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Abstract 

When heterogeneous samples of macromolecular assemblies are being examined by 3D electron 

microscopy (3DEM), often multiple reconstructions are obtained. For example, subtomograms of 

individual particles can be acquired from tomography, or volumes of multiple 2D classes can be 

obtained by random conical tilt reconstruction. Of these, similar volumes can be averaged to achieve 

higher resolution. Volume alignment is an essential step before 3D classification and averaging. Here 

we present a projection-based volume alignment (PBVA) algorithm. We select a set of projections to 

represent the reference volume and align them to a second volume. Projection alignment is achieved 

by maximizing the cross-correlation function with respect to rotation and translation parameters. If 

data are missing, the cross-correlation functions are normalized accordingly. Accurate alignments are 

obtained by averaging and quadratic interpolation of the cross-correlation maximum. Comparisons of 

the computation time between PBVA and traditional 3D cross-correlation methods demonstrate that 

PBVA outperforms the traditional methods. Performance tests were carried out with different signal-to-

noise ratios using modeled noise and with different percentages of missing data using a cryo-EM 

dataset. All tests show that the algorithm is robust and highly accurate. PBVA was applied to align the 

reconstructions of a subcomplex of the NADH: ubiquinone oxidoreductase (Complex I) from the yeast 

Yarrowia lipolytica, followed by classification and averaging. 

 

Keywords: 3D electron microscopy, volume alignment, image processing, missing data, 3D 

reconstruction, volume averaging. 
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1. Introduction 

High resolution in 3D electron microscopy (3DEM) requires averaging data from multiple images 

and / or multiple volumes. Techniques ideally suited for analyzing single particles that show 

conformational variations, especially when these variations are not localized, are the random conical 

tilt reconstruction (RCT) (Radermacher et al., 1986; Radermacher et al., 1987) and the orthogonal tilt 

reconstruction techniques (OTR) (Leschziner and Nogales, 2006). In both techniques, pattern 

recognition methods are required to separate the projection images into different groups containing 

only similar particles before carrying out individual 3D reconstructions for each group. Since pattern 

recognition of 2D images cannot differentiate between variations of particle orientation and particle 

shape, a second alignment and classification step must be applied to the set of 3D reconstructions to 

find the source of the variations. Projection data belonging to similar volumes in different orientations 

can then be merged to obtain a higher resolution structure. An alternative technique for studying 

structures in different conformations and / or orientations is electron tomography (Hoppe et al., 1976a; 

1976b; 1976c). Using either single axis, dual axis or conical tilting tomography methods, each object 

is reconstructed individually. The volumes are aligned, classified, using one of the methods suitable 

for 3D classification of volumes with missing data, and the projection data of volumes that are similar 

after alignment are merged into a single reconstruction. Missing data, however, limits the selection of 

classification methods. For example visual classification alone may be misleading, since missing data 

create artifacts that can easily be interpreted as conformational differences (eg. Frank, 1992). 

Most of the alignment algorithms of 3D density maps with missing data are based on a 

normalized distance measurement using only the overlapping data. The constrained cross-correlation 

(Förster et al., 2008; Frangakis et al., 2002), implemented in real space, was used as the similarity 

measure for obtaining class averages of subtomograms of the envelope glycoproteins on the surface 

of SIV and HIV virions (Winkler, 2007; Winkler et al., 2009). A renormalized cross-correlation, 

implemented in Fourier space and normalized to the region of the commonly existing data was used 

and tested with GroEL particles (Schmid and Booth, 2008). A more general normalized distance 

measure was implemented by (Bartesaghi et al., 2008). Simultaneously searching shift and rotation 
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parameters by either finding the maximum of a cross-correlation or the minimum of a distance is an 

onerous task. Hence, all the methods mentioned above perform separate searches for shifts and 

rotations. Recently, a maximum likelihood based algorithm was developed to optimize all parameters 

in the model (shifts, rotations, classification parameters, and the missing data) at the same time 

(Stölken et al., 2011). However, this algorithm is computationally expensive, especially when 

alignment parameters need to be determined with high accuracy.  

We present here a new algorithm for aligning 3D density maps with missing data, that we have 

named projection-based volume alignment (PBVA). This algorithm searches 3D shift and rotation 

parameters simultaneously by multiple projection alignment. It is computationally faster than an 

exhaustive search using 3D cross-correlation and provides an accurate determination of the 

parameters. The algorithm is an extension of the earlier alignment techniques where 0° projections 

were used to align volumes to a reference (Radermacher et al., 2001; Ruiz et al., 2001). While we 

previously expanded this approach to sets of orthogonal projections (unpublished), here we present 

the generalization of the method, using multiple projections of a reference at arbitrary angles for the 

alignment of volumes. The angles of the reference projections can be chosen such that the 

projections show the most rotation sensitive features, thus further increasing the robustness of the 

algorithm. The alignment method has been tested with different signal-to-noise ratios and varying 

amounts of missing data. Tests have been carried out with model data and with cryo-EM data that 

represent single axis tilt series. Finally, the complete method, including multivariate statistical analysis 

by PPCA-EM (Yu et al., 2010) has been applied to a small RCT data set of a subcomplex of the 

NADH: ubiquinone oxidoreductase (Complex I) from the yeast Yarrowia lipolytica (Dröse et al., 2011). 

2. Methods 

3D alignment methods are used to bring two 3D density maps to the same orientation and 

position. Below we will present a detailed description of the projection based volume alignment 

method (PBVA) which uses a projection matching algorithm based on Radon transforms 

(Radermacher, 1994; 1997). Two volumes are aligned by aligning several projections of a reference 
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volume to a second volume whose orientation is unknown. The alignment parameters of the 

projections are then combined to obtain the 3D alignment parameters of the second volume.  

Figure 1 illustrates the basic principle of the method for three projections. In practice, a larger 

number of projections are used to achieve a good balance between accuracy of the results and 

computational speed of the procedure. Missing data in the second volume do not influence the 

alignment, since the cross-correlation method used in the Radon transform based projection matching 

algorithm excludes known missing regions and adjusts the normalization of the cross-correlation 

accordingly. In addition, a method is presented to find the regions of missing data if they are not 

known a priori.  

Projection matching is carried out by cross-correlation of the 2D Radon transform of a projection 

with the 3D Radon transform of a volume. In two dimensions, a discrete Radon transform is the set of 

all one-dimensional projections (line integrals) over a 180° angular range. In three dimensions, the 

Radon transform is the set of all lines obtained by integrating over all possible planes whose 

directions can be described by two angles, each sampled over a 180° range. When a one-

dimensional Fourier transform is applied to the lines of either a 2D or 3D Radon transform, a Fourier 

transform in polar coordinates is obtained. Like for Fourier transforms, the central section theorem 

holds also for Radon transforms. The 2D Radon transform of a projection is a central cross-section 

through the 3D Radon transform of the corresponding volume. For computational purposes, both, 

polar Fourier transforms and Radon transforms can be used interchangeably, the main difference 

being that Fourier transforms are complex valued while Radon transforms are real valued which 

simplifies certain interpolation processes. The reconstruction algorithm frequently used in our 

laboratory averages 2D Radon transforms into a 3D Radon transform. In our implementation, every 

line in the 3D Radon transform contains an index that counts how many projection transform lines 

have been averaged into each line in the 3D transform (Radermacher, 1994). Thus, this index also 

provides information regarding the location of missing data; lines where no data have contributed 

show 0 as the index value. For projection matching, the 2D Radon or polar Fourier transform of a 

projection is cross-correlated line by line with all the lines in the central sections of the 3D Radon or 
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Fourier transform, essentially comparing the projection with all possible projections of the volume. 

