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Abstract

Vector space models (VSMs) represent word meanings as points in a high dimensional space. 

VSMs are typically created using a large text corpora, and so represent word semantics as 

observed in text. We present a new algorithm (JNNSE) that can incorporate a measure of 

semantics not previously used to create VSMs: brain activation data recorded while people read 

words. The resulting model takes advantage of the complementary strengths and weaknesses of 

corpus and brain activation data to give a more complete representation of semantics. Evaluations 

show that the model 1) matches a behavioral measure of semantics more closely, 2) can be used to 

predict corpus data for unseen words and 3) has predictive power that generalizes across brain 

imaging technologies and across subjects. We believe that the model is thus a more faithful 

representation of mental vocabularies.

1 Introduction

Vector Space Models (VSMs) represent lexical meaning by assigning each word a point in 

high dimensional space. Beyond their use in NLP applications, they are of interest to 

cognitive scientists as an objective and data-driven method to discover word meanings 

(Landauer and Dumais, 1997).

Typically, VSMs are created by collecting word usage statistics from large amounts of text 

data and applying some dimensionality reduction technique like Singular Value 

Decomposition (SVD). The basic assumption is that semantics drives a person’s language 

production behavior, and as a result co-occurrence patterns in written text indirectly encode 

word meaning. The raw co-occurrence statistics are unwieldy, but in the compressed VSM 

the distance between any two words is conceived to represent their mutual semantic 

similarity (Sahlgren, 2006; Turney and Pantel, 2010), as perceived and judged by speakers. 

This space then reflects the “semantic ground truth” of shared lexical meanings in a 

language community’s vocabulary. However corpus-based VSMs have been criticized as 

being noisy or incomplete representations of meaning (Glenberg and Robertson, 2000). For 
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example, multiple word senses collide in the same vector, and noise from mis-parsed 

sentences or spam documents can interfere with the final semantic representation.

When a person is reading or writing, the semantic content of each word will be necessarily 

activated in the mind, and so in patterns of activity over individual neurons. In principle 

then, brain activity could replace corpus data as input to a VSM, and contemporary imaging 

techniques allow us to attempt this. Functional Magnetic Resonance Imaging (fMRI) and 

Magnetoencephalography (MEG) are two brain activation recording technologies that 

measure neuronal activation in aggregate, and have been shown to have a predictive 

relationship with models of word meaning (Mitchell et al., 2008; Palatucci et al., 2009; 

Sudre et al., 2012; Murphy et al., 2012b).1

If brain activation data encodes semantics, we theorized that including brain data in a model 

of semantics could result in a model more consistent with semantic ground truth. However, 

the inclusion of brain data will only improve a text-based model if brain data contains 

semantic information not readily available in the corpus. In addition, if a semantic test 

involves another subject’s brain activation data, performance can improve only if the 

additional semantic information is consistent across brains. Of course, brains differ in shape, 

size and in connectivity, so additional information encoded in one brain might not translate 

to another. Furthermore, different brain imaging technologies measure very different 

correlates of neuronal activity. Due to these differences, it is possible that one subject’s 

brain activation data cannot improve a model’s performance on another subject’s brain data, 

or for brain data collected using a different recording technology. Indeed, inter-subject 

models of brain activation is an open research area (Conroy et al., 2013), as is learning the 

relationship between recording technologies (Engell et al., 2012; Hall et al., 2013). Brain 

data can also be corrupted by many types of noise (e.g. recording room interference, 

movement artifacts), another possible hindrance to the use of brain data in VSMs.

VSMs are interesting from both engineering and scientific standpoints. In this work we 

focus on the scientific question: Can the inclusion of brain data improve semantic 

representations learned from corpus data? What can we learn from such a model? From an 

engineering perspective, brain activation data will likely never replace text data. Brain 

activation recordings are both expensive and time consuming to collect, whereas textual data 

is vast and much of it is free to download. However, from a scientific perspective, 

combining text and brain data could lead to more consistent semantic models, in turn leading 

to a better understanding of semantics and semantic modeling generally.

In this paper, we leverage both kinds of data to build a hybrid VSM using a new matrix 

factorization method (JNNSE). Our hypothesis is that the noise of brain and corpus derived 

statistics will be largely orthogonal, and so the two data sources will have complementary 

strengths as input to VSMs. If this hypothesis is correct, we should find that the resulting 

VSM is more successful in modeling word semantics as encoded in human judgements, as 

well as separate corpus and brain data that was not used in the derivation of the model. We 

will show that our method:

1For more details on fMRI and MEG, see Section 4.2
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1. creates a VSM that is more correlated to an independent measure of word 

semantics.

