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Abstract: The most common cancer in children is acute lymphoblastic leukemia (ALL) and it had high cure rate, 
especially for B-precursor ALL. However, relapse due to drug resistance and overdose treatment reach the limitations 
in patient managements. In this study, integration of gene expression microarray data, logistic regression, analysis 
of microarray (SAM) method, and gene set analysis were performed to discover treatment response associated 
pathway-based signatures in the original cohort. Results showed that 3772 probes were significantly associated 
with treatment response. After pathway analysis, only apoptosis pathway had significant association with treatment 
response. Apoptosis pathway signature (APS) derived from 15 significantly expressed genes had 88% accuracy for 
treatment response prediction. The APS was further validated in two independent cohorts. Results also showed that 
APS was significantly associated with induction failure time (adjusted hazard ratio [HR] = 1.60, 95% confidence in-
terval [CI] = [1.13, 2.27]) in the first cohort and significantly associated with event-free survival (adjusted HR = 1.56, 
95% CI = [1.13, 2.16]) or overall survival in the second cohort (adjusted HR = 1.74, 95% CI = [1.24, 2.45]). APS not 
only can predict clinical outcome, but also provide molecular guidance of patient management.
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Introduction

Acute lymphoblastic leukemia (ALL) is the most 
common cancer in the children [1]. Because 
suitable treatment strategies of children ALL 
were established, overall cure rate was approxi-
mately 80% [2], especially for B-precursor ALL 
[3]. Despite higher cure rate, treatment resis-
tance, toxicity, and reduction of adverse effects 
of treatment need to be addressed [2, 4]. 

Risk classifications for ALL are based on genet-
ic abnormalities (hypodiploidy, hyperdiploidy, 
trisomy, and chromosome translocation result-
ed in gene fusions), clinical characteristics 
(age, WBC count, sex, and central nervous sys-
tem involvement), and minimum residual dis-
ease [5]. However, some patients still have 
poor response to the serious treatments and 

some receive overdose treatment [2, 6]. High-
throughput technologies such as microarrays 
could detect expression levels of thousands of 
genes at once. Gene expressions in different 
experimental conditions can be used to explore 
the underlying molecular biology mechanism 
[6]. Global gene expression profiling could also 
reveal heterogeneity of cancer cells and provide 
predictions of drug resistance and clinical out-
come of pediatric ALL [6-9]. Until now, several 
studies demonstrated that gene expression 
microarrays revealed subtypes of pediatric ALL 
[10, 11] and associations with drug resistance 
or clinical outcome [12-14], especially for child-
hood high-risk (HR) B-precursor ALL [3, 7, 15].

Current studies used single gene approach to 
identify major differential expressed genes in 
different treatment response status or clinical 
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outcomes of the diseases [3, 7, 13, 16]. 
However, because some subtle differential 
genes expressions might be interactive to 
result in diverse physiological states [17], it 
would be better to explore a group of co-
expressed genes in the specific biological path-
way [18]. Hence, gene set enrichment analysis 
incorporated biological pathway information 
could not only increase power and reduce the 
dimensions of the underlying statistics prob-
lem, but also understand the functional mecha-
nism in a cell [19].

In this study, gene set analysis approach was 
used to identify genes in the same biological 
pathway associated with early treatment 
response of HR B-precursor ALL from a pub-
lished microarray data [15]. Identified pathway-
based signature had high accuracy for predic-
tion of treatment response and clinical out-
come. The results were validated in two inde-
pendent cohorts. The findings of this study may 
have potential for high risk patients selection 
and improve the clinical managements of HR 
B-precursor ALL. 

