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Abstract

The warble songs of budgerigars (Melopsittacus undulatus) are composed of a number of 

complex, variable acoustic elements that are sung by male birds in intimate courtship contexts for 

periods lasting up to several minutes. If these variable acoustic elements can be assigned to 

distinct acoustic-perceptual categories, it provides the opportunity to explore whether birds are 

perceptually sensitive to the proportion or sequential combination of warble elements belonging to 

different categories. By the inspection of spectrograms and by listening to recordings, humans 

assigned the acoustic elements in budgerigar warble from several birds to eight broad, overlapping 

categories. A neural-network program was developed and trained on these warble elements to 

simulate human categorization. The classification reliability between human raters and between 

human raters and the neural network classifier was better than 80% both within and across birds. 

Using operant conditioning and a psychophysical task, budgerigars were tested on large sets of 

these elements from different acoustic categories and different individuals. The birds consistently 

showed high discriminability for pairs of warble elements drawn from between acoustic categories 

and low discriminability for pairs drawn from within acoustic categories. With warble elements 

reliably assigned to different acoustic categories by humans and birds, it affords the opportunity to 

ask questions about the ordering of elements in natural warble streams and the perceptual 

significance of this ordering.
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Bird vocalizations, especially the learned songs of oscines, have been intensively studied 

since the 1950s (see review in Marler, 2004) such that songbirds, for better or worse, 

represent the best, if not the only, animal models for understanding the neurobiological 

processes underlying human speech and language learning (Brainard & Doupe, 2002; Doupe 

& Kuhl, 1999; Goldstein, King, & West, 2003; Marler, 1970; Marler & Peters, 1981; Todt, 

2004; Wilbrecht & Nottebohm, 2003). However, songbird songs are generally short (a few 

seconds) and stereotyped. Though there are exceptions, songbirds usually sing one or more 

“song types” (particular patterns of elements), sometimes repeatedly, in a song bout 
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(Catchpole & Slater, 2008). In most cases, the sequential order of song elements in a song is 

stereotyped and predictable so that little opportunity exists for information to be encoded by 

varying the order or combinations of song elements. Consider, as an extreme example, male 

zebra finches which sing one highly stereotyped, learned song throughout life (Zann, 1996). 

Bengalese finches sing a limited repertoire of stereotyped elements with a limited finite state 

syntax (e.g., Okanoya, 2004) and starlings show iterated motifs that appear to form basic 

perceptual units of a song (Gentner & Hulse, 1998, 2000). These songbird examples are in 

stark contrast to the syntactical rules for combining words that allow a vast range of 

expressions possible in human language (Kirby, 2002; Marler, 2000). Therefore, as broad 

models of human communication systems, vocal learning aside, the short, stereotyped nature 

of most bird song is one major limitation of songbird vocalizations as models of human 

communication.

By contrast, the warble song of a non-territorial non-songbird species, the budgerigar 

(Melopsittacus undulatus), offers some new avenues of exploration of a complex acoustic 

communication system. Budgerigars are small parakeets native to Australia. They usually 

live in large groups (from hundreds of individuals to over 25 thousand) and highly depend 

on vocal communication to coordinate social and reproductive behaviors in the flock 

(Brockway, 1964a, 1964b; Farabaugh & Dooling, 1996; Trillmich, 1976; Wyndham, 1980). 

The warble song of male budgerigars is a complex, melodic, multi-syllabic vocalization that 

can last as long as several minutes at an average rate of two to three syllables per second 

(Brockway, 1964b; Farabaugh, Brown, & Dooling, 1992). A representative stream of warble 

song from a male budgerigar lasting 20 seconds is shown in Figure 1. Even a cursory 

examination of this song shows that similar acoustic elements recur throughout a long song 

bout. But these elements are sufficiently variable within and across birds that they are not 

easily assigned to exclusive categories (Farabaugh et al., 1992). Finally, unlike the song of 

songbirds, warble song is typically delivered in close quarters during intimate interactions 

between individuals, especially mates, and accompanied with other intimate behaviors 

(Brockway, 1964b, 1965, 1969). All of these features of budgerigar acoustic communication 

offer new potential parallels with human speech.