2. produces word vectors that are more predictable from the brain activity of different 

people, even when brain data is collected with a different recording technology.

3. predicts corpus representations of withheld words more accurately than a model 

that does not combine data sources.

4. directly maps semantic concepts onto the brain by jointly learning neural 

representations.

Together, these results suggest that corpus and brain activation data measure semantics in 

compatible and complimentary ways. Our results are evidence that a joint model of brain- 

and text-based semantics may be closer to semantic ground truth than text-only models. Our 

findings also indicate that there is additional semantic information available in brain 

activation data that is not present in corpus data, and that there are elements of semantics 

currently lacking in text-based VSMs. We have made available the top performing VSMs 

created with brain and text data (http://www.cs.cmu.edu/~afyshe/papers/acl2014/).

In the following sections we will review NNSE, and our extension, JNNSE. We will 

describe the data used and the experiments to support our position that brain data is a 

valuable source of semantic information that compliments text data.

2 Non-Negative Sparse Embedding

Non-Negative Sparse Embedding (NNSE) (Murphy et al., 2012a) is an algorithm that 

produces a latent representation using matrix factorization. Standard NNSE begins with a 

matrix X ∈ ℝw×c made of c corpus statistics for w words. NNSE solves the following 

objective function:

(1)

(2)

(3)

The solution will find a matrix A ∈ ℝw×ℓ that is sparse, non-negative, and represents word 

semantics in an ℓ-dimensional latent space. D ∈ ℝℓ×c gives the encoding of corpus statistics 

in the latent space. Together, they factor the original corpus statistics matrix X in a way that 

minimizes the reconstruction error. The L1 constraint encourages sparsity in A; λ is a 

hyperparameter. Equation 2 constrains D to eliminate solutions where A is made arbitrarily 

small by making D arbitrarily large. Equation 3 ensures that A is non-negative. We may 

increase ℓ to give more dimensional space to represent word semantics, or decrease ℓ for 

more compact representations.
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The sparse and non-negative representation in A produces a more interpretable semantic 

space, where interpretability is quantified with a behavioral task (Chang et al., 2009; 

Murphy et al., 2012a). To illustrate the interpretability of NNSE, we describe a word by 

selecting the word’s top scoring dimensions, and selecting the top scoring words in those 

dimensions. For example, the word chair has the following top scoring dimensions:

1. chairs, seating, couches;

2. mattress, futon, mattresses;

3. supervisor, coordinator, advisor.

These dimensions cover two of the distinct meanings of the word chair (furniture and person 

of power).

NNSE’s sparsity constraint dictates that each word can have a non-zero score in only a few 

dimensions, which aligns well to previous feature elicitation experiments in psychology. In 

feature elicitation, participants are asked to name the characteristics (features) of an object. 

The number of characteristics named is usually small (McRae et al., 2005), which supports 

the requirement of sparsity in the learned latent space.

3 Joint Non-Negative Sparse Embedding

We extend NNSEs to incorporate an additional source of data for a subset of the words in X, 

and call the approach Joint Non-Negative Sparse Embeddings (JNNSEs). The JNNSE 

algorithm is general enough to incorporate any new information about the a word w, but for 

this study we will focus on brain activation recordings of a human subject reading single 

words. We will incorporate either fMRI or MEG data, and call the resulting models 

JNNSE(fMRI+Text) and JNNSE(MEG+Text) and refer to them generally as JNNSE(Brain

+Text). For clarity, from here on, we will refer to NNSE as NNSE(Text), or NNSE(Brain) 

depending on the single source of input data used.

Let us order the rows of the corpus data X so that the first 1 … w′ rows have both corpus 

statistics and brain activation recordings. Each brain activation recording is a row in the 

brain data matrix Y ∈ ℝw′×υ where υ is the number of features derived from the recording. 

For MEG recordings, υ =sensors × time points= 306 × 150. For fMRI υ = grey-matter 

voxels =≃ 20, 000 depending on the brain anatomy of each individual subject. The new 

objective function is:

(4)

(5)

(6)
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(7)

We have introduced an additional constraint on the rows 1 … w′, requiring that some of the 

learned representations in A also reconstruct the brain activation recordings (Y) through 

representations in D(b) ∈ ℝℓ×υ. Let us use A′ to refer to the brain-constrained rows of A. 