Materials and methods

Study population and gene expression 
microarray data

Published clinical and microarray data 
including 99 patients with National 
Cancer Institute-defined HR B-precursor 
ALL (age ≥ 10 years and/or WBC ≥ 
50,000/μl) were used in this study [15]. 
These patients were treated uniformly 
with the Children’s Oncology Group (COG) 
1961 protocol and received four-drug 
induction. Treatment response was 
assessed by minimal residual disease 
(MRD) testing on day 7 and classified 
into slow early responses (SER) or rapid 
early responders (RER) with 25% blasts 
in the marrow as a threshold. Long-term 
clinical outcome was evaluated whether 
achieved complete continuous remis-
sion (CCR) for at least 4 years after initial 
diagnosis. Clinical characteristics of all 
subjects were briefly summarized in the 
Table 1. 

Affymetrix HG-U133Plus2.0 microarray 
raw data (cel files) were downloaded 
from the National Center for Biotech- 
nology Information Gene Expression 

Table 1. Clinical characteristics of 99 patients in the 
children’s Oncology Group (COG) 1961
Variable RER* SER* p-value
N 59 40
Age (months) 132.47 ± 59.19 107.60 ± 63.48 0.05§

WBC (×109/L) 88391 ± 119156 121085 ± 123159 0.19§

Gender 0.84£

    Female 22 (37.29) 16 (40.00)
    Male 37 (62.71) 24 (60.00)
Translocation 0.01£

    t (12;21) 4 (6.78) 4 (10.00)
    t (1:19) 9 (15.25) 0 (0.00)
    t (4,11) 3 (5.08) 1 (2.50)
    t (9,22) 1 (1.69) 5 (12.50)
    non 42 (71.19) 30 (75.00)
MRD
    M1 42 (71.19) 0 (0.00)
    M2 17 (28.81) 0 (0.00)
    M3 0 (0.00) 40 (100.00)
Outcome 0.42£

    CCR 19 (32.20) 9 (22.50)
    relapse 17 (28.81) 14 (35.00)
    missing 23 (38.98) 17 (42.50)
*RER, rapid early response; SER, slowly early response; §p-value of t 
test; £p-value of Fisher’s exact test.

Omnibus (GEO) (series accession number 
GSE7440) [15]. Microarray raw data were ana-
lyzed with Affymetrix Microarray Suite (MAS 
5.0) for further analysis.

Two independent microarray data sets down-
load from public databases were used for vali-
dation of the outcome signatures. The first vali-
dation cohort was 220 patients with pediatric 
B-precursor ALL treated on Pediatric Oncology 
Group (POG) 9006 phase III clinical trial, and 
the microarray expression data was download-
ed from the National Cancer Institute Cancer 
Array Informatics website (https://catissue-
suite.ecmc.ed.ac.uk/caarray/home.action, 
Experiment ID 1015897590271440) [10]. The 
second validation cohort was 207 patients with 
high-risk B-precursor ALL enrolled in Children’s 
Oncology Group (COG) Clinical Trial P9906, and 
the microarray expression data was download-
ed from the Gene Expression Omnibus (GEO) 
database of the National Center for Biotechno- 
logy Information (series accession number 
GSE11877) [3, 7]. Microarray platforms of two 
datasets were Affymetrix U95Av2 and U133- 
Plus2.0, respectively.
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Statistical analysis

To reduce variation among microarrays, the 
intensity values of each sample were normal-
ized by quantile-normalized method [20]. 
Finally, each intensity value was taken loga-
rithm transformation with base 2. For determin-
ing whether the expression level of genes from 
microarray data associated with treatment 
response of HR B-precursor ALL, multivariate 
logistic regression with clinical covariates (age, 
sex, WBC, and chromosome translocation sta-
tus) was performed to select potential candi-
date genes. If the p-value of regression coeffi-
cient of a gene was less than 0.05, this gene 
was selected as candidate gene. Next, signifi-
cantly analysis of microarray (SAM) method 
was used to control false discovery rate (< 
0.05) [21]. 