Lines with no contributions (missing data) are excluded from these calculations.  

2.1 The geometric relation between two volumes 

The geometric relation between two density maps can be described by a rotation matrix and a 

translation vector. If ( )f r is the reference volume and ( )g r  is the volume that is shifted and rotated 

relative to the reference, then the relation between the two volumes can be written as 

( ) ( )g f= +r Rr t , (1) 

or 

( ) ( )( )T
f g= −r R r t ,  

where ( )
T

x y z=r  are Cartesian coordinates, 3 3×∈R �  is a rotation matrix and ( )
T

x y z
t t t=t  

is the translation between the two density maps. The rotation matrix R  defines the rotation by a set of 

Euler angles ( ), ,α β γ . Here we follow the same Euler angle convention as used in the EM system 

(Hegerl and Altbauer, 1982) and SPIDER (Frank, 2006; Frank et al., 1981), i.e., in a right handed 

coordinate system, the object is first rotated by an angle γ  clockwise around the Z-axis, then by angle 

β  counterclockwise around the new Y-axis and finally by angle α  clockwise around the new Z-axis. 

The rotation matrices for rotations by an arbitrary angle η   around the Z and Y-axis are defined as  

   

  

. 

 

The Euler rotation matrix R  is calculated as the product of the three corresponding rotation matrices 

( ) ( ) ( )Z Y Zα β γ=R R R R . The same convention is also used in other EM software packages such as 

IMAGIC, MRC, FREALIGN, EMAN2 and SPARX, see Penczek (2010) for a review. Even with this 

definition the values of the Euler angles that describe a specific 3D rotation are in general not unique 

cos sin 0 cos 0 sin

( ) sin cos 0 ( ) 0 1 0
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without restricting the range of the three angles. In Appendix A, we present an algorithm for obtaining 

a unique set of angles for any given rotation that is used in our alignment. 

 

2.2. Projection angles and translations 

A projection ( ),p x y  of ( )f r  at the projection angles ( ), ,f f fα β γ  is defined as, 

( ) ( ) ( )( )T

1 1 1 1,p x y f dz g dz= = −∫ ∫r R r t , (2) 

where ( )f r  and ( )g r are two volumes rotated and shifted relative to each other as defined in (1), 1z  

is the Z-direction of the coordinate system of ( )f r   rotated by ( ), ,f f fα β γ  and 1 1( , )x y  are the 

corresponding x-y coordinates in the projection plane  

( )
T

1 1 1 fx y z = Q r  and ( ) ( ) ( )f Z f Y f Z fα β γ=Q R R R . 

Likewise, the projection ( ),q x y  of ( )g r  at the projection angles ( ), ,g g gα β γ  is, 

( ) ( )2 2 2,q x y g dz= ∫ r , (3) 

where 2z  is the Z-direction of the coordinate system of ( )g r   rotated by ( ), ,g g gα β γ  and 2 2( , )x y  are 

the corresponding x-y coordinates in the projection plane  

( )
T

2 2 2 gx y z = Q r  and ( ) ( ) ( )g Z g Y g Z gα β γ=Q R R R . 

Let T′ =r R r  and ( )T′′ = −r R r t . Then Equation 3 becomes, 

( ) ( ) ( )2 2 2 2 2, ,x yq x y g dz q x s y s′′ ′′ ′′ ′′ ′ ′= = − −∫ r , (4) 

where ( )
T T

2 2 2 gx y z′ ′ ′ = Q R r , ( ) ( )
T T

2 2 2 gx y z′′ ′′ ′′ = −Q R r t , and 

T
1 0 0

0 1 0

x

g

y

s

s

   
=   
  

Q R t , (5) 

In the following context, we let M  denote the matrix 
1 0 0

0 1 0

 
 
 

. 

Equations 4 and 2 are identical when  
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T

f g=R Q Q . (6) 

Using Equation 6, Equation 5 can be simplified to 

( )
T

x y f
s s = MQ t . (7) 

In summary, if the projection p  of the reference ( )f r  and the projection q  of ( )g r  are the 

same except for the translation ( ),x ys s , then the rotation R  between the volumes can be computed 

using the two projection matrices 
fQ  and 

gQ ; and the translation  ( ),x ys s   in the plane of the 

projection q   is related to the 3D translation  t   through 
gQ  providing two dimensions of the 3D shift 

vector needed for translational 3D alignment. 

2.3. Rotational alignment using a single projection 

The rotational alignment R  between two volumes can be found by finding two matched 

projections: the projection p  of the reference ( )f r  and the matching projection q  of the volume 

( )g r , whose alignment is to be determined. The projection p  is projected at angles ( ), ,f f fα β γ , the 

subscript  f  again indicating the angles relative to the coordinate system of ( )f r . The matching 

projection q  is found by cross-correlating p  to all possible projections of the volume ( )g r , which 

results in a five-dimensional cross-correlation function, ( ), ,c , , , ,
f f f g g g x ys sα β γ α β γ , where the subscript 

g indicates angles relative to the coordinate system of ( )g r  and ( )
T

,
x y

s s  is a translation vector in the 

plane of the projection. The algorithm for acquiring the five-dimensional cross-correlation function is 

described in detail in Radermacher (1994) and is reiterated in Appendix B.  

The rotational alignment of a projection results in a 3D rotation cross-correlation function, which is the 

five-dimensional cross-correlation function maximized over all possible in-plane shifts, i.e.,  

( ) ( ), , , , ,cc , , max c , , , ,
f f f x y f f fg g g s s g g g x ys sα β γ α β γα β γ α β γ= . (8) 



 8

The best matching projection is found at angles ( ), ,o o o

g g gα β γ , where the maximum of the rotation 

cross-correlation function is found, i.e., ( ) ( ), ,, , arg max cc , ,
f f f

o o o

g g g g g gα β γα β γ α β γ= . The rotation 

alignment R  using only a single projection is then computed as T o

f g=R Q Q  (Eq. 6), where the rotation 

matrices are ( ) ( ) ( )f Z f Y f Z fα β γ=Q R R R  and ( ) ( ) ( )o o o o

g Z g Y g Z gα β γ=Q R R R .  

A single projection would be sufficient to carry out a 3D rotational alignment. However, the cross-

correlation is strongly affected by noise, which cannot be neglected in EM images and density maps. 

Hence, multiple projections are introduced to make the rotational alignment more robust.  

2.4. Rotational alignment using multiple projections 

Multiple projections , 1, 2, ,
i

p i N= … , ( N  is the number of projections used for the alignment) of 

the reference volume ( )f r , generate multiple rotation cross-correlation functions

( )
, , ,, ,cc , ,

f i f i f i g g gα β γ α β γ , 1, 2, ,i N= … . The rotational alignment R  is computed by determining the 

maximum of the combined cross-correlation (ccc ) function, which is computed as 

( )( )
, , ,, ,

1

cc , ,

ccc( , , )
f i f i f i

N

g g g

i

N

α β γ α β γ

α β γ ==
∑

. 
(9) 

(See Appendix C for technical details.) 