Words that are close in “brain space” must have similar representations in A′, which can 

further percolate to affect the representations of other words in A via closeness in “corpus 

space”.

With A or D fixed, the objective function for NNSE(Text) and JNNSE(Brain+Text) is 

convex. However, we are solving for A and D, so the problem is non-convex. To solve for 

this objective, we use the online algorithm of Section 3 from Mairal et al. (Mairal et al., 

2010). This algorithm is guaranteed to converge, and in practice we found that JNNSE(Brain

+Text) converged as quickly as NNSE(Text) for the same ℓ. We used the SPAMS package2 

to solve, and set λ = 0.025. This algorithm was a very easy extension to NNSE(Text) and 

required very little additional tuning.

We also consider learning shared representations in the case where data X and Y contain the 

effects of known disjoint features. For example, when a person reads a word, the recorded 

brain activation data Y will contain the physiological response to viewing the stimulus, 

which is unrelated to the semantics of the word. These signals can be attributed to, for 

example, the number of letters in the word and the number of white pixels on the screen 

(Sudre et al., 2012). To account for such effects in the data, we augment A′ with a set of n 

fixed, manually defined features (e.g. word length) to create . D(b) ∈ 

ℝ(ℓ+n)×υ is used with , to reconstruct the brain data Y. More generally, one could 

instead allocate a certain number of latent features specific to X or Y, both of which could 

be learned, as explored in some related work (Gupta et al., 2013). We use 11 perceptual 

features that characterize the non-semantic features of the word stimulus (for a list, see 

supplementary material).

The JNNSE algorithm is advantageous in that it can handle partially paired data. That is, the 

algorithm does not require that every row in X also have a row in Y. Fully paired data is a 

requirement of many other approaches (White et al., 2012; Jia and Darrell, 2010). Our 

approach allows us to leverage the semantic information in corpus data even for words 

without brain activation recordings.

JNNSE(Brain+Text) does not require brain data to be mapped to a common average brain, 

which is often the case when one wants to generalize between human subjects. Such 

mappings can blur and distort data, making it less useful for subsequent prediction steps. We 

avoid these mappings, and instead use the fact that similar words elicit similar brain 

activation within a subject. In the JNNSE algorithm, it is this closeness in “brain space” that 

guides the creation of the latent space A. Leveraging intra-subject distance measures to study 

inter-subject encodings has been studied previously (Kriegeskorte et al., 2008a; Raizada and 

2PAMS Package: http://spams-devel.gforge.inria.fr/
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Connolly, 2012), and has even been used across species (humans and primates) 

(Kriegeskorte et al., 2008b).

Though we restrict ourselves to using one subject per JNNSE(Brain+Text) model, the 

JNNSE algorithm could easily be extended to include data from multiple brain imaging 

experiments by adding a new squared loss term for additional brain data.

3.1 Related Work

Perhaps the most well known related approach to joining data sources is Canonical 

Correlation Analysis (CCA) (Hotelling, 1936), which has been applied to brain activation 

data in the past (Rustandi et al., 2009). CCA seeks two linear transformations that 

maximally correlate two data sets in the transformed form. CCA requires that the data 

sources be paired (all rows in the corpus data must have a corresponding brain data), as 

correlation between points is integral to the objective. To apply CCA to our data we would 

need to discard the vast majority of our corpus data, and use only the 60 rows of X with 

corresponding rows in Y. While CCA holds the input data fixed and maximally correlates 

the transformed form, we hold the transformed form fixed and seek a solution that 

maximally correlates the reconstruction (AD(c) or A′D(b)) with the data (X and Y 

respectively). This shift in error compensation is what allows our data to be only partially 

paired. While a Bayesian formulation of CCA can handle missing data, our model has 

missing data for > 97% of the full w × (υ + c) brain and corpus data matrix. To our 

knowledge, this extreme amount of missing data has not been explored with Bayesian CCA.

One could also use a topic model style formulation to represent this semantic representation 

task. Supervised topic models (Blei and McAuliffe, 2007) use a latent topic to generate two 

observed outputs: words in a document and a categorical label for the document. The same 

idea could be applied here: the latent semantic representation generates the observed brain 

activity and corpus statistics. Generative and discriminative models both have their own 

strengths and weaknesses, generative models being particularly strong when data sources are 

limited (Ng and Jordan, 2002). Our task is an interesting blend of data-limited and data-rich 

problem scenarios.