Efron-Tibshirani’s GSA maxmean statistics for 
gene set analysis [22] was employed to identify 
the treatment response associated biological 
pathways in HR B-precursor ALL. The Hotelling 
T2-test [23] was used to identify the significant-
ly different expression profiles in the specified 
pathway between different treatment response 
groups. Besides, MetaCore (Thomson Reuters, 
city, state) was applied to determine the dis-
ease related genes. 

In order to investigate the relevant pathway 
impact on treatment in HR B-precursor ALL, the 
pathway-based risk score method was calcu-
lated in each subject. It was a linear combina-
tion of expression values of significantly differ-

ential genes in the associ-
ated pathway and weighted 
by coefficients of multivari-
ate logistic regression of 
genes. The pathway-based 
risk score was compared 
between RER and SER by t 
test. Receiver operating 
characteristic (ROC) curve 
with Youden index [24] for 
cut off point seleciton was 
used to evaluate the pre-
dictive accuracy of the 
pathway-based signatures. 

For validating signatures in 
the specific pathway as 
pathway-base signatures 
of HR B-precursor ALL, 
pathway-based risk scores 
calculation, ROC curve with 

Figure 1. Significant differential expressed genes enriched in specific disease 
categories.

Youden index for cut-point selection as high- or 
low-risk group grouping were also applied in the 
2 independent cohorts. The Kaplan-Meier 
method was used to estimate overall survival 
(OS), event-free survival (EFS), or induction fail-
ure time. The log-rank test was used to test the 
survival difference between two groups. 
Multivariate Cox proportional hazards regres-
sion analysis with clinical covariates such as 
age, sex, WBC count, and chromosome translo-
cation was carried out to evaluate the indepen-
dent prognostic factor for pathway-based risk 
scores. All statistical analyses were computed 
by SAS (SAS Institute Inc. Cary, NC), R (http://
www.R-project.org), and BRB tools (http://linus.
nci.nih.gov/BRB-ArrayTools.html). All tests were 
two-tailed. P values < 0.05 were considered 
significant.

Results

Differentially expressed genes between re-
sponder and non-responder

Multivariate logistic regressions were used to 
evaluate the associations between genes and 
treatment response status. The results showed 
that expression values of 3798 probes out of 
54675 probes were significantly associated 
with early treatment response of pediatric HR 
B-precursor ALL. Comparing to SAM analysis, 
3772 probes were still significant under false 
discovery rate < 0.05. These significant genes 
were most pertinent to leukemia disease 
(Figure 1). In order to incorporate biological 
knowledge into the analysis, we applied gene 
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Table 2. Differential expressed genes (n = 15) in the apoptosis pathway associated treatment re-
sponse for childhood HR B-precursor ALL
Gene Symbol Crude p-value Adjusted p-valueb Adjusted OR (95% CI)b Probe sets
IL1RAPa 0.0012 0.0025 1.98 (1.27, 3.10) 219489_s_at, 210233_at
IRAK3a 0.0002 0.0005 2.60 (1.52, 4.46) 213817_at, 1568830_at, 220034_at
IRAK2 0.0150 0.0267 1.48 (1.05, 2.08) 1553740_a_at
PPP3CA 0.0167 0.0210 1.87 (1.10, 3.18) 202429_s_at
PRKAR2B 0.0037 0.0008 1.85 (1.29, 2.64) 203680_at
CHP 0.0139 0.0115 0.59 (0.39, 0.89) 207993_s_at
TNFRSF10B 0.0224 0.0291 1.81 (1.06, 3.09) 209295_at
IKBKG 0.0145 0.0262 2.98 (1.14, 7.80) 209929_s_at
CFLAR 0.1264 0.0355 0.53 (0.30, 0.96) 209939_x_at
PIK3R1 0.0616 0.0468 0.55 (0.31, 0.99) 212240_s_at
FAS 0.0102 0.0281 1.40 (1.04, 1.89) 215719_x_at
XIAP 0.0008 0.0011 4.73 (1.86, 12.02) 225858_s_at
PIK3R5 0.0002 0.0010 2.17 (1.36, 3.44) 227645_at
CYCS 0.0051 0.0231 0.40 (0.18, 0.88) 229415_at
BCL2a 0.0006 0.0006 3.16 (1.64, 6.12) 207005_s_at, 207004_at, 203685_at
Note: p-value and adjusted ORs were calculated from logistic regression. aGene expression level was the average of multiple 
probes. bEstimates was adjusted for covariates (age, presenting white blood cell count, gender, chromosome translocation 
status). Abbreviations: OR, odds ratio; 95% CI, 95% confidential interval.