Three sets of angles and their corresponding rotation matrices are involved in the combined 

cross-correlation function: ( ) ( ) ( ), , , ,f i Z f i Y f i Z f iα β γ=Q R R R  defining the orientation of the i-th 

projection of the reference ( )f r , ( ) ( ) ( )g Z g Y g Z gα β γ=Q R R R  defining the orientation of a 

projection of the volume ( )g r , and ( ) ( ) ( )Z Y Zα β γ=R R R R  defining the rotation between the two 

density maps. The relation between the three rotation matrices is T

,f i g=R Q Q  (Eq. 6). 

The values in combined cross-correlation function ccc( , , )α β γ  (Eq. 9) indicate the degree of 

matching between the volume and a set of projections , 1, ,
i

p i N= … , rotating simultaneously as a 
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group. Essentially, the set of Radon or Fourier transforms of the reference projections represent a 

subsampled version of the 3D Radon transform or Fourier transform of the reference. The best match 

occurs when ccc( , , )α β γ  reaches the maximum value, i.e. ( )( , , ) arg max ccc , ,o o oα β γ α β γ= . 

Hence, ( ) ( ) ( )o o o

Z Y Zα β γ=R R R R  is the 3D rotational alignment between the two density maps. 

2.5. Translational alignment using multiple projections 

The 3D translational alignment t  can also be computed from sets of 2D in-plane shifts found by 

the projection matching algorithm by essentially back-projecting each of the 2D translation vectors 

found for multiple projections. This process leads to an equation system that can be solved by linear 

least squares minimization 

A set of in-plane shifts as well as the angles that best match the projections to the volume ( )g r  

can be found by maximizing the five-dimensional cross-correlation, i.e. 

( ) ( ), ,, , , , arg max c , , , ,
f f f

o o o o o

g g g x y g g g x ys s s sα β γα β γ α β γ= . However, the shift vector for a single projection 

is insufficient to calculate the 3D translational alignment since the information of one dimension is lost 

during the projection process.  

A set of projections of the reference volume, , 1, 2, ,
i

p i N= … , aligned to the volume ( )g r , 

results in a set of shifts in the corresponding projection planes,  

( ) ( )
, , ,, , , , , , ,, , , , arg max c , , , ,

f i f i f i

o o o o o

g i g i g i x i y i g g g x ys s s sα β γα β γ α β γ=
  

(10) 

As shown in Equation 7, ( )
T

, , ,

o o

x i y i f i
s s = MQ t , is a system of linear equations. We reformulate 

the linear equations as follows: let ( )
T

,1 ,1 , ,

o o o o

x y x N y N
s s s s=s …  and a matrix 2 3N

f

×∈Q� �  

containing the selected rows of ,f iQ ,  

 

( ) ( ) ( ) ( ) ( ) ( )( )
T

,1 ,1 , , , ,1 2 1 2 1 2
, , , , , , ,

f f f f i f i f N f N• • • • • •
= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅Q Q Q Q Q Q Q�  
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where ( ), 1f i •
Q  and ( ), 2f i •

Q  are the first and second rows of the matrix ,f iQ . We obtain a concise 

form of the linear system: f=s Q t� . This set of equations can be easily solved by a least squares 

regression, and results in 

( )
1

T T

f f f

−

=t Q Q Q s� � � . (11) 

A minimum of two projections are needed for calculating the 3D translational alignment. More 

projections are recommended for robustness of the algorithm. 

2.6.  Translational alignment using a 3D cross-correlation 

An alternative method to compute the 3D translational alignment is to perform a straightforward 

cross-correlation once the two volumes have been rotationally aligned. A translation cross-correlation 

is calculated as, 

( ) ( ) ( )cc
t

f g d= +∫t r t Rr r� � ,  

Where t� is the cross-correlation variable representing all possible translations between ( )f r  and 

( )g Rr . The shifts between the density maps are the parameters that maximize this cross-correlation, 

i.e., ( )arg max cc
t

=t t�  is the 3D translation between the rotationally aligned volumes. The method 

can also be used to confirm the results obtained by the method presented in section 2.5. 

2.7. Missing data 

Missing data occur in 3D reconstructions calculated from tomography, RCT datasets, or OTR 

datasets if sampling is sparse. Radon transforms are used to compute the five-dimensional cross-

correlation between a projection of the reference and the volume being aligned. Since Radon 

transforms are represented in polar coordinates, all data that lie on a common radial line are either 

entirely present or missing. This property allows us to calculate the cross-correlation only in the areas 

where data are commonly present and to normalize it accordingly. Details are shown in Appendix B. 

When 3D density maps are reconstructed by averaging the projections either into 3D Radon 

transforms or 3D polar Fourier transforms, the presence of each radial line can easily be recognized. 
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A radial line is either 0, except at the origin, or it contains data. In addition, the index maintained in 

each radial line of the Radon transform in our implementation of the 3D reconstruction algorithm is 0 

when no data are present. 3D density maps that are reconstructed using other algorithms, such as 

weighted back-projection, lack this information. One possible solution is to carefully keep track of the 

reconstruction geometry and build an index from this information. This may become complicated, 

especially when multiple alignment steps are involved. In cases where the 3D Radon transforms or 

polar Fourier transforms are computed from 3D reconstructions in real space, for example from a 

boxed out 3D sub-tomogram, none of the radial lines may be truly 0. However, the variances of radial 

lines in regions of missing data are substantially lower than in regions where data are present (Fig. 2). 

Given the reconstruction geometry, percentages of missing data can be calculated and a threshold for 

the line variances or standard deviations can be determined, below which a radial line is considered 

missing. This represents only an estimate, and is obviously less accurate than acquiring the 

information directly as part of the reconstruction process, since reconstruction algorithms smooth the 

boundaries between regions of present and missing data. The variances are best determined in the 

high-pass filtered 3D Radon transform, filtered with *ρ  , *ρ  being the Fourier radius. This filter is 

applied as part of the 3D Radon / Fourier cross-correlation procedure (Radermacher, 1997) to obtain 

a sharp cross-correlation maximum. 

Currently, missing data are indicated only in the 3D Radon transform and not in the 2D transform 

of the reference projections (this will be implemented in the near future). Therefore, reference 

projections are carefully chosen to avoid including areas of missing data. However, if missing data in 

the projections are allowed, it will result in a reduction of the area contributing to the cross-correlation 

and increase the sensitivity to noise.  

2.8. Alignment procedure  

The alignment procedure consists of two major steps: aligning each projection 
i

p  of the reference 

to another 3D volume, and combining the projection alignments to determine the final 3D rotational 

and translational alignments for the volume. 
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Five-dimensional searches are performed to align each of the reference projections to the 3D 

volume of unknown orientation. The alignment results in three Euler angles , ,g g gα β γ  and two in-

plane shifts ,x ys s . The rotation cross-correlation function, ( )
, , ,, ,cc , ,

f i f i f i g g gα β γ α β γ
 
(Eq. 8), as well as 

the in-plane shifts ( ), , , , ,, , , ,o o o o o

g i g i g i x i y is sα β γ  (Eq. 10), are computed and saved. The alignment of 

projections is carried out in two steps: first, a global search within an asymmetric unit with a coarse 

step size is carried out, followed by a local search, with a finer step size, around the correlation 

maximum found in the global search. Low-pass filtration in both steps is critical to prevent the 

algorithm from getting trapped in local maxima. The required low-pass filter radius is estimated using 

Crowther’s formula (Crowther et al., 1970) with the largest angular search increment α∆  being the 

angular increment in:  

d D D
N

π
α= ⋅ = ∆ ⋅ ,  

where D  is the effective diameter of the volume and d  is the resolution that determines the low-pass 

filter radius (1 d ). The use of a mild high-pass filter may be advantageous to sharpen the correlation 

maximum, for example with a radius corresponding to one divided by two to three times the image 

size. 