In the past, various pieces of additional information have been incorporated into semantic 

models. For example, models with behavioral data (Silberer and Lapata, 2012) and models 

with visual information (Bruni et al., 2011; Silberer et al., 2013) have both shown to 

improve semantic representations. Other works have correlated VSMs built with text or 

images with brain activation data (Murphy et al., 2012b; Anderson et al., 2013). To our 

knowledge, this work is the first to integrate brain activation data into the construction of the 

VSM.
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4 Data

4.1 Corpus Data

The corpus statistics used here are the downloadable vectors from Fyshe et al. (2013)3. They 

are compiled from a 16 billion word subset of ClueWeb09 (Callan and Hoy, 2009) and 

contain two types of corpus features: dependency and document features, found to be 

complimentary for most tasks. Dependency statistics were derived by dependency parsing 

the corpus and compiling counts for all dependencies incident on the word. Document 

statistics are word-document co-occurrence counts. Count thresholding was applied to 

reduce noise, and positive pointwise-mutual-information (PPMI) (Church and Hanks, 1990) 

was applied to the counts. SVD was applied to the document and dependency statistics and 

the top 1000 dimensions of each type were retained. We selected the rows corresponding to 

noun-tagged words (approx. 17000 words).

4.2 Brain Activation Data

We have MEG and fMRI data at our disposal. MEG measures the magnetic field caused by 

many thousands of neurons firing together, and has good time resolution (1000 Hz) but poor 

spatial resolution. fMRI measures the change in blood oxygenation that results from 

differential neural activity, and has good spatial resolution but poor time resolution (0.5–1 

Hz). We have fMRI data and MEG data for 18 subjects (9 in each imaging modality) 

viewing 60 concrete nouns (Mitchell et al., 2008; Sudre et al., 2012). The 60 words span 12 

word categories (animals, buildings, tools, insects, body parts, furniture, building parts, 

utensils, vehicles, objects, clothing, food). Each of the 60 words was presented with a line 

drawing, so word ambiguity is not an issue. For both recording modalities, all trials for a 

particular word were averaged together to create one training instance per word, with 60 

training instances in all for each subject and imaging modality. More preprocessing details 

appear in the supplementary material.

5 Experimental Results

Here we explore several variations of JNNSE and NNSE formulations. For a comparison of 

the models used, see Table 1.

5.1 Correlation to Behavioral Data

To test if our joint model of Brain+Text is closer to semantic ground truth we compared the 

latent representation A learned via JNNSE(Brain+Text) or NNSE(Text) to an independent 

behavioral measure of semantics. We collected behavioral data for the 60 nouns in the form 

of answers to 218 semantic questions. Answers were gathered with Mechanical Turk. The 

full list of questions appear in the supplementary material. Some example questions are:“Is 

it alive?”, and “Can it bend?”. Mechanical Turk users were asked to respond to each 

question for each word on a scale of 1–5. At least 3 respondents answered each question and 

the median score was used. This gives us a semantic representation of each of the 60 words 

in a 218-dimensional behavioral space. Because we required answers to each of the 

3http://www.cs.cmu.edu/~afyshe/papers/conll2013/
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questions for all words, we do not have the problems of sparsity that exist for feature 

production norms from other studies (McRae et al., 2005). In addition, our answers are 

ratings, rather than binary yes/no answers.

For a given value of ℓ we solve the NNSE(Text) and JNNSE(Brain+Text) objective function 

as detailed in Equation 1 and 4 respectively. We compared JNNSE(Brain+Text) and 

NNSE(Text) models by measuring the correlation of all pairwise distances in JNNSE(Brain

+Text) and NNSE(Text) space to the pairwise distances in the 218-dimensional semantic 

space. Distances were calculated using normalized Euclidean distance (equivalent in rank-

ordering to cosine distance, but more suitable for sparse vectors). Figure 1 shows the results 

of this correlation test. The error bars for the JNNSE(Brain+Text) models represent a 95% 

confidence interval calculated using the standard error of the mean (SEM) over the 9 person-

specific JNNSE(Brain+Text) models. Because there is only one NNSE(Text) model for each 

dimension setting, no SEM can be calculated, but it suffices to show that the NNSE(Text) 

correlation does not fall into the 95% confidence interval of the JNNSE(Brain+Text) 

models. The SVD matrix for the original corpus data has correlation 0.4279 to the 

behavioral data, also below the 95% confidence interval for all JNNSE models. The results 

show that a model that incorporates brain activation data is more faithful to a behavioral 

measure of semantics.