Figure 2. Risk score distribution and prediction ability of APS in the different outcomes. The APS-based risk score 
incorporated fifteen differential expressed genes. Distributions of score were significantly different between (A) 
treatment response and (B) clinical outcome, respectively. Receiver operating characteristics (ROC) curves of the 
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set analysis using maxmean statistics. Apo- 
ptosis pathway was the only highly significant 
pathway in the KEGG database under 200 per-
mutations (p-value < 0.005). Total fifteen dif-
ferential expression genes were in this apopto-
sis pathway, four were protected genes (odds 
ratio (OR) < 1) and eleven were risk genes (OR 
> 1) (Table 2). Significantly differential expres-
sion profile of fifteen genes in the apoptosis 
pathway between treatment response groups 
was observed (Hotelling T2-test, p-value < 
0.001).

Apoptosis-pathway signature (APS) for treat-
ment response and clinical outcome

Gene expression profiles of fifteen genes were 
used to construct apoptosis pathway-based 
risk score. Pathway-based risk score was sig-
nificant difference between RER and SER 

groups (p-value < 0.0001) (Figure 2A). The ROC 
curve also showed that the accuracy was 
0.8809 (p-value < 0.0001) (Figure 2C). Positive 
predicted value (PPV) and Negative predicted 
value (NPV) were 84.85% and 81.82%, respec-
tively. Because of positive correlations between 
treatment response and clinical outcome for 
pediatric ALL, we used this pathway-based sig-
nature to predict clinical outcome of B-precursor 
ALL. Pathway-based risk score between CCR 
and relapse groups was significant difference 
(p-value < 0.0001) (Figure 2B). The ROC curve 
analysis also showed that accuracy was still 
around 80% (p-value < 0.0001) (Figure 2D).

Validation of APS in the two independent co-
horts 

Two large independent cohorts (sample size = 
220 and 207) were used to validate APS. 

predicted score of (C) treatment response reached the 88.09% accuracy and (D) clinical outcome reached the 
about 80% accuracy. 

Figure 3. Kaplan-Meier estimates of clinical outcome based on APS in the two independent cohorts. In the POG 
9006 phase III clinical trial, (A) high-risk group had significantly shorter induction failure time than low-risk group in 
HR Precursor-B ALL (n = 135); (B) in all precursor-B ALL (n = 220), high-risk group also had significantly shorter in-
duction failure time than low-risk group. In the COG clinical trial P9906, (C) high-risk group both had shorter median 
event-free survival and (D) median overall survival than low-risk group.
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Table 3. Validations of APS in two independent cohorts

Independents cohorts Prediction out-
come

Crude Adjusted with clinical 
variables

Adjusted with cytogenetic 
abnormality

Adjusted with clinical variables 
and cytogenetic abnormality

HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value
POG 9006 phase III clinical trial
    B-precursor ALL Treatment failure 1.72 (1.32-2.25) < 0.0001 1.58 (1.20-2.08)b 0.0013b 1.56 (1.16-2.10)c 0.0034c 1.54 (1.13-2.10)d 0.0065d

    HR B-precursor ALLa Treatment failure 1.75 (1.30-2.34) 0.0002 1.68 (1.24-2.28)b 0.0008b 1.56 (1.13-2.17)c 0.0069c 1.60 (1.13-2.27)d 0.0080d