The second part of the alignment procedure integrates the alignments of multiple projections. For 

the rotational alignment, the combined cross-correlation function ( )ccc , ,α β γ  is computed from 

individual rotation cross-correlation functions (Eq. 9). It should be noted that because of the multi-step 

search scheme, the fine search is limited to a rather small region. These regions might not entirely 

overlap, thus the denominator N  in Equation 9 is replaced with N� , the number of actual cross-

correlation values being averaged. The final parameters for the 3D rotational alignment are calculated 

by finding the maximum of the combined cross-correlation function. A peak-fitting algorithm is used to 

obtain sub-pixel accuracy. Of the possible fitting algorithms, we chose to fit the adjacent sampling 

points of the maximum to a 4-elliptic paraboloid function using a least square fitting technique (second 
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order 3D fit). For the translational alignment, a linear system is formed and solved (Eq. 11). Note that 

the computations of rotational and translational alignments are carried out simultaneously.  

3. Tests 

We have tested the performance of PBVA for accuracy using different signal-to-noise ratios and 

different percentages of missing data.  Time efficiency was tested in comparison to other existing 

cross-correlation and normalized cross-correlation methods. 

3.1. Signal-to-noise ratio tests 

The algorithm was applied to volumes, artificially rotated, shifted and reconstructed with synthetic 

noise. The initial volume used was a 3D binary model of the envelope structure of complex I from Y. 

lipolytica (Clason et al., 2007; Radermacher et al., 2006). The 3D model has a pixel size of 3.6Å and 

was smoothed by low-pass filtration to 14.4Å, (see Fig. 3 a-b). This 3D model was subsequently 

shifted and rotated to create a second model.  

Volumes with different signal-to-noise ratios (SNR) were reconstructed by adding noise to the 

projections. First, single axis tilt series of both models with a 2° angular increment were created and 

low-pass filtered to 18Å, to remove any numerical artifacts that may have been created in the 

projection step. Second, Gaussian noise images were generated and scaled to obtain the desired 

signal-to-noise ratio (SNR), shown in Table 1. The SNR here is defined as the ratio between the 

variance of the signal and the variance of the noise. Note that the SNR values referred to later were 

measured at 30Å resolution in a square of 160x160 pixels2. During the Radon transform calculation, a 

circular mask of 50 pixels radius was applied. Thus, the SNRs measured within this circular mask, 

which comprised 7845 pixels, of which between 1380 to 2000 pixels contained signal, is also included 

in Table 1. Since the structure is L-shaped, the signal occupied different areas in projections, 

depending on the projection angles. Finally, 3D volumes were reconstructed from the sets of noisy 

projections. Since the purpose of this first test was to investigate how the algorithm behaves under 

difference SNRs, none of the reconstructions had missing data.  
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Alignments of the reconstructed volumes were carried out using the PBVA algorithm. The first 

volume was chosen as reference and a set of projections were calculated. Fifteen projections were 

selected randomly at a resolution of 30Å. All these projections were aligned to the second volume 

using the projection matching algorithm via Radon transforms (Radermacher, 1994). The procedures 

were carried out in SPIDER (Version 5.0 with extensions). The results from each projection were 

combined to calculate the final 3D rotational translational parameters of the second volume. 

The results of the alignment were compared to the known shifts and rotations applied to create 

the models. We carried out 36 tests for each signal-to-noise ratio condition. In each test the volumes 

were created as described above, using independently generated Gaussian distributed white noise. 

The standard deviations of the errors are shown in Table. 2. The translational errors are measured in 

pixels. Let x x xt t t′∆ = −  be the error in the X direction, where 
x

t  is the original shift along the X-axis 

and 
x

t′  be the shift found, and 
yt∆  and 

z
t∆  the corresponding errors in Y, Z directions. The error in 

pixels is then calculated as 2 2 2

x y z
r t t t∆ = ∆ + ∆ + ∆ . The rotational errors are measured and 

expressed as the angle around Euler pole, which represents the difference between the rotation 

matrix R  originally applied, and the rotation matrix ′R  determined in the alignment. The difference 

between the two rotation matrices is T ′∆ =R R R . As the Euler’s rotation theorem states (Euler, 1776), 

any rigid rotation in 3D can be represented as a single rotation around one axis (Euler pole), a unit 

vector which is not changed by the rotation. Let ε∆  be the rotation angle of ∆R  then the influence of 

the angular error on the resolution of the reconstruction can be estimated by calculating the equivalent 

error in pixels at the periphery of the structure, which for small ε∆  is r ε∆ , where r is the distance 

between the center and the periphery and ε∆  is measured in radians. In general, the errors increase 

as the signal-to-noise ratio increases, but the method is still robust and accurate under the condition 

that SNR=0.1.  

3.2. Percentage of missing data tests 

The algorithm was applied to volumes with different missing data, which were rotated and shifted 

artificially. We used a data set of cryo-EM images of Saccharomyces cerevisiae phosphofructokinase 
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(PFK, EC 2.7.1.11, 835 kDa, 21S) in the ATP bound state. The set of cryo images, with a pixel size of 

2.4Å, were extracted from 0°-micrograph and had been aligned previously to obtain a 3D 

reconstruction with 13Å resolution (Bárcena et al., 2007). Since PFK is elongated and the longer axis 

tends to sit parallel to the supporting surface, the data sets represent approximately a single axis tilt 

series with random tilt angles. We chose a single axis tilt geometry in this test because of its simplicity 

and because it constitutes a worst case scenario. Only in a single axis tilt series is it possible that an 

entire cross-section through the polar Fourier transform of a volume is empty, while in 3D 

reconstructions from conical or dual axis tilt data all cross-sections are at least partially occupied.   

The data set contains more than 11000 images. The projections were separated into 121 groups, 

each containing approximately 90 images sufficient to cover the Fourier space sampling to a 

resolution of 30 Å (Fig. 3 c-d). We created 121 volumes with the structure in the same position and in 

the same orientation. One volume was chosen as reference, and the remaining 120 volumes were 

shifted and rotated. 

Missing data were simulated by randomly deleting slices in the polar Fourier transforms of the 

120 shifted and rotated volumes. The number of slices was adjusted to create different percentages of 

missing data in the 3D volumes; 0%, 10%, 20%, and 30%. 

The alignment procedure was applied as follows: First, a set of projections of the reference was 

computed and low-pass filtered to 30Å. The projections were randomly selected exclusively in the 

region where there was no missing data, ensuring that the projections were all complete. Second, all 

projections were aligned to the 3D volumes with missing data. Finally, the results of all the individual 

projections were combined. The final alignments obtained were compared to the shifts and rotations 

applied in the tests. The standard deviations of the errors are shown in Table 3. The translational and 

the rotational errors are determined the same as it was described for Table 2. The errors increase 

only slightly as the percentage of missing data increases, showing that the algorithm is robust to the 

missing data. 
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3.3. Time efficiency tests 

The algorithm was tested and compared to other existing six-dimensional cross-correlation 

search algorithms to estimate time efficiency. All the tests were carried out on the same machine 

(Alpha server ES40, using a single processor EV6.8AL at 833 MHz) and the results are shown in 

Table 4. The PBVA procedure was applied using 15 projections. The rough and fine search for the 

alignment parameters of the 15 projections, together with the integration of the results of individual 

projection to obtain the translation and rotation parameters for the second volume, were completed 

after 10 minutes of computation. 

