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PI3K/Akt/mTOR signaling pathway in cancer stem cells: 
from basic research to clinical application

Pu Xia1, Xiao-Yan Xu2

1Department of Cell Biology, College of Basic Medicine, Liaoning Medical University, Jinzhou 121000, Liaoning, 
P.R. China; 2Department of Pathophysiology, College of Basic Medicine, China Medical University, Shenyang 
110122, Liaoning, P.R. China

Received February 15, 2015; Accepted April 13, 2015; Epub April 15, 2015; Published May 1, 2015

Abstract: Cancer stem cells (CSCs) are a subpopulation of tumor cells that possess unique self-renewal activity and 
mediate tumor initiation and propagation. The PI3K/Akt/mTOR signaling pathway can be considered as a master 
regulator for cancer. More and more recent studies have shown the links between PI3K/Akt/mTOR signaling path-
way and CSC biology. Herein, we provide a comprehensive review on the role of signaling components upstream and 
downstream of PI3K/Akt/mTOR signaling in CSC. In addition, we also summarize various classes of small molecule 
inhibitors of PI3K/Akt/mTOR signaling pathway and their clinical potential in CSC. Overall, the current available 
data suggest that the PI3K/Akt/mTOR signaling pathway could be a promising target for development of CSC-target 
drugs.
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Introduction

In the past decades, cancer stem-like cells 
(CSCs) have been identified in several types of 
solid tumors, such as those of the lung, breast, 
colon and liver [1-4]. CSCs are a unique sub-
population not only a renewable source of 
tumor cells, but also a source of tumor resis-
tance leading to tumor recurrence, metastasis, 
and progression [5]. Some key signaling path-
ways, including Wnt/β-catenin, STAT3 and TGF-
β, have been implicated in the maintenance of 
CSCs [6-8]. The phosphatidylinositol-3-kinase 
(PI3K)/Akt and the mammalian target of 
rapamycin (mTOR) signaling pathways are cru-
cial to many physiological and pathological con-
ditions, such as cell proliferation, angiogenesis, 
metabolism, differentiation and survival [9]. 
Activate mTOR are frequently improperly regu-
lated in most human cancers. For example, 
PI3K/Akt/mTOR pathway is activated in approx-
imately 70% of ovarian cancers [10]. Tapia et al. 
[11] also found that the PI3K/Akt/mTOR path-
way is activated in tumor tissues from patients 
with advanced gastric cancer compare with 
that in nontumor gastric mucosa. Apart from 
the attention on cancer cell, more and more 

recent studies have shown the links between 
PI3K/Akt/mTOR signaling and CSC biology [12, 
13]. In the study of Sunayama et al [14], mTOR 
signaling has been shown to maintain the self-
renewal and tumorigenicity of glioblastoma 
stem-like cells. In sharp contrast, mTOR inhibi-
tion by rapamycin has been shown to signifi-
cantly increase CD133 expression in gastroin-
testinal cancer cells [15].

The objective of the present work is to review 
the evidence about the roles of the PI3K/Akt/
mTOR pathway in cancer stem cells and to solve 
the controversy among these reports.

Pathogenesis of cancer and the PI3K/Akt/
mTOR pathway

Previous studies showed the importance of 
mTOR pathway in cancer pathogenesis. PIK3 is 
overexpressed in ovarian [16] and cervical can-
cer [17]. Its mutations have been observed in 
breast cancer, glioblastoma and gastric cancer 
[18]. Akt1 overexpression has been detected in 
gastric carcinoma [19], and Akt2 overexpres-
sion has been observed in ovarian and pancre-
atic cancer [20, 21]. Although mutation of Akt 
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itself is rare, Carpten et al. [22] described 
somatic mutations occurring in Akt1 in a small 
percentage of human breast, ovarian, and 
colorectal cancers. mTOR complex 1 (mTORC1) 
could increase mRNA translation, protein syn-
thesis and cellular proliferation [23]. Activation 
of a second mTOR complex (mTORC2), involved 
in regulation of the cytoskeleton, is probably an 
effect of Akt loop feedback [23]. Balsara et al. 
[24] found that positive staining for mTOR was 
exhibited in 74% specimens from the patients 
with non-small cell lung cancer (NSCLC) by 
using tissue microarray (TMA). Rictor, a mTORC2 
subunit, promoted mTORC2 assembly and 
activity and endowed glioma cells with 
increased proliferative and invasion potential 
[25].