COG Clinical Trial P9906
    HR B-precursor ALL Death or relapse 1.56 (1.14-2.13) 0.0057 1.56 (1.13-2.17)e 0.0072e 1.56 (1.14-2.13)f 0.0051f 1.56 (1.13-2.16)g 0.0071g

    HR B-precursor ALL Death 1.81 (1.32-2.48) 0.0002 1.71 (1.24-2.37)e 0.0011e 1.88 (1.34-2.64)f 0.0003f 1.74 (1.24-2.45)g 0.0013g

aAccording to High-risk B-precursor ALL (HR B-precursor ALL, age ≥ 10 years and/or presenting WBC ≥ 50,000/μL) definition by the National Cancer Institute, the subset from B-pre-
cursor ALL in the POG 9006 phase III clinical trial were selected. bAdjusted for age, gender, presenting white blood cell count, and race. cAdjusted for t(12;21), t(1;19), t(9;22), t(4;11), 
hyperdiploid, and hypodiploid. dAdjusted for age, gender, presenting white blood cell count, race, t(12;21), t(1;19), t(9;22), t(4;11), hyperdiploid, and hypodiploid. eAdjusted for age, gen-
der, presenting white blood cell count, race, and central nervous system status at diagnosis. fAdjusted for E2A-PBX1 translocations, and MLL translocations. gAdjusted for age, gender, 
presenting white blood cell count, race, and central nervous system status at diagnosis, E2A-PBX1 translocations, and MLL translocations. Abbreviations: HR B-precursor ALL, High-risk 
B-precursor ALL; POG, Pediatric Oncology Group; COG, Children’s Oncology Group; HR, hazard ratio; 95% CI, 95% confidential interval.
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Patients were classified into the high or low risk 
group based on APS. The cut-off point was cal-
culated according the Youden index of the ROC 
curve. 

The median follow-up for 220 patients with 
B-precursor ALL in the POG 9006 phase III clini-
cal trial was about 33 months. We selected 
135 patients as HR B-precursor ALL according 
to NCI definition such as age greater than 10 or 
WBC greater than 50000 per microliter. The 
median follow up was about 28 months. After 
risk classification, the induction failure time of 
the high-risk group in HR B-precursor ALL was 
shorter than low-risk group (p-value = 0.0019) 
(Figure 3A). The adjusted hazard ratio (HR) for 
APS was 1.60 (95% confidence interval [CI] = 
1.13 to 2.27, p value = 0.0080) (Table 3). 
Results of survival analysis in the B-precursor 
ALL were similar to those in the HR B-precursor 
ALL. The high-risk group had a shorter induc-
tion failure time than in low-risk group (p-value 
= 0.0002) (Figure 3B). The multivariate Cox 
regression analysis with clinical covariates 
showed that APS was significantly associated 
with induction failure of B-precursor ALL 
(adjusted HR = 1.54, 95% CI = 1.13 to 2.10, 
p-value = 0.0065) (Table 3). APS was also 
associated with induction failure of B-precursor 
ALL, not only for HR B-precursor ALL. 

We also validated this APS in another indepen-
dent cohort with 207 HR B-precursor ALL 
patients enrolled in Children’s Oncology Group 
(COG) Clinical Trial P9906. Patients who were 
grouped into the high-risk group had shorter 
event-free survival than in the low-risk group 
(p-value = 0.0003) (Figure 3C). The similar 
results were also found in the overall survival 
(p-value = 0.0003) (Figure 3D). Results of mul-
tivariate Cox regression analyses showed that 
the APS was significantly associated with 
relapse or death (adjusted HR = 1.56, 95% CI = 
1.13 to 2.16, p-value = 0.0071) (Table 3) or 
overall survival (adjusted HR = 1.74, 95% CI = 
1.24 to 2.45, p-value = 0.0013) (Table 3). 