A six-dimensional exhaustive search was carried out between two 3D volumes, which included 

rotating the second volume, calculating the translation cross-correlation, and searching the maximum 

of the cross-correlation. Volume rotations can be performed either in real space or Fourier space. We 

elected to compute volume rotations in real space to avoid interpolation problems observed when 

performing Fourier space rotations (Welling et al., 2006). Cross-correlations can also be computed in 

either real space or Fourier space. In real space, calculations using a traditional method have a time 

complexity of O(n2), where n denotes the number of voxels in the volume. In Fourier space, 

calculations have a complexity of O(nlogn), which are faster, so we calculated the cross-correlation in 

Fourier space. While searching the maximum of the cross-correlation, the search range was limited to 

a range comparable to the one used in PBVA. There are fast local cross-correlation algorithms (Rath 

and Frank, 2004; Rath et al., 2003; Yoo and Han, 2009) that can be used to accelerate the process, 

however, these were not implemented here. For these tests, the algorithm was implemented as a 

procedure in Spider without any special optimization. The non-normalized cross-correlation takes 

1165 minutes to search a comparable amount of the rotations and translations as in the test above, 

using our PBVA procedure. 

In a second test, we used a normalized cross-correlation as described in Schmidt and Booth 

(Schmid and Booth, 2008), normalized to the ratio of overlapping areas. The search takes as long as 

2289 minutes when implemented as a procedure in Spider. The constrained cross-correlation (Förster 

et al., 2008; Frangakis et al., 2002) that is normalized with the variance of the volumes limited to the 
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commonly present areas was not tested. However, since this procedure is more complex it should 

require more computation time.  

 

4. Application 

The PBVA method was applied to the 3D reconstructions of the ∆NB8M subcomplex of complex I 

from Y. lipolytica (Dröse et al., 2011). Deletion of the accessory subunit NB8M of complex I results in 

a subcomplex that exhibits an incompletely assembled membrane arm, lacking several essential 

subunits. In addition, this subcomplex exhibits a reduced proton pumping activity. 3D structure 

determination was carried out using a single particle 3D reconstruction method on images of an RCT 

data set (Radermacher et al., 1986) recorded of a NanoW (Nanoprobes, Yaphank, NY) deep stain 

embedded sample with a tilt angle of 55°. The data set contained a total of 10897 image pairs 

digitized with a calibrated pixel size of 3.136Å at the specimen scale. The study resulted in the 

separation of the untilted images into 10 classes. A 3D reconstruction for each of the classes was 

obtained from the corresponding tilt images (Fig. 4 a). The number of images, percentage of missing 

data and the resolutions are listed in Table 5a.  

Four types of differences in the data set may be present: First, apparently the reconstructions 

appear to be in different orientations; second, several conformations may be present; third, the 

missing data are different in these reconstructions, hence creating different artifacts; and fourth, the 

volumes have different signal-to-noise ratios and different resolutions. Additional artifacts may be 

introduced in the surface rendering presentation that may interfere with a visual evaluation of the 

differences, since a single threshold is used to represent the structure as a solid model. 

The PBVA algorithm was applied to re-orient the 10 final reconstructions of the ∆NB8M 

subcomplex. Volume 1 (Fig. 4) was selected as the reference for the alignment procedure. 16 

reference projections were selected and the projection angles were chosen such that there were no 

missing data in the projections. The projections were matched to all the other 9 volumes using the 

projection matching algorithm with Radon transforms. The alignment results from each set of 

projections were combined (Tab. 5b) and applied to the rest of the volumes (Fig. 4 b). The 
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translations, 
x

t , 
yt  and 

z
t  are less than one voxel, with only one exception, demonstrating that the 

original reconstructions were well-centered. After alignment, there are still noticeable differences 

among the reconstructions, which may be caused by conformational changes, and the missing data. 

Again apparent differences may be caused by the surface representations. 

The Probabilistic principal component analysis using expectation maximization (PPCA-EM) 

algorithm was applied to the dataset (Yu et al., 2010) to examine the conformational features in the 

dataset and at the same time estimate the missing data. Pairwise distances between the ten volumes 

in the subspace of the first three eigenvectors, which covers more than 50% of the total variance 

(Tab. 6) were measured and used to determine if the volumes represent the same conformation and 

can be averaged (Tab. 7). To better represent the scattering of the volumes in this subspace, we 

applied nonlinear mapping (Radermacher and Frank, 1985). When mapping the distances in a 3D 

space to a 2D space, Sammon’s formula for non-linear mapping was used (Sammon, 1969), such that 

the shorter distances are emphasized in the scatter plots. The results show that volumes 1 to 6 form a 

group at the center of the map, while volumes 7 to 10 are outside (Fig.5).  

The PPCA-EM algorithm estimates the missing data in an eight-dimensional eigenspace. The 

reconstructions with missing data estimated are shown in Figure 4 c. With the missing data estimated 

the surface presentations now provide us with visual evidence why the volumes 7, 8, 9 and 10 are 

different from the rest, and why volume 2 slightly deviates from the major group. 

Based on the scatter plots (Fig. 5) and the visual examination of the volumes with filled-in data in 

the missing data area (Fig. 4 c), volumes 1 to 6 are similar, thus an average of these volumes was 

computed. The average structure was calculated from the original projections with updated projection 

angles combining both the original projection angles and the 3D rotation angles, shifted with the in-

plane translation derived from the 3D shifts. The average structure was used as a reference for a 

further refinement. A final structure was obtained from all the projections of classes 1 to 6 matched to 

the reference (Fig. 6 a). The resulting structure has a resolution of 23.2Å, determined using the 

Fourier Shell Correlation with a cutoff of 0.3 (Fig. 6 b) (Rosenthal and Henderson, 2003). 
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5. Conclusion 

We present here a new method, projection based volume alignment (PBVA) for aligning 3D 

density maps based on a projection matching algorithm, which simultaneously and exhaustively 

searches the five orientational and translational alignment parameters (3 angles and 2 translations per 

projection). Thus, after combining the results from individual projections, the PBVA procedure finds 

simultaneously the six orientational and translational alignment parameters between a reference and 

a second volume. 

The PBVA procedure divides the alignment problem between two volumes into an alignment 

between reference projections and the second volume. The core of the PBVA procedure is a 

projection matching algorithm. Projections can either be created from the reference and matched to all 

other volumes, or from all other volumes and matched to the reference volume. The presented 

scheme is the former since it presents several advantages. When aligning more than two volumes, 

one volume can be chosen as the reference and studied comprehensively. Projections can be 

deliberately chosen to best represent the volume. The projection directions are selected to create 

projections without missing data, thus maximizing the areas used in the cross-correlation, using the 

information of the reconstruction geometry. In addition, the projections are chosen to show the most 

rotation sensitive features of the structure, which improves the accuracy of the projection matching 

results.   