Despite the importance of warble to budgerigars, not much is known about how birds learn 

different warble elements, how they perceive them, or whether there is any significance to 

the ordering of these elements. Farabaugh and her colleagues (1992) categorized budgerigar 

warble elements by having human subjects sort spectrograms of warble syllables. In this 

analysis, approximately 300 syllables per bird were recorded from 6 normal males, 2 

isolated males, and 1 female and pooled together for a total of 2800 syllables, which were 

then sorted into 42 groups. Among them, 15 were basic “elemental” units that could not be 

easily subdivided while another 27 groups were compound units where two or more 

elemental units were combined. Generally, these 15 basic groups could be further described 

as consisting of narrowband (including contact call-like elements), nonharmonic broadband 

(including alarm call-like elements), and harmonic broadband (Farabaugh et al., 1992) 

sounds. This study was the first to establish that budgerigar warble elements can be 

acoustically categorized, but it also showed that the acoustic categories are complex and 

overlapping. This leaves open the question as to whether budgerigars would perceive warble 
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elements as belonging to different acoustic categories. The extent to which the acoustic 

categories of warble elements defined by human observers are useful in exploring vocal 

communication in budgerigars is largely dependent on whether the birds treat these acoustic 

categories warble elements as perceptual categories.

Defining distinct acoustic categories is typically an important first step in analyzing an 

animal's vocal repertoire (Deecke & Janik, 2006). If there are no demonstrable acoustic 

categories, then every sound may be perceived as unique (Roitblat & von Fersen, 1992), and 

there would be no opportunity to convey information beyond the single element as, for 

instance, in the proportion or sequence of elements. Thus, the first goal of the present study 

was to confirm, using a much larger set of warble elements, the Farabaugh et al. (1992) 

finding that budgerigar warble elements can be assigned to distinct acoustic categories with 

high agreement among human raters. To do this, we developed a neural network-based 

classification program that reliably and efficiently assigns large numbers of warble elements 

into human-defined acoustic categories. Once warble elements were assigned to acoustic 

categories, the second goal of the present experiments was to determine whether the birds 

perceive these warble elements as if they belong to the acoustic categories as defined by 

human raters and the neural network.

General Method

Vocal Recording

Warble songs were obtained from four adult male budgerigars. Three birds (Buzz, Ricky, 

and Puffy) were initially housed together with about 40 other budgerigars in a large aviary at 

the University of Maryland. Warble for the fourth was obtained from archival recordings 

from Farabaugh et al. (1992). The three male budgerigars were observed warbling to a 

specific female on several occasions, indicating pair bonding. Approximately four weeks 

prior to the start of recording, these three pairs were removed from the large flock and 

housed together to promote pair bonding and increase male warbling. Animals had ad 

libitum access to both food and water at all times.

One male budgerigar was recorded at a time. The selected pair was separated and placed in a 

small animal acoustic isolation chamber (Industrial Acoustic Company model AC-1, New 

York, NY) over night before recording. In the next morning, the doors of the chambers were 

opened and a recording session was begun. To stimulate warbling by the male, a low-

amplitude recording of all the birds from the budgerigar flock room was played softly in the 

background and the subject's mate was placed in close proximity (Brockway, 1964b). While 

females do not warble, to avoid any contamination from any vocalizations of the female, a 

single directional microphone (Audio-Technica Pro 35ax clip-on instrument microphone, 

Audio-Technica, Inc., Stow, OH) was aimed at the male's cage such that the female was 

always behind the microphone. All vocalizations were stored as a single channel of a PCM 

WAV file at a sampling rate of 48 kHz on a Marantz PMD670 digital recorder (Marantz 

America, Inc., Mahwan, NJ). An aggregation of more than one hour of warble was collected 

over approximately four hours of recording for each bird.
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Warble from the fourth bird, Yuri, was obtained from archival recordings from the 

Farabaugh et al. (1992) study as a check on whether the present methods of classification 

gave similar results to the previous method from our laboratory based on the sorting of 

sound spectrograms. Recordings were digitized at a 48 kHz sampling rate and stored on a 

computer together with the new warble files.

Segmentation of Warble

A MATLAB program was created to segment long streams of warble recording into 

individual elements. This program advanced through each warble recording, computing 

root-mean-square amplitude values using a 0.83 ms window. From the resulting amplitude 

envelope of the whole warble song, an intensity threshold was determined based on the 

overall amplitude of the recording. If signal amplitude exceeded this threshold for longer 

than 1 ms, bordered by inter-segment intervals greater than 25 ms, the signal was considered 

as a warble element. Inter-segment intervals shorter than 25 ms were considered amplitude 

modulation within a single element. These parameters were chosen for the segmentation 

program so as to give results that most closely and consistently matched those of human 

observers.