Cancer stem cell and the PI3K/Akt/mTOR 
pathway

More and more studies showed the role of 
mTOR pathway in the maintenance of CSCs. 
Chang et al. [26] found that prostate cancer 
radioresistance is associated with epithelial-
mesenchymal transition (EMT) and enhanced 
CSC phenotypes via activation of the PI3K/Akt/
mTOR signaling pathway. Activation of the 
mTOR pathway in breast cancer stem-like cells 
is required for colony-formation ability in vitro 
and tumorigenicity in vivo [27]. mTOR suppres-
sion could decrease aldehyde dehydrogenase 

1 (ALDH1) activity, which is 
a marker for colorectal can-
cer stem cells [28, 29]. 
Inhibition of mTORC2 led to 
decrease a hepatic CSC 
marker (epithelial cell adhe-
sion molecule, EpCAM) 
expression and little or no 
tumorigenicity in hepato-
cellular cancer stem cells 
[30]. Sunayama et al. [14] 
found that cross-inhibitory 
regulation between the 
MEK/ERK and PI3K/mTOR 
pathways contributed to 
the maintenance of the 
self-renewal and the tumor-
igenic capacity of glioblas-
toma cancer stem-like 
cells. Bleau et al. [31] found 
that Akt, but not its down-
stream target mTOR, regu-

lates ATP binding cassette transporters 
(ABCG2) activity in glioma tumor stem-like cells. 
Corominas-Faja et al. [32] used Yamanaka’s 
stem cell technology in an attempt to create 
stable CSC research lines, and they found that 
the transcriptional suppression of mTOR repres-
sors is an intrinsic process occurring in luminal-
like breast cancer cells during the acquisition of 
CSC-like properties. Previous studies have indi-
cated that CD133 is one of the markers for can-
cer stem cells [33-36]. Inhibition of mTOR sig-
naling up-regulated CD133 expression in gas-
trointestinal cancer cells [15]. The results of 
Yang et al. [37] showed that mTOR inhibition 
increase the CD133+ subpopulations, and trig-
ger the conversion of CD133- to CD133+ liver 
tumor cells. These two results indicated that 
inhibition of mTOR signaling could induce the 
generation of CSC cells. However, the main rea-
son for the discrepancy is different cellular con-
texts. CD133 expression mRNA and protein 
levels were elevated under hypoxic conditions 
[38]. 

Dubrovska et al. [5] found that PTEN/PI3K/Akt 
pathway is critical for prostate cancer stem-like 
cell maintenance and that targeting PI3K sig-
naling may be beneficial in prostate cancer 
treatment by eliminating prostate cancer stem-
like cells. Activated PI3K upregulated ABCG2 
expression and elevated percentage of cancer 
stem-like cells in both acute myeloid leukemia 

Figure 1. Schematic representation of the PI3K/Akt/mTOR signaling pathway 
and CSC biology.
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(AML) and acute lymphoblastic leukemia (ALL) 
[39]. However, in the study of Airiau et al. [40], 
they found that mTOR inhibition showed no 
effect on chronic myeloid leukemia (CML) stem 
cells (CD34+/CD38-), while PI3K inhibition 
restored the cell line sensitivity to nilotinib, a 
second generation tyrosine kinase inhibitor 
(TKI). Abnormal activation of PI3K/Akt/mTOR 
signaling pathway leads to enhanced expres-
sion of chemokine (C-X-C motif) receptor 4 
(CXCR4), which in turn promotes CXCR4-
mediated STAT3 signaling that might be respon-
sible for maintenance of stemness in NSCLC 
cells [41]. Chang et al. [42] found that insulin-
like growth factor-1 receptor (IGF-1R) and its 
signaling via PI3K/Akt/mTOR pathway are 
attractive targets for therapy directed against 
breast cancer stem cells. Cyclin G1-induced 
liver tumor-initiating cells expansion contrib-
utes to the recurrence and chemoresistance of 
hepatoma via Akt/mTOR signaling [43]. 
Decreased mTOR activity in response to hypox-
ia-inducible factor 1α (HIF-1α) upregulation 
inhibits proliferation and promotes survival of 
prostate cancer stem cells through the PI3K 
feedback loop [44]. 