The projection set, in essence, represents a subsampled volume and the number of projections 

represents how fine the volume is sampled. The larger the number of projections used, the finer is the 

sampling, and the more robust is the volume alignment. However, the alignment becomes lengthier 

since the computing time increases with O(n) where n is the number of projections. In our test 

experiments and application, we have used 15 to 16 projections, which is an empirical number that 

works well for this type of studies. This sampling, however, may not be evenly spaced given the 

selection rules described above. We have observed anisotropic accuracies in the Z-direction when the 

reference projections are all taken at low tilts. Reference projections without missing data can only be 

taken at tilts less than the maximum tilt angle used during data collection. Hence we will expand the 
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algorithm to allow missing data also in the reference projection, which provide more flexibility and in 

some cases more accuracy, however, fewer pixels will contribute to the calculation of the cross-

correlation function. 

The PBVA procedure is a relatively fast algorithm. The algorithm subsamples the reference into a 

set of projections, thus the calculation of the cross-correlation is faster. The exhaustive search of the 

projection matching is 5-dimensional and faster than a comparable 6-dimensional exhaustive search 

for two 3D volumes. Moreover, it avoids rotating the volume by extracting the projections that belong 

to different orientations from the polar sampled 3D Fourier or Radon transform, which is much faster 

than rotating the real 3D volume.  

PBVA is an accurate algorithm, which determines the translational parameters within sub-pixel 

accuracy and the rotational parameters with accuracy finer than the angular search step size. The 

rotational alignments are found by estimating where the maximum of the combined cross-correlation 

( ccc ) occurs (Sec. 2.). Accuracy better than the search step size is achieved by quadratic fitting. The 

translational parameters are found by solving a linear system using a least square fit (Sec. 2.5). Thus, 

the translational parameters are also determined with sub-pixel accuracy. 

We have demonstrated that under different conditions, different signal-to-noise ratios and 

different percentages of missing data, the PBVA procedure is a fast, accurate and robust algorithm for 

finding translational and rotational alignment parameters. Combined with multivariate statistical 

analysis designed for 3D volumes with missing data like PPCA-EM, the algorithm can be used to 

combine multiple 3D reconstructions and achieve high resolution structures. 

Software: The projection alignment programs are part of SPIDER version 5.0 with extensions running 

under HP-OSF. Standalone FORTRAN code, for compilation with PGI (The Portland Group, Lake 

Oswego, OR) or Lahey (Lahey Computer Systems, Incline Village, NV) compilers, for the calculation 

of Radon transforms and Radon transform based projection alignment are under development and will 

be made available upon request. Programs newly developed for this work, written in C, are available 

upon request. A download link for all programs is planned for the near future. 
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Appendix A: Euler angles and rotation matrix 

Any rigid body rotation can be described with a set of three angles (Euler, 1776). Following a 

specific convention, they can be mapped to a unique rotation matrix. The conversion from Euler 

angles to rotation matrices in a right-handed coordinate system rotating around Z-Y-Z axes 

sequentially is 

 

( ) ( ) ( )
11 12 13

21 22 23

31 32 33

cos cos cos sin sin cos cos sin sin cos cos sin
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However, a rotation matrix can be mapped to multiple combinations of Euler angles. We impose 

some restriction so that a rotation matrix can be converted to a unique set of Euler angles ( ), ,α β γ�� � . 

First, when the Gimbal lock occurs, i.e. 0 or β π=� , we let 0γ =�  and α α γ= +�  if 0β =�  or α α γ= −�  

if β π=� . Second, we force the ranges of the angles to be: [0, 2 )α π∈� , [0, ]β π∈�  and [0, 2 )γ π∈� . 

Any 3D rotation can be expressed by this unique set of angles. Given the restrictions, the following 

formulas can be used to compute the corresponding Euler angles, 
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( )

( )
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(A2) 

where the function acos  and atan 2  are defined as in the FORTRAN, C standard library (math.h), 

Java math library, Python math module and etc. Note that there are three different methods to 

compute ( ), ,α β γ�� �  from a rotation matrix R , as derived in Radermacher (1994). Here we list one as 

an example. While implementing, a combination of the three is recommended such that numerical 

errors are minimized. 

An arbitrary set of Euler angles ( ), ,α β γ  can be converted to the unique set of Euler angles 

( ), ,α β γ�� �  defined above using the rules in Table 1. In the procedure for combining rotation cross-

correlation functions and in the quadratic interpolation using values surrounding the main maximum, 

required values may fall outside the sampling range (wrap-around). The procedure to find an 

equivalent set of Euler angles finds the values of rotation cross-correlation (
, , ,, ,cc

f j f j f jα β γ ) outside of 

our sampling range according to Table 1.  
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 Appendix B: Projection matching using Radon transforms 

The algorithm was introduced in Radermacher (1994). However, even though implemented from 

the beginning, the handling of the missing data has not been published in detail. Hence we reiterate 

and emphasize how the cross-correlation between a 2D projection and a 3D volume is normalized 

with respect to missing data. More details about Radon transforms can be found in Deans (Deans, 

1983) . 

Let p  be a projection of the reference ( )f r . The Radon transform p̂   of p  is calculated as 

 

( )ˆ , ( , ) ( sin cos )p p x y x y dx dyρ ζ δ ρ ζ ζ= − −∫ ∫ , 

 

where ρ is the radial coordinate in the Radon transform and ζ is the angular coordinate. 

The integral over the δ  - function selects all line integrals along lines at angle ζ  for each 

point on the perpendicular line at radius ρ  .   If ( ),p x y  is shifted by ( , )x ys s  then, 

according to the shifting theorem, the Radon transform of the shifted projection is 

( )( )R , ( , ) ( sin cos )

( , ) ( sin cos sin cos )

ˆ ( sin cos , )

x y

x y

p x sx y sy p x sx y sy p x y dx dy

p x y p s s x y dx dy

p p s s

δ ζ ζ

δ ζ ζ ζ ζ

ζ ζ ζ

− − = − − − −

= − − − −

= − −

∫ ∫

∫ ∫ � � � � � � where the 

symbol R stands for Radon transform. 

 

The 2D Radon transform of q , a projection of the volume ( )g r , is extracted from the 3D Radon 

transform ( )ˆ , ,g ρ θ φ  of ( )g r .  

 

( )ˆ , , ( , , ) ( cos sin cos sin sin )g g x y z x y z dxdydzρ θ φ δ ρ θ φ φ θ φ= − − −∫ ∫ ∫  
 

The Radon transform of q extracted from g at angles ( ), ,g g gα β γ  is ( ), ,
ˆ ,

g g g
qα β γ ρ ζ , where ( ),ρ ζ  are 

the polar coordinates in the plane of the extracted projection transform. The last rotation angle 
gα  is a 

rotation within the projection plane and can be merged with the angular coordinate of the 2D Radon 
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transform, thus ( ) ( ), , ,
ˆ ˆ, ,

g g g g g gq qα β γ β γρ ζ ρ ζ α= + . The relation between ( ),θ φ  and ( ), ,g g gζ α β γ+  

and the implementation of the extraction is discussed in detail in Radermacher (1994) and is not 

presented here since the equations are lengthy. It is a fast algorithm to acquire the 2D Radon 

transform of an arbitrary projection from a 3D Radon transform. Here we focus on the variance 

calculations for normalizing the cross-correlation when data are missing.  