Experiment 1: Acoustic Categorization

Once individual elements were extracted from warble streams, we used a combination of 

human classification and neural network classification to assign warble elements to 

categories. First, three human observers categorized a subset of all the warble elements we 

recorded. Then a neural network was trained using the results of human categorization to 

adjust the weights that make additive connections among the neurons in the model. This is 

not a new process since neural network models have recently been applied to the 

classification of animal vocalizations with some success (e.g., Dawson, Charrier, & Sturdy, 

2006; Ranjard & Ross, 2008).

Method

Vocal stimuli—The vocalizations of three birds, Ricky, Puffy, and Yuri were used to 

develop the neural-network classification procedure described below. Ricky and Puffy were 

from an existing colony in the vivarium. Yuri, on the other hand, was a budgerigar recorded 

by Farabaugh et al. (1992). Data from this bird was also used in human classification and to 

develop the network so that it could handle variation across birds. Once trained, the neural 

network classification procedure was tested for validity against the warble elements from the 

fourth bird, Buzz.

Preparation of the training set—Three human raters, experienced with classification of 

budgerigar vocalizations, were asked to categorize a random subset of 860 warble segments 

from three budgerigars (283 segments from Puffy; 291 segments from Ricky; 286 segments 

from Yuri). Raters both listened to the vocalization and viewed the spectrogram in 

completing the task. A MATLAB program was developed to aid in the classification of 

warble segments. In short, users listened to the vocalizations as needed while examining 

spectrograms of the sound on the computer screen in order to assign them to an open-ended 
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number of groups. Each segment could only be assigned to one group and raters were 

encouraged to ‘clump’ as much as possible (i.e., to reduce the number of groups). Users 

were also required to give a description, based on sound and the spectrogram, of each group 

after classification. After humans categorized these 860 elements, the groups were saved and 

used to train the neural network to operate as an automatic classification machine. Finally, a 

subset of 5 warble sessions was randomly selected and used to calculate an inter-rater 

reliability score.

An artificial neural network-based voting pool—To assist humans in classifying 

warble elements so that large numbers of warble elements could be processed, a classifier 

was developed using twenty measures extracted from each element. Given that some of 

these measures are correlated with one another, a voting pool of three- and four-layer feed 

forward neural networks was used (Battiti & Colla, 1994). This approach provided twenty-

six artificial neural networks (ANNs). Each network had twenty inputs – one for each 

measure, and one output – for the class to which this network assigns a segment. In order to 

make each network structurally different, the number of hidden layers varied from one to 

two, and the number of hidden neurons in each hidden layer varied from eight to twenty.

Eight hundred and sixty segments previously classified by three experienced humans were 

parsed with the Matlab function “dividevec” and used to train the ANNs by the MATLAB 

training function “train.” After training, new warble elements other than these 860 segments 

in the training set were input for classification. When classifying one segment, all twenty 

measures extracted from that segment were presented to each ANN, and each ANN 

independently made a classification decision. A majority-rule vote across all independent 

classifications from the pool of 26 ANNs was then taken to make the final decision about 

category membership for that segment. Consistency between ANNs in the pool was 

observed to vary, which is in general agreement with the recommendation of Battiti & Colla 

(1994).

Input measures for the ANN-based voting pool classifier—Twenty measures 

roughly followed the descriptions of those in Avisoft-SASLab Pro Version 4.40 (Berlin, 

Germany) were input to the classifier to cover a wide range of measures typically used in 

bird song analysis.

• Spectral Roughness measures the degree of spectral variation over time in a 

segment. It counts the number of times the instantaneous frequency varies 

significantly from a running average frequency. Spectral Roughness is unitless.

• Tonality provides an indication of the extent to which a segment is a pure tone at 

each moment in time. Tonality is computed as the ratio of strong spectral lines' 

strength to total acoustic power in a segment. The units of Tonality are dBs.

• Duration is the temporal extent of a segment, in milliseconds.

• Harmonic Strength is similar to Tonality, but Harmonic Strength considers the 

total strength of all spectral lines, rather than just strong spectral lines.
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• 1st, 2nd, and 3rd Frequency Quartiles are based on the power spectrum of a 

segment. The 1st Frequency Quartile indicates the lowest frequency that bounds 

one fourth of the total acoustic power in the segment; the second quartile bounds 

one half of the acoustic power, and the third quartile bounds three-fourths of the 

power. The units for Frequency Quartiles are Hertz.