5.2 Word Prediction from Brain Activation

We now show that the JNNSE(Brain+Text) vectors are more consistent with independent 

samples of brain activity collected from different subjects, even when recorded using 

different recording technologies. As previously mentioned, because there is a large degree of 

variation between brains and because MEG and fMRI measure very different correlates of 

neuronal activity, this type of generalization has proven to be very challenging and is an 

open research question in the neuroscience community.

The output A of the JNNSE(Brain+Text) or NNSE(Text) algorithm can be used as a VSM, 

which we use for the task of word prediction from fMRI or MEG recordings. A 

JNNSE(Brain+Text) created with a particular human subject’s data is never used in the 

prediction framework with that same subject. For example, if we use fMRI data from subject 

1 to create a JNNSE(fMRI+Text), we will test it with the remaining 8 fMRI subjects, but all 

9 MEG subjects (fMRI and MEG subjects are disjoint).

Let us call the VSM learned with JNNSE(Brain+Text) or NNSE(Text) the semantic vectors. 

We can train a weight matrix W that predicts the semantic vector a of a word from that 

word’s brain activation vector x: a = Wx. W can be learned with a variety of methods, we 

will use L2 regularized regression. One can also train regressors that predict the brain 

activation data from the semantic vector: x = Wa, but we have found this to give lower 

predictive accuracy. Note that we must re-train our weight matrix W for each subject 

(instead of re-using D(b) from Equation 4) because testing always occurs on a different 

subject, and the brain activation data is not inter-subject aligned.

We train ℓ independent L2 regularized regressors to predict the ℓ-dimensional vectors a = 

{a1 … aℓ}. The predictions are concatenated to produce a predicted semantic vector: â = 
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{â1, …, âℓ}. We assess word prediction performance by testing if the model can differentiate 

between two unseen words, a task named 2 vs. 2 prediction (Mitchell et al., 2008; Sudre et 

al., 2012). We choose the assignment of the two held out semantic vectors (a(1), a(2)) to 

predicted semantic vectors (â(1), â(2)) that minimizes the sum of the two normalized 

Euclidean distances. 2 vs. 2 accuracy is the percentage of tests where the correct assignment 

is chosen.

The 60 nouns fall into 12 word categories. Words in the same word category (e.g. screw-

driver and hammer) are closer in semantic space than words in different word categories, 

which makes some 2 vs. 2 tests more difficult than others. We choose 150 random pairs of 

words (with each word represented equally) to estimate the difficulty of a typical word pair, 

without having to test all  word pairs. The same 150 random pairs are used for all 

subjects and all VSMs. Expected chance performance on the 2 vs. 2 test is 50%.

Results for testing on fMRI data in the 2 vs. 2 framework appear in Figure 2. JNNSE(fMRI

+Text) data performed on average 6% better than the best NNSE(Text), and exceeding even 

the original SVD corpus representations while maintaining interpretability. These results 

generalize across brain activity recording types; JNNSE(MEG+Text) performs as well as 

JNNSE(fMRI+Text) when tested on fMRI data. The results are consistent when testing on 

MEG data: JNNSE(MEG+Text) or JNNSE(fMRI+Text) outperforms NNSE(Text) (see 

Figure 3).

NNSE(Text) performance decreases as the number of latent dimension increases. This 

implies that without the regularizing effect of brain activation data, the extra NNSE(Text) 

dimensions are being used to overfit to the corpus data, or possibly to fit semantic properties 

not detectable with current brain imaging technologies. However, when brain activation data 

is included, increasing the number of latent dimensions strictly increases performance for 

JNNSE(fMRI+Text). JNNSE(MEG+Text) has peak performance with 500 latent 

dimensions, with ~ 1% decrease in performance at 1000 latent dimensions. In previous 

work, the ability to decode words from brain activation data was found to improve with 

added latent dimensions (Murphy et al., 2012a). Our results may differ because our words 

are POS tagged, and we included only nouns for the final NNSE(Text) model. We found 

that with the original λ = 0.05 setting from Murphy et al. (Murphy et al., 2012a) produced 

vectors that were too sparse; four of the 60 test words had all-zero vectors (JNNSE(Brain

+Text) models did have any allzero vectors). To improve the NNSE(Text) vectors for a fair 

comparison, we reduced λ = 0.025, under which NNSE(Text) did not produce any allzero 

vectors for the 60 words.