As discussed above, a link between the PI3K/
Akt/mTOR pathway and cancer stem cell is 
clearly evident and the components of this 
pathway are viable candidates for therapeutic 
intervention (Figure 1). 

PI3K/Akt/mTOR is a target for cancer stem 
cells therapy

The Food and Drug Administration (FDA) 
approved temsirolimus for the treatment of 
advanced stage renal cell carcinoma in 2007. 
Temsirolimus became the first mTOR inhibitor 
approved for cancer therapy [45]. From then 
on, three generations of compounds targeting 
PI3K/mTOR have already been developed. The 
first-generation of PI3K inhibitors, also being 
called “pan-inhibitors”, were able to bind all 
class I PI3Ks [46]. The second-generation 
inhibitors are characterized by greater and iso-
form-specific selective activity [46]. The third 
generation inhibitors, “dual PI3K/mTOR inhibi-
tors”, not only inhibits all PI3K class I isoforms, 
but also mTORC1 and mTORC2 [47]. 

The mTOR antagonist everolimus has effective 
inhibitory effects on HER2-overexpressing 
breast cancer stem cells in vitro and in vivo by 

reducing the expression of Akt1 and p-Akt [47]. 
Liu et al. [48] found that everolimus in combina-
tion with letrozole inhibit human breast cancer 
MCF-7 stem cells via PI3K/mTOR pathway. 

Mendiburu-Eliçabe et al. [49] found that 
rapamycin reduced cell proliferation and tumor-
igenic potential, led to the loss of CD133+ popu-
lation and increased the level of p-Akt in glio-
blastoma cells. Wang et al. [50] found that 
depletion of F-box and WD repeat domain con-
taining 7 (FBXW7) in colon cancer cells induces 
EMT and cancer stem cell-like characteristics, 
which can be suppressed by mTOR inhibitor, 
rapamycin. Rapamycin also has been demon-
strated that could target the self-renewal and 
vascular differentiation potential in patient-
derived hemangioma stem cells [51].

Metformin (1,1-dimethylbiguanide hydrochlo-
ride), the most widely prescribed drug for treat-
ment of type 2 diabetes, inhibition of CSCs was 
first showed in 2009 in preclinical breast can-
cer models [52]. Interestingly, metformin pref-
erentially kills CSCs over NSCCs (non-stem can-
cer cells) derived from human breast tumors, 
and it inhibits growth of mammospheres 
derived from these tumors [53]. These results 
were subsequently extended to pancreatic can-
cer cell line, metformin decreased CSC mark-
ers, CD44, CD133, ALDH1, and EPCAM and 
modulation of the mTOR signaling pathway [13]. 
Metformin eradicates radioresistant cancer 
stem cells in mouse fibrosarcoma cell (FSaII) 
and human mammary adenocarcinoma cell 
(MCF-7) by activating AMP-activated protein 
kinase (AMPK) and suppressing mTOR [54]. 
Furthermore, the proliferation of breast cancer 
stem cells was markedly suppressed by metfor-
min that leading to inactivation of mTOR [55]. 