Discrete Radon transforms are calculated by replacing the integrals by summations over 

sampling points along the lines or planes defined by the δ -functions in the above equations. The 

values of the sampling points are obtained by interpolation. The resulting Radon transforms are 

discrete with an angular sampling of ζ∆  in 2D and θ∆  and φ∆  in 3D, and a radial sampling of ρ∆ . 

Using the shifting property of Radon transform, the normalized cross-correlation between a projection 

p̂  and a cross-section q̂ , extracted from the 3D transform, is 
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where n  is the number of sampling points. In the denominators of Equation B1, the standard 

deviations '

q̂σ  and '

p̂σ  of the complete Radon transforms q̂  and p̂  are  
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The standard deviations are constants for a given projection / cross-section pair when there are no 

missing data. However, the variances need to be limited to the commonly present region when there 

are missing data. 

The cross-correlation is carried out line by line in polar coordinates where a radial line is either 

present or missing completely. Only a subset of the radial lines is present in both Radon transforms 

when data are missing. We can define subsets of all sampled radial lines. The subset of lines present 

in p̂ is: ( ){ }ˆ
ˆ| ,  is present

p g g
W pζ α ρ ζ α= + +  and the subset of lines present in q̂  is: 

( ){ }ˆ ,
ˆ| ,  is present

g gq
W qβ γζ ρ ζ= , and the intersection of the two subsets is ˆ ˆp qW W W= ∩ , which 

varies when ( ), ,g g gα β γ  vary. In order to properly normalize the cross-correlation function, we use 

the radial lines in W  only, and the cross-correlation (Eq. B1) is adjusted as  
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The means are calculated also only within the common present region, i.e.,  
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where W  is the number of lines in W  and nζ  is the number of sampling points along each radial 

line. Likewise the standard deviations are calculated as 
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When the cross-correlation is implemented as a Fourier multiplication, simplifications can 

be made that also lead to greater efficiency. 

The Fourier transform of a line in p̂  is:  
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, 

 where  P̂  is the Fourier transform of p̂ and i

kP
ζ  are the Fourier coefficients of line iζ  in 

. Since 0
iP

ζ  contains the average value of the line, using Parseval's theorem the line 

variances can be calculated as: 
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and can be precalculated for the complete projection or volume. The combined variances in 

the denominator of the cross-correlation can then be determined from the line variances 

using the equation (e.g. (Sachs, 1984)) : 
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The calculations for q̂  are analogous.  

Appendix C: Combined cross-correlation 

When projections at different angles are matched by rotation cross-correlation to a volume, each 

3D cross-correlation function is in the (polar) coordinate system of the projection. To calculate the 

average, interpolations are required from the polar coordinate system of each projection cross-

correlation function to the coordinate system of the average cross-correlation function. There are two 

schemes to calculate the combined cross-correlation, ccc( , , )α β γ , (Eq. 9). The first is called “forward 

scheme”: from a sampling point of each rotation cross-correlation, 

( )
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f i f i f i g g g i Nα β γ α β γ = … , where ( ), , ,, ,f i f i f iα β γ  are the coordinates in the rotation cross-
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cross-correlation. Given a sampling point k at coordinates ( ), ,k k k

g g gα β γ  in  ( )
, , ,, ,cc , ,

f i f i f i g g gα β γ α β γ ,  the 

corresponding point ( ), ,k k kα β γ�� �  in the combined function ccc( , , )α β γ  can be found using Equation 

6, i.e., ( ) ( ) ( )T T

, ,

k k k

f i g f i Z g Y g Z gα β γ= =R Q Q Q R R R  and solving for the rotation angles in R . The 

problem of the “forward” scheme is that the corresponding point does not necessarily fall on the 

sampling grid. Hence a forward interpolation is needed. However, forward interpolation which assigns 

values to points in the neighborhood of a single point is an ill-posed problem.  

In our implementation we used the second scheme, “backward scheme” starting from a sampling 

point of the combined cross-correlation and calculating back to the rotation cross-correlation of each 

projection. Given a sampling point ( ), ,k k kα β γ  of the combined cross-correlation ccc( , , )α β γ , the 

corresponding point ( ), ,k k k

g g g
α β γ�� �  in each single cross-correlation function ( )

, , ,, ,cc , ,
f i f i f i g g gα β γ α β γ , can 

be found using  
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and solving for the Euler angles in 
gQ . 

The same as previously, the resulting values may not fall on the sampling grids; however, the 

value can be easily acquired by a proper interpolation using the values of surrounding points. We 

used a straightforward trilinear interpolation. The “backward scheme” iterates all possible 

combinations of ( ), ,α β γ , which sometimes can get slow. We used the following relations to reduce 

the number of matrix multiplications in the calculation and speed up the process:  
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where γ∆  is the increment in the angle γ .  Let ( ), ,k k kα β γ  be the corresponding point of 
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( ), ,k k k

g g gα β γ  in the “backward scheme”. When the angle kγ  is incremented by γ∆ , k

gγ  will 

also be incremented by the same amount γ∆ . This only applies to the angle γ  when the 

other two angles, α  and β , remain unchanged.  
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Figures: 

 

Figure 1.  Alignment of two volumes by projection matching, shown here for only three projections. 

The main steps are numbered. (1) The reference volume is projected along three directions, onto the 

projections, P1, P2 and P3. (2) Each projection then is matched to the second volume (V2) by a 

cross-correlation algorithm (cc). (3) The cross-correlation functions (CCFi) are averaged, and the 

maximum of the averaged cross-correlation indicates the rotation of the second volume. The 2D 

translation vectors from all projections are combined into a 3D vector that describes the translational 

difference between the two volumes. (4) Rotation and translation parameters are applied to (V2) to 

obtain the aligned volume (V2ali).  
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Figure 2.  Localization of missing data regions using the line variance of the Radon transform. a) 

Average image of a subcomplex of complex I from Y. lipolytica also used in section 4. b) Radon 

transform of the image. Angular coordinate Φ from 0º to 180º, radial coordinate ρ. The vertical arrow 

indicates a line along which the standard deviation is calculated. Standard deviation values are stored 

at the end of each line of the transform indicated by the dotted line in the margin below (b).  c) The 

same Radon transform with 1/3 of the data set to 0 (33% missing data). d) r*-weighted back-projection 

calculated from the Radon transform with missing data. e) Radon transform calculated from the 

reconstructed image in (d). Note that the missing data are not 0 anymore but instead the transform 

shows data with a blurred appearance in the corresponding area. f)  Plot of the standard deviations of 

the values in the radial lines of a Radon transform versus angle, calculated from a *ρ        high-pass 

filtered version of the 2D Radon transforms shown in (c), solid line  and (e) dashed line, *ρ   being the 

radial coordinate in the Fourier transform. The missing data area can be detected from the standard 

deviation values that fall below a certain threshold. Scale bars 100Å. 
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Figure 3. Test data sets: a) complex I of Y. lipolytica; b) an example image at SNR=0.33; c) S. 

cerevisiae PFK in the presence of ATP; d) an example cryo-EM image. Scale bars 100Å. 