Our results show that brain activation data contributes additional information, which leads to 

an increase in performance for the task of word prediction from brain activation data. This 

suggests that corpus-only models may not capture all relevant semantic information. This 

conflicts with previous studies which found that semantic vectors culled from corpus 

statistics contain all of the semantic information required to predict brain activation 

(Bullinaria and Levy, 2013).
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5.2.1 Prediction from a Brain-only Model—How much predictive power does the 

corpus data provide to this word prediction task? To test this, we calculated the 2 vs. 2 

accuracy for a NNSE(Brain) model trained on brain activation data only. We train 

NNSE(Brain) with one subject’s data and use the resulting vectors to calculate 2 vs. 2 

accuracy for the remaining subjects. We have brain data for only 60 words, so using ℓ ≥ 60 

latent dimensions leads to an under-constrained system and a degenerate solution wherein 

only one latent dimension is active for any word (and where the brain data can be perfectly 

reconstructed). The degenerate solution makes it impossible to generalize across words and 

leads to performance at chance levels. An NNSE(MEG) trained on MEG data gave 

maximum 2 vs. 2 accuracy of 67% when ℓ = 20. The reduced performance may be due to the 

limited training data and the low SNR of the data, but could also be attributed to the lack of 

corpus information, which provides another piece of semantic information.

5.2.2 Effect on Rows Without Brain Data—It is possible that some JNNSE(Brain

+Text) dimensions are being used exclusively to fit brain activation data, and not the 

semantics represented in both brain and corpus data. If a particular dimension j is solely 

used for brain data, the sparsity constraint will favor solutions that sets A(i,j) = 0 for i > w′ 

(no brain data constraint), and A(i,j) > 0 for some 0 ≤ i ≤ w′ (brain data constrained). We 

found that there were no such dimensions in the JNNSE(Brain+Text). In fact for the ℓ = 

1000 JNNSE(Brain+Text), all latent dimensions had greater than ~ 25% non-zero entries, 

which implies that all dimensions are being shared between the two data inputs (corpus and 

brain activation), and are used to reconstruct both.

To test that the brain activation data is truly influencing rows of A not constrained by brain 

activation data, we performed a dropout test. We split the original 60 words into two 30 

word groups (as evenly as possible across word categories). We trained JNNSE(fMRI+Text) 

with 30 words, and tested word prediction with the remaining 8 subjects and the other 30 

words. Thus, the training and testing word sets are disjoint. Because of the reduced size of 

the training data, we did see a drop in performance, but JNNSE(fMRI+Text) vectors still 

gave word prediction performance 7% higher than NNSE(Text) vectors. Full results appear 

in the supplementary material.

5.3 Predicting Corpus Data

Here we ask: can an accurate latent representation of a word be constructed using only brain 

activation data? This task simulates the scenario where there is no reliable corpus 

representation of a word, but brain data is available. This scenario may occur for seldom-

used words that fall below the thresholds used for the compilation of corpus statistics. It 

could also be useful for acronym tokens (lol, omg) found in social media contexts where the 

meaning of the token is actually a full sentence.

We trained a JNNSE(fMRI+Text) with brain data for all 60 words, but withhold the corpus 

data for 30 of the 60 words (as evenly distributed as possible amongst the 12 word 

categories). The brain activation data for the 30 withheld words will allow us to create latent 

representations in A for withheld words. Simultaneously, we will learn a mapping from the 

latent representation to the corpus data (D(c)). This task cannot be performed with a 
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NNSE(Text) model because one cannot learn a latent representation of a word without data 

of some kind. This further emphasizes the impact of brain imaging data, which will allow us 

to generalize to previously unseen words in corpus space.

We use the latent representations in A for each of the words without corpus data and the 

mapping to corpus space D(c) to predict the withheld corpus data in X. We then rank the 

withheld rows of X by their distance to the predicted row of X and calculate the mean rank 

accuracy of the held out words. Results in Table 2 show that we can recreate the withheld 

corpus data using brain activation data. Peak mean rank accuracy (67.37) is attained at ℓ = 

500 latent dimensions. This result shows that neural semantic representations can create a 

latent representation that is faithful to unseen corpus statistics, providing further evidence 

that the two data sources share a strong common element.

