience indicated that these
compounds could also suitable for the
treatment of obesity, which has now been
well documented. In parallel, studies car-
ried out in experimental animals demon-
strate the likelihood that many of the
beneficial actions of GLP-1 agonists on
energy homeostasis are exerted at central
level. Noteworthy, the findings that hypo-
thalamic GLP-1 receptors, leading to
AMPK inhibition and subsequent activa-
tion of BAT thermogenesis and WAT
browning open up a new paradigm
regarding the mechanisms by which GLP-
1 exert a beneficial effect in obesity.
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