Salinomycin is a monocarboxylic polyether anti-
biotic used to prevent coccidiosis in poultry 
[56]. Gupta et al. [57] showed that salinomycin 
selectively kills human breast CSCs in 2009. A 
series of followed studies showed similar 
effects of salinomycin in other types of CSCs, 
such as pancreatic cancer [58], colorectal can-
cer [59] and lung cancer [60]. Many mecha-
nisms of salinomycin have been identified in 
CSC cells [58-60]. One of the mechanisms is 
that salinomycin induces cell death and differ-
entiation in head and neck squamous cell car-
cinoma stem cells by activation of EMT and Akt 
[61]. Metformin in combination with salinomy-
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cin could be a promising treatment option for 
five NSCLC cells and their stem cells (HCC4006, 
NCI-H1975, NCI-H2122, HCC95 and NCI-
H3122) [62].

The radiosensitization efficiency of NVP-
BEZ235, a novel dual PI3K/mTOR inhibitor, is 
achieved in human glioma stem cells by its 
cumulative antitumor effects, including induc-
tion of autophagy, apoptosis, cell cycle arrest, 
and prevention of DNA repair [63]. Dubrovska 
et al. [64] also found that NVP-BEZ235 leads to 
a decrease in the population of CD133+/CD44+ 
prostate cancer progenitor cells in vivo. 
Blockage of the PI3K/mTOR pathway inhibited 
the in vitro proliferation of colorectal cancer 
stem cells and in vivo xenograft tumor growth 
by using a dual PI3K/mTOR inhibitor, 
PF-04691502 [65]. The apoptosis-inducing 
mTOR inhibitor, Torin-1, hindered growth, motil-
ity, invasion, and survival of colorectal cancer 
stem cell in vitro, and suppressed tumor growth 
in vivo [66]. A novel dual mTORC2/mTORC1 
inhibitor, OSI-027, suppresses primitive leuke-
mic precursors from AML patients and is much 
more effective than rapamycin in eliciting anti-
leukemic effects in vitro [67]. The anthracycline 
daunorubicin (DNR) is one of the major antitu-

mor agents widely used in 
the treatment of AML [68]. 
PI-103, a dual inhibitor of 
PI3K and mTOR sensitizes 
AML stem cells to daunoru-
bicin-induced cytotoxicity 
[69]. Hong et al. [70] also 
found that arsenic disulfide 
(As2S2) synergizes with 
PI-103 eradicated AML 
stem cells by targeting the 
PI3K/Akt/mTOR pathway. 
Silibinin, a flavonoid com-
pound, inhibits colon CSCs 
self-renewal and sphere 
formation by suppressing 
the PP2A/Akt/mTOR path-
way [71]. Quinoline imi-
doselenocarbamate EI201 
reduces the CSC popula-
tion and inhibits tumor 
growth in an in vivo model 
of prostate cancer by sup-
pressing Akt/mTOR path-
way [72]. Rottlerin is a plant 
derived chemotherapeutic 

Figure 2. Schematic representation of the action PI3K/Akt/mTOR pathway in-
hibitors in CSC.

agent and has been used as a protein kinase 
C-∆ signaling pathway inhibitor [73]. Singh et al. 
[74] found that rottlerin induces autophagy 
which leads to apoptotic cell death through 
inhibition of PI3K/Akt/mTOR pathway in human 
pancreatic cancer stem cells. Kumar et al. [75, 
76] found that rottlerin induces autophagy and 
apoptosis in both prostate and breast cancer 
stem cells via PI3K/Akt/mTOR signaling path- 
way. 

Based on the previous studies as described 
above, better understanding of PI3K/Akt/mTOR 
signaling should create novel therapeutic 
opportunities in treating cancer stem cells 
(Figure 2).

Perspective

In summary, the PI3K/AktmTOR pathway is a 
very complicated intracellular network, we are 
only at the beginning of understanding the pre-
cise role of PI3K/Akt/mTOR signaling in regulat-
ing cancer stem cells. Our current understand-
ing of the precise mechanisms through PI3K/
Akt/mTOR signaling is still extremely limited. 
Importantly, it remains to be determined how 
broadly useful such molecules will be in the 
clinical setting. We believe that these data will 



PI3K/Akt/mTOR and CSCs

1606 Am J Cancer Res 2015;5(5):1602-1609

greatly impact the development of new thera-
pies being designed to eradicate CSC.
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