How much power is the remaining corpus data supplying in scenarios where we withhold 

corpus data? To answer this question, we trained an NNSE(Brain) model on 30 words of 

brain activation, and then trained a regressor to predict corpus data from those latent brain-

only representations. We use the trained regressor to predict the corpus data for the 

remaining 30 words. Peak performance is attained at ℓ = 10 latent dimensions, giving mean 

rank accuracy of 62.37, significantly worse than the model that includes both corpus and 

brain activation data (67.37).

5.4 Mapping Semantics onto the Brain

Because our method incorporates brain data into an interpretable semantic model, we can 

directly map semantic concepts onto the brain. To do this, we examined the mappings from 

the latent space to the brain space via D(b). We found that the most interpretable mappings 

come from models where the perceptual features had been scaled down (divided by a 

constant factor), which encourages more of the data to be explained by the semantic features 

in A. Figure 4 shows the mappings (D(b)) for dimensions related to shelter, food and body 

parts. The red areas align with areas of the brain previously known to be activated by the 

corresponding concepts (Mitchell et al., 2008; Just et al., 2010). Our model has learned these 

mappings in an unsupervised setting by relating semantic knowledge gleaned from word 

usage to patterns of activation in the brain. This illustrates how the interpretability of JNNSE 

can allow one to explore semantics in the human brain. The mappings for one subject are 

available for download (http://www.cs.cmu.edu/~afyshe/papers/acl2014/).

6 Future Work and Conclusion

We are interested in pursuing many future projects inspired by the success of this model. We 

would like to extend the JNNSE algorithm to incorporate data from multiple subjects, 

multiple modalities and multiple experiments with non-overlapping words. Including 

behavioral data and image data is another possibility.

We have explored a model of semantics that incorporates text and brain activation data. 

Though the number of words for which we have brain activation data is comparatively 

small, we have shown that including even this small amount of data has a positive impact on 

the learned latent representations, including for words without brain data. We have provided 
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evidence that the latent representations are closer to the neural representation of semantics, 

and possibly, closer to semantic ground truth. Our results reveal that there are aspects of 

semantics not currently represented in text-based VSMs, indicating that there may be room 

for improvement in either the data or algorithms used to create VSMs. Our findings also 

indicate that using the brain as a semantic test can separate models that capture this 

additional semantic information from those that do not. Thus, the brain is an important 

source of both training and testing data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Correlation of JNNSE(Brain+Text) and NNSE(Text) models with the distances in a 
semantic space constructed from behavioral data
Error bars indicate SEM.
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Figure 2. Average 2 vs. 2 accuracy for NNSE(Text) and JNNSE(Brain+Text), tested on fMRI 
data
Models created with one subject’s fMRI data were not used to compute 2 vs. 2 accuracy for 

that same subject.
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Figure 3. Average 2 vs. 2 accuracy for NNSE(Text) and JNNSE(Brain+Text), tested on MEG 
data
Models created with one subject’s MEG data were not used to compute 2 vs. 2 accuracy for 

that same subject.
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Figure 4. The mappings (D(b)) from latent semantic space (A) to brain space (Y) for fMRI and 
words from three semantic categories
Shown are representations of the fMRI slices such that the back of the head is at the top of 

the image, the front of the head is at the bottom.
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Table 1

A Comparison of the models explored in this paper, and the data they operate upon.

Model Name Section(s) Text Data Brain Data Withheld Data

NNSE(Text) 2, 5 ✓ x -

NNSE(Brain) 2, 5.2.1, 5.3 x ✓ -

JNNSE(Brain+Text) 3, 5 ✓ ✓ -

JNNSE(Brain+Text): Dropout task 5.2.2 ✓ ✓ subset of brain data

JNNSE(Brain+Text): Predict corpus 5.3 ✓ ✓ subset of text data
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Table 2

Mean rank accuracy over 30 words using corpus representations predicted by a JNNSE(MEG+Text) model 

trained with some rows of the corpus data withheld. Significance is calculated using Fisher’s method to 

combine p-values for each of the subject-dependent models.

Latent Dim size Rank Accuracy p-value

250 65.30 < 10−19

500 67.37 < 10−24

1000 63.47 < 10−15
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