  



 33 

 

Figure 4. 10 reconstructions of subcomplex ΔNB8M of complex I from Y. lipolytica reconstructed 

using RCT. Row numbers indicate volume number, used in the text and in Figure 5. Column a: 

Reconstructions of the 10 classes originally obtained after classification of the 0° data. Column b: The 

reconstructions after alignment by PBVA using volume 1 as reference. Column c: The reconstructions 

after estimation of the missing data as part of the PPCA-EM algorithm. Scale bar 100 Å. 
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Figure 5. Scatter plot of the 10 volumes. PPCA-EM was applied to the aligned volumes, shown is the 

non-linear map obtained from the coordinates in the first 3 eigenvectors.   The numbers corresponds 

to the volumes numbers in Figure 4. Distances scaled by 10-4. 
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Figure 6. Final 3D reconstruction of subcomplex ΔNB8M of complex I from Y. lipolytica a) Average 

structure of volumes 1 to 6; b) FSC of the average structure showing resolutions of 23.2Å at a cutoff 

of 0.3 (~24.4Å at a cutoff of 0.5). 
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Resolution (Å) 7.2 30 30 

Measurement 
Area (Pixels) 25,600 25,600 7,825 

SNR=∞ ∞ ∞ ∞ 

SNR=1 0.035 1 8.821 

SNR=0.25 0.009 0.25 0.551 

SNR=0.1 0.004 0.1 0.088 

 

Table 1. Signal-to-noise ratios at different resolutions. The Signal-to-noise ratio is defined as ratio 

between the variances of the signal and the noise. First column: With Pixel size of 3.6Å and the full 

resolution of 7.2Å ( Nyquist-Shannon), using the full image (160x160). Second column: the SNR after 

low-pass filter to 30Å, Third column: at 30Å resolution with the image area restricted closer to the 

signal area (mask radius 50). Since the noise covers all frequencies, low-pass filtering to 30Å results 

in a higher signal-to-noise ratio. 

 

Errors 

Translations Rotations 

r
σ ∆  

(pixels)  

 
λ

σ ∆  

(radians) 

SNR=∞ 0.2147 0.0127 

SNR=1 0.4113 0.0190 

SNR=0.25 0.9126 0.0354 

SNR=0.1 1.3898 0.0603 

 

Table 2. The standard deviations of the alignment errors for different signal-to-noise ratios, when 

applied to model data with Gaussian additive noise.  
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Errors 

Translations Rotations 

r
σ ∆   

(pixels)  

 
λ

σ ∆  

(radians) 

0% missing 0.6765 0.0451 

10% missing 1.1010 0.0454 

20% missing 1.1248 0.0775 

30% missing 1.7063 0.0317 

 

Table 3. The standard deviations of the alignment errors for different amount of missing data, when 

applied to cryo-EM PFK data set. 

 

Rotational 
Search 

Translational 
Search CC 

Normalized 
CC  PBVA 

Rough search 25x13x25 7x7x7 11:06:42 15:21:49 
 

  25x13x25 Radius 10 
  

0:04:06 

Fine search 23x23x23 7x7x7 16:39:09 22:47:47 
 

  23x23x23 Radius 10 
  

0:04:53 

Rotation 
alignment  

x x 0:01:22 

Translation 
alignment  

x x 0:00:01 

 Total time 27:45:51 38:09:36 0:10:22 

 

Table 4. Time efficiency tests for aligning two volumes on a single processor of Alpha server ES40 , 

processor EV6.8AL, 833 Mhz. PBVA with 15 projections was used in the test. The search ranges are 

specified in columns 1 and 2. The translational range for the full 6D cross-correlation differs slightly 

between direct volume alignment and PBVA, since PBVA searches on a polar grid, while the other 

algorithms use a Cartesian grid. Column CC: Direct volume alignment without missing data correction, 

Column "Normalized CC": Direct volume alignment with correction for missing data. PBVA is a factor 

of 220 to 160 times faster than a full 3D volume alignment. Even after optimization of the full 

alignment algorithm the factor should still be substantial.    
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a) 

Vol # # of projections  Percentage of 
missing data 

Resolution at 
FSC=0.3 

1 1270 8% 28.77 

2 918 8% 32.67 

3 2235 8% 25.09 

4 681 13% 29.31 

5 947 8% 28.51 

6 1024 9% 33.01 

7 509 11% 36.89 

8 703 12% 29.87 

9 778 12% 31.05 

10 1521 7% 28.77 

b) 

Vol # 
x

t  yt  
z

t  α  β  γ  

1 0 0 0 0 0 0 

2 -0.260 -0.202 1.328 77.209 18.269 -80.670 

3 -0.215 -0.014 0.954 28.704 16.620 -31.492 

4 0 0 0 45.074 6.916 -46.230 

5 -0.069 0.008 0.585 40.464 13.621 -41.111 

6 -0.169 -0.026 0.554 25.091 20.524 -27.342 

7 0.236 0.190 0.934 17.286 6.385 -17.101 

8 -0.517 -0.165 -0.822 -154.546 19.189 153.692 

9 -0.016 0.006 -0.607 -155.537 10.832 156.063 

10 -0.174 -0.128 0.679 -158.358 65.185 158.605 

 

Table 5. a) Some facts of the original 10 subcomplex reconstructions. b) Rotations ( ), ,α β γ  and 

shifts ( ), ,x y zt t t  found in the alignment of the 10 volumes. 
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No Eigenvalues Percentage 
1 3.53E+07 21.14% 

2 2.97E+07 17.74% 

3 2.40E+07 14.34% 

4 2.18E+07 13.04% 

5 1.71E+07 10.22% 

6 1.39E+07 8.34% 

7 1.19E+07 7.10% 

8 1.07E+07 6.41% 

>8 2.79E+06 1.67% 

 

Table 6. Results of PPCA-EM: Eigenvalues and the percentage of the total variance represented by 

each eigenvector.  

 

 Vol
# 1 2 3 4 5 6 7 8 9 10 

1 
0 0.53 0.32 0.32 0.29 0.28 1.34 1.54 1.26 1.10 

2 
0 0.58 0.40 0.64 0.72 1.18 1.71 1.46 1.54 

3 
0 0.44 0.23 0.25 1.17 1.63 1.45 0.98 

4 
0 0.54 0.54 1.39 1.64 1.22 1.34 

5 
0 0.14 1.19 1.61 1.43 0.92 

6 
0 1.29 1.58 1.38 0.84 

7 
0 2.32 2.31 1.70 

8 
0 2.49 1.98 

9 
0 1.74 

10 
0 

 

Table 7. Results of PPCA-EM: Pairwise distance between the 10 volumes in an 3-dimensional 

subspace (using the first 3 eigenvectors). The distances are scaled by 10-4. 
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 mod 2β π  

0  ( )0,π  π  ( ), 2π π  

α�  ( )  mod 2α γ π+   mod 2α π  ( )  mod 2α γ π−  ( )  mod 2α π π−  

β�  0   mod 2β π  π  ( )2  mod 2π β π−  

γ�  0   mod 2γ π  0  ( )  mod 2γ π π−  

 

Table A1. The table used to convert an arbitrary set of Euler angles ( ), ,α β γ  to a unique set 

( ), ,α β γ�� �  in the region of [0, 2 )α π∈� , [0, ]β π∈�  and [0, 2 )γ π∈� . *The conversion is made based on 

the relation: ( ) ( ) ( ) ( ) ( ) ( )2Z Y Z Z Y Zβ γ α π π β γ π= − − −R a R R R R R . 
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