• Skewness of Power: For a segment, the instantaneous power vector is computed for 

each sample point by squaring the amplitude of each sample point. The Matlab 

skewness function is then applied to the instantaneous power vector. Skewness of 

Power is a unitless number.

• Zero-Crossing Frequency describes the frequency content of a segment. It is based 

on the number of times the segment waveform crosses zero on the voltage axis. The 

units of Zero-Crossing Frequency are Hertz.

• Average Peak Spacing provides information about how far apart local frequency 

maxima in a segment are. The units of Average Peak Spacing are Hertz.

• Amplitude Modulation provides a notion of the short-term temporal variation in a 

segment's amplitude. The segment is divided into twenty equal-duration 

subsegments, and absolute differences in the powers of consecutive segments are 

averaged. The units of Amplitude Modulation measure are power per second.

• Number of Harmonic Lines is an attempt to describe the tonal complexity of a 

segment. The number of spectral lines is counted. This measure is unitless.

• Frequency of Maximum Amplitude is based on the power spectrum of the 

segment. The frequency of the strongest single spectral bin is reported. There could 

well be cases in which most of a segment's power is not at a frequency close to this 

value. The units of Frequency of Maximum Amplitude are Hertz.

• 80% Bandwidth is based on the power spectrum of an entire segment. To compute 

it, the minimum number of power spectral bins which together contain 80% of the 

total segment power is counted. Those bins need not be contiguous. The units are 

Hertz.

• Entropy is based directly on the digital samples of the segment. First, the ratio of 

the geometric mean of the absolute values to the arithmetic mean of the absolute 

values is computed. Entropy is the base e logarithm of this ratio, and it is unitless.

• Time to Peak Amplitude is the amount of time between the onset of a segment and 

the maximum instantaneous power of the segment. The units are milliseconds.

• Kurtosis of Power: For a segment, the instantaneous power vector is computed for 

each sample point by squaring: the amplitude of each sample point. The Matlab 

kurtosis function is then applied to the instantaneous power vector. Kurtosis of 

Power is a unitless number.

• Frequency Modulation indicates how much a signal varies in frequency over time. 

It is computed by dividing a segment into twenty equal-duration subsegments, and 

Tu et al. Page 6

J Comp Psychol. Author manuscript; available in PMC 2015 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



identifying the peak-amplitude frequency of each subsegment. The frequency 

changes between consecutive segments are summed. Units are Hertz per second.

• Standard Deviation of Power is based on the distribution of the power in a 

segment. It is standard deviation of the power in each sample in the segment. The 

units are watts.

• Average Power Per Sample is the mean of the power of each sample in the 

segment. The units are watts.

Procedure—After the neural network was trained and incorporated into the classification 

program, 500 segments from each of the four budgerigars (Ricky, Puffy, Yuri and Buzz) 

were chosen randomly and categorized both by this automatic classifier and by human 

experimenters. The resulting human-program reliability ensured whether the classifier was 

in agreement with human sorters.

Next, the relative merit of each measure was evaluated by the extent of the change in the 

grouping of the training set before and after each of the measures was excluded in the neural 

network. If a measure was crucial to “correctly” group the elements according to human 

criteria, eliminating it in the program would result in large differences in the grouping of 

elements (i.e., more elements would be put into the “wrong” groups). In the end, all 

segments from these four budgerigars were categorized, and the proportion of elements in 

each warble element category was compared among individuals by a Chi-Square test.

Results

Table 1 shows the relative merit of each acoustic measure used in the automatic 

categorization procedure. Quality parameters such as spectral roughness and tonality were 

relatively more important than other acoustic features, while amplitude parameters like 

standard deviation of power and average power per sample were less influential in 

categorization.