Discussion

APS for HR B-precursor ALL was derived from 
gene expression microarray and gene set anal-
ysis enriched in biological pathways. APS was 
explored by detecting the differential expressed 
genes in the specific pathway associated with 
treatment response. Then treatment-related 

signature APS was applied to predict treatment 
response and clinical outcome. The results 
showed that APS had high accuracy (80%) for 
predictions of treatment response and clinical 
outcome. Furthermore, APS were validated in 
two independent cohorts. Results not only 
showed that patients with high risk signature 
had shorter event-free or overall survival, but 
also had shorter induction failure time in the 
HR B-precursor ALL and all B-precursor ALL. 

The findings of this study were different with 
previous study [15] which used the same micro-
array and clinical data of HR B-precursor ALL. 
Bhojwani et al. found that 24 significant probe 
sets had prediction power for treatment 
response. Interestingly, the 23 out of 24 probe 
sets were also obtained in our significant probe 
set list (3772 probes) but not enriched in the 
apoptosis pathway. Only gene BCL2 was in our 
apoptosis-gene-signature. The different find-
ings between Bhojwani et al. and this study 
may due to different analysis strategies and 
statistical methods. In particular, treatment 
response associated specific apoptosis-gene-
signature was found in this study. 

HR precursor-B ALL patients with the same clin-
ical characteristics and cytogenetic features 
showed different treatment and clinical out-
comes and introduced relapse or the treatment 
toxicity [2]. It indicated it is the heterogeneous 
disease. Hence, current clinical features and 
cytogenetic markers based risk stratification 
strategy for children ALL treatment may reach 
its limitations. Gene expression profiling using 
microarray technologies could explore subtype 
of ALL and provide important insight for the 
drug response and clinical outcome in child-
hood ALL [13, 25, 26]. In advance, the gene set 
analysis strategy incorporated biological path-
ways information and gene expression profiling 
to explore outcome associated important path-
way and had higher prediction power for treat-
ment response or clinical outcome [27].

The majority of B-cell ALL are found to be asso-
ciated with chromosome aberration such as 
chromosome translocation and hyperdiploid 
[28]. Genomic structure variation can be used 
to do risk classification and decision of treat-
ment strategy in B-precursor ALL [29]. Through 
developments of microarray and next genera-
tion sequencing, combinations of genomic 
mutations and chromosome structure varia-
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tions will be useful tool for subtypes classifica-
tion of ALL [29]. However, subtype grouping is 
almost based on genomic information at this 
time. Gene expression level might add more 
clues to predict patients’ prognosis or treat-
ment response [30, 31]. In this study, indepen-
dent of genomic structure variation and clinical 
characteristics, APS combining pathway and 
gene expression information could predict clini-
cal outcome of precursor B-ALL. This would 
give more clues for pathogenesis exploring and 
add value for patients’ risk stratification for 
treatment strategy.

Some studies showed that alterations in the 
expression of apoptosis associated genes may 
involve in the progress of B-cell leukemia [32] 
and affect treatment sensitivity [33]. The vast 
majority of associated genes were upregulated 
in patients with relapse [34]. In our study, 
results also show that eleven of fifteen differen-
tial expressed genes had ORs greater than 1. 
Patients with higher expressed values of these 
risk genes would tend to have higher risk of 
worse treatment response. Identification of 
important apoptosis genes could not only 
understand the role of apoptosis involved in 
progression mechanism but also may provide 
novel tools for diagnosis and targets for drug 
development in pediatric ALL [32]. Recent stud-
ies demonstrated that targeting therapies for 
pediatric ALL could improve cure rate and pos-
sibly minimize toxicity [35]. In this study, three 
out of 15 genes (BCL2, XIAP, and TNFRSF10B) 
in the apoptosis pathway have been reported 
as potential therapeutic targets in pediatric ALL 
and investigated in clinical trials [35].

APS was significantly associated with treat-
ment response and clinical outcome of HR 
B-precursor ALL. This signature not only could 
be used for risk stratification but provided 
potential molecular targets for drug deve- 
lopment.
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