With an inter-rater category reliability of 89.3%, three human raters categorized 860 warble 

segments into 7 elemental groups and two “special” groups – one contained segments that 

have a contact call-like element immediately followed by a broadband sound (Group H) and 

the other was cage noise produced by the bird moving during recording. The raters' 

descriptions of the 7 elemental groups were as follows: A) alarm call-like elements which 

were loud, broadband non-harmonic sounds, approximately 100 ms in duration; B) contact 

call-like elements which were frequency-modulated tonal sounds, approximately 100-300 

ms; C) long harmonic calls which were harmonic sounds longer than 100 ms; D) short 

harmonic calls which were any harmonic sound that is shorter than 100 ms; E) “noisy” calls 

which were any broadband sound that sounds noisy (not harmonic) and were shorter than 70 

ms; F) clicks which were extremely short broadband calls that sound like clicks; and G) pure 

tone-like elements which were elements that show little or no frequency modulation. The 

representative sound spectrograms of each group are shown in Figure 2. Moreover, the 

average human-program reliability in sorting 2000 segments (500 segments from each bird) 

was 83.2% (82.2% for Puffy, 88.2% for Ricky, 81.6% for Yuri, and 80.8% for Buzz).
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All warble segments recorded from the four birds were categorized by the classification 

program. Eliminating those sounds identified as cage noise left 7357 segments in Puffy's 

warble streams, 5633 segments in Ricky warble, 7204 segments in Yuri warble, and 6027 

segments in Buzz warble. Overall, contact call-like elements (Group B) were the most 

common segments, comprising 33% of warble; while pure tone-like elements (Group G) 

were the least common segments, comprising only 4% of warble.

Figure 3 shows that the distribution of elements in the eight categories varied considerably 

across individuals (χ2
(21) = 1379.89, p < 0.001). Most of the variations between individuals 

existed in the noisy group (Group E). Yuri, the bird whose warble streams were used in the 

study of Farabaugh et al. (1992), differed from other three birds only in the number of clicks 

(Group F) and pure tone-like segments (Group G) produced. Approximately 15% of Buzz, 

Ricky, and Puffy's warble were clicks, but only about 10% of Yuri warble were clicks. Yuri 

had less than 1% of pure tone-like segments, but Buzz, Ricky, and Puffy had 7%, 4%, and 

7% respectively.

Discussion

The first goal of this experiment was to define acoustic categories for budgerigar warble 

elements that were consistent across raters. With the aid of a neural network classifier, we 

could simulate human categorization decisions and process a much larger number of warble 

elements than used in the Farabagh et al. (1992) study. Our human raters agreed on eight 

acoustic categories (seven elemental categories and one compound category). This is fewer 

than the 15 elemental groups found in the Farabaugh et al. (1992) study, but reasonable in 

view of the fact that nine groups in this previous work contained no more than 2% of all the 

warble samples. The major differences between the two studies are the stringent interval 

criterion in the present study and the instructions given to the raters to ‘lump’ rather than 

‘split’ in categorizing warble elements. This instruction reduced the number of categories 

with only a few elements in them. Most importantly, the resulting categories were 

‘universal’ in that they could be reliably applied to warble from different budgerigars. Of the 

27 compound classes from earlier work (Farabaugh et al., 1992), only one compound group 

(a contact call-like element immediately followed by a broadband sound) was found in the 

present analysis. This was due to greater precision in applying a criterion for the inter-

element-interval during segmentation, which was set to minimize the number of compound 

segments and to produce as many single elements as possible.

When all warble streams were analyzed, the results showed that the relative proportion of 

elements in each category varied across the four birds analyzed (Figure 3). The category 

with the largest variation in the present analysis was the noisy group. This is perfectly 

consistent with the earlier analysis in that this group is a combination of four nonharmonic 

broadband subgroups found in the previous study by Farabaugh and her colleagues (1992). 

In both the present analysis and the Farabugh et al. (1992) study, Group B (contact call-like 

elements) was the largest group.

The relative merit of each acoustic measure used in the neural network categorization 

showed that quality parameters, especially spectral roughness and tonality, were weighted 

more heavily than other acoustic measures when human experimenters (and later the neural 
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network) sorted elements into categories. This, in fact, was generally similar to what 

Farabaugh et al. (1992) used to manually sort warble spectrograms. Here, the neural network 

technique as applied in this study also ended up relying on similar parameters in simulating 

the raters' decision when categorizing warble elements.

Overall, the average human-program reliability was 83.2%, which was acceptable given the 

large, overlapping variations in budgerigar warble elements. It is worth noting that the 

human-program correspondence for warble elements from the bird, Buzz, who was not 

included in the training set, was 80.8% showing that the automatic categorization procedure 

is applicable across birds without additional modification or training.

Budgerigars that live together show some sharing of their warble classes (Farabaugh et al., 

1992). The similarities between the warble songs of our three budgerigars (Buzz, Ricky, and 

Puffy) who lived together in a large flock of 100 birds for a month, and Yuri (recorded 

almost two decades earlier) strongly support the fact that there are common elements and 

element classes across budgerigars. On the other hand, there are also differences. The 

relatively small number of pure tone-like elements in Yuri's warble, compared to the other 

three birds, suggests that this element may be a newly shared element within the current 

flock (Farabaugh et al., 1992).

Experiment 2: Evidence for Perceptual Categories

The experiment above showed that budgerigar warble elements from multiple birds can be 

sorted into eight acoustic categories with a high degree of reliability between human raters, 

and this classification behavior can be simulated with a neural network categorization 

program. However, the existence of human-defined acoustic categories does not reveal 

whether these categories have any perceptual relevance for the bird. In other words, human 

groupings done by spectrogram analysis, even when supplemented with listening, do not tell 

us whether birds perceive the acoustic variations of these warble elements in a similar way.

The purpose of this experiment is to examine the perception of these acoustic categories by 

budgerigars to see whether the acoustic differences between these seven acoustic categories 

are more salient than the acoustic differences within these acoustic categories (the 

compound group was omitted from this experiment). Such findings would be evidence of 

perceptual categories for these sounds (Brown, Dooling, & O'Grady, 1988; Dooling, Park, 

Brown, Okanoya, & Soli, 1987). The experimental strategy employed here is to use a 

random selection of multiple warble elements (i.e. different birds, different recordings) from 

the same acoustic category as a repeating background, and then to use a random selection of 

multiple warble elements (i.e. different birds, different recordings) from all of seven acoustic 

categories, including the background category, as targets in a discrimination paradigm. If 

birds are more successful in discriminating other-category targets from the repeating 

background, and much less successful in discriminating same-category targets from the 

background, we can safely assume they are responding primarily to those relevant acoustic 

variations that reliably differentiated the background category from all other warble element 

categories and ignoring irrelevant acoustic variation within categories. Note that this is 

evidence of perception of acoustic categories as occurs when humans and animals categorize 
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natural and varying speech sounds such as vowels in the face of talker variation (e.g., 

Burdick & Miller, 1975; Kuhl & Miller, 1975; Ohms, Gill, van Heijningen, Beckers, & ten 

Cate, 2010). Our findings are not a demonstration of the strict form of categorical perception 

which requires both labeling and discrimination functions (e.g., Liberman & Mattingly, 

1985). If birds are shown to attend to the acoustic variation across warble categories and 

ignore the acoustic variation within acoustic categories, it strongly suggests that they treat 

elements within the same acoustic category as the same.

Method

Subjects—Four budgerigars (two males and two females), two zebra finches, and two 

canaries were trained to perform the repeating background discrimination task. They were 

housed individually in small cages and kept on a constant 12-12 light-dark cycle at the 

University of Maryland. Since food was used as reinforcement, they were maintained at 

approximately 85-90% of their free-feeding weight with ad libitum access to water at all 

times. None of the subjects had been previously housed with those budgerigars whose 

warble elements were used as stimuli in this experiment (Ricky, Puffy, and Yuri).

Vocal stimuli—All stimuli were randomly chosen from the warble segments of Puffy, 

Ricky, and Yuri that were analyzed in the previous experiment. The loudness of individual 

stimuli was calibrated with a Larson-Davis sound level meter (Model 825, Provo, UT) with 

a 20-foot extension cable attached to a ½ inch microphone. The microphone was positioned 

in the place normally occupied by the bird's head during testing.

Each test session consisted of 90 trials (70 target trials, and 20 sham trials where no target 

was presented). Each target stimulus was presented against a large repeating background set 

of other warble elements. To ensure an adequate representation of within category variation, 

the 70 target trials included 10 elements randomly selected from each of the 7 element 

categories. The 10 elements from each group were randomly drawn from a larger set of 30 

elements (i.e., 10 elements from each bird). In all, the birds were run for 3 sessions for each 

background type so that all 30 target elements were used (10 elements per session). In other 

words, the total target set consisted of a total of 210 elements (7 categories × 10 elements × 

3 birds).

The background set consisted of 150 elements randomly selected from one element 

category. The elements were evenly drawn from the 3 individuals (i.e., 50 elements from 

each bird). Since there were 7 categories, 7 different background sets were constructed (one 

for each element category). In total, each subject bird was tested for 21 test sessions (3 target 

sets × 7 background sets).

All told, in this experiment, there were a total of 28 possible pairs of group comparisons (7 

within-category pairs and 21 between-category pairs). Since all possible combinations of 

background and target categories were tested and the birds received equal numbers of 

background and target categories, it follows that they were not trained to respond to 

particular category differences over others.
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Apparatus—Birds were trained and tested in a small wire cage (23 × 25 × 16 cm3) 

mounted in a sound-attenuated chamber (Industrial Acoustics Company, Bronx, NY, 

IAC-3). The test cage contained a perch on the floor, a food hopper in front of the perch, and 

a control panel with two microswitch response keys mounted vertically in front of the perch. 

The keys were approximately 5 cm apart and each key had an 8 mm light emitting diode 

(LED) attached.

The experiment was controlled by a PC microcomputer operating Tucker-Davis 

Technologies (TDT, Gainesville, FL) System III modules. Stimuli were stored digitally and 

output via a 2-channel signal processor (TDT, Model RX6) at a sampling rate of 24.4 kHz. 

Each signal was then output at a mean level of about 70 dB SPL with a 3 dB rove from a 

separate channel of the D/A converter to a separate digital attenuator (TDT, Model PA5), 

combined in an analog summer (TDT, SM5) and then amplified (Model D-75, Crown 

Audio, Inc., Elkhart, IN) to a loudspeaker (KEF Model 80V, GP Acoustics, Inc., Marlboro, 

NJ) in the sound-attenuated chamber. All test sessions were automated by a custom-made 

MATLAB program.

Procedure—Birds were trained to peck one key (observation key) repeatedly during a 

continuous presentation of the background set (multiple elements from the same category) 

and to peck the other key (report key) when they detect a token from the target set (multiple 

elements from all categories) presented alternately with the background tokens. The interval 

between onsets of two consecutive stimuli was 1 second. Since the duration of each stimulus 

was different, the inter-stimulus interval varied accordingly. To human listeners, this rate 

sounded slightly slower than the delivery rate in a nature warble song, but here we were 

more concerned about the perception of each sound element rather than the tempo of a long 

sequence.

If the bird detected the target and pecked the report key within 3 seconds (two background-

target alternations), the food hopper was raised by activation of a solenoid for 1.5 seconds 

and the bird received access to food. This was recorded as a “hit” and the bird's response 

latency was recorded. If the bird failed to peck the report key, this was recorded as a “miss” 

and a response latency of 3 seconds was recorded. If the bird did not peck the report key 

during sham trials where no target was presented, it was recorded as a “correct rejection.” If 

the bird pecked to the report key when there was no target presented, it was recorded as a 

“false alarm” and punished with variable time-out period (2 to 10 seconds). The same trial 

(or next trial if it is a false alarm) resumed after the blackout period.

Generally, each session lasted for approximately 20 minutes. Sessions with false alarm rates 

higher than 20% were not used for analysis. Birds were tested twice a day, 5 days a week. 

For each bird, different experimental conditions were tested in a random order to avoid 

biases and practice effects.

Data Analysis—For each possible pair, birds' response latency and its behavior (hit/miss/

correct rejection/false alarm) were recorded. For each budgerigar run on each type of 

background, average response latencies were calculated for all trials involving between-

category discriminations and for those involving within-category discriminations. Misses 
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count as 3000 ms, the maximum response interval. The resulting data were compared by 

paired t test with the assumption that longer latencies reflect more similar perception of the 

two stimuli, and shorter latencies indicate greater differences between them (Dooling, 

Brown, Park, Okanoya, & Soli, 1987; Dooling & Okanoya, 1995; Dooling et al., 1987; 

Okanoya & Dooling, 1988).

On the other hand, for each type of background, all trials involving between category 

discriminations were pooled together for a hit rate and a false alarm rate, and so were those 

involving within category discriminations. The numbers were then used to derive a pooled d′ 

for each of these two conditions by the formula:

To avoid infinite values, 100% correct and 0% false alarm rates were converted to 1/(2N) 

and 1 – 1/(2N), respectively, where N is the number of trials which the percentage was based 

on (Macmillan & Creelman, 2005).

The d′ is a standard measure of a subject's sensitivity in discrimination experiments 

(Jesteadt, 2005; Macmillan & Creelman, 2005). When the number of trials is small, data can 

be combined across multiple stimuli, sessions, or subjects to derive a pooled d′. Pooled d′ 

values are generally lower and less variable than average d′ values (Macmillan & Creelman, 

2005).

To evaluate differences in d′ between two conditions, the standard error of each d′ was 

calculated and used to construct a 95% confidence interval (CI) around each d′ value. When 

the two 95% CIs overlapped, we conclude that there was no significant difference in the 

subject's sensitivity in these two discrimination tasks. On the other hand, no overlapping 

indicated a significant difference in discrimination sensitivity between the two stimulus sets 

(Macmillan & Creelman, 2005).

Results

In fewer than 10% of the test sessions did birds have a false alarm rate higher than 20% and 

these sessions were discarded. Average response latencies for the four budgerigars are 

shown in Figure 5A. Budgerigars responded significantly faster (easier discrimination) on 

between category discriminations than on within category discriminations (t = 40.26, p < 

0.001). These results are also reflected in the d′ analysis. Figure 5B shows that for each 

element category, budgerigars were generally more sensitive to between category acoustic 

differences than within category acoustic differences.

Figure 6 shows that all three species were all significantly better at discriminating two 

elements drawn from different acoustic categories (budgerigar: 95% CI, d′ = 3.49-3.76; 

canary: 95% CI, d′ = 1.99-2.28; zebra finch: 95% CI, d′ = 2.34-2.60) than they were at 

discriminating two elements drawn from the same acoustic category (budgerigar: 95% CI, d′ 

= 0.71-1.01; canary: 95% CI, d′ = 0.11-0.52; zebra finch: 95% CI, d′ = 0.08-0.44). 
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Moreover, budgerigars performed significantly better than zebra finches and canaries at both 

within-category and between-category discriminations.

Discussion

The birds in these experiments were all tested in a discrimination paradigm. We infer the 

existence of perceptual categories from these discrimination data when birds have 

significantly greater difficulty discriminating variations among stimuli within the same 

category than they do discriminating between stimuli that span two categories (Goldstone, 

1994; Horn & Falls, 1996). The present results show that acoustic categories of budgerigar 

warble elements also represent perceptual categories for the budgerigars. In other words, 

these data show that birds focus on the essential acoustic differences between categories and 

ignore the irrelevant acoustic differences that occur across multiple renditions of the same 

warble element or across elements produced by different individuals.

These acoustic categories are obviously quite robust since both zebra finches and canaries 

also show perceptual behavior that correlates with these human-defined acoustic categories 

of warble. This should not be too surprising as there are many examples of mammals and 

birds perceiving the categories of human speech sounds as humans do (e.g., Burdick & 

Miller, 1975; Dooling & Brown, 1992). Nevertheless, there are interesting species 

differences in the present results as well. Budgerigars performed at a higher level on both 

between and within category discriminations than either zebra finches or canaries. These 

results are consistent with earlier studies on discrimination of conspecific and heterospecific 

contact calls in these three species (Dooling & Brown, 1992; Okanoya & Dooling, 1991). In 

these earlier studies, all three species showed clear perceptual categories corresponding to 

the calls of each species, but the birds were also more efficient (i.e., shorter response 

latencies) at discriminating among contact calls of their own species compared with the 

contact calls of the other species.

General Discussion

The warble song of male budgerigars is unique for its length, the complexity and 

overlapping nature of its acoustic elements, its multi-syllabic structure and temporal 

organization, and the fact that it is delivered in intimate social contexts. Similar acoustic 

elements recur throughout warble, raising the possibility that budgerigars might perceive 

these elements as belonging to one group or category. The present experiments used a 

combination of signal analysis, neural networks, and psychophysics to establish that 

budgerigars perceive their extremely long and variable warble songs as discrete components 

which can be assigned to at least seven basic acoustic-perceptual categories.

Categorization is strictly defined as the process in which ideas or objects are sorted 

according to the perceived similarity (Horn & Falls, 1996; Pothos & Chater, 2002), and it is 

a critical aspect of communication where senders and receivers share the same code to 

exchange information (Horn & Falls, 1996; Seyfarth & Cheney, 2003; Smith, 1977). 

Sometimes, as is obviously the case of the acoustic signals of speech and many animal 

vocalizations, these categories are broad and overlapping in acoustic space. In human 

speech, there is considerable variability in different utterances of the same vowel due to 
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different speakers, contexts, rates of speaking, etc., but the perceptual identification of these 

tokens is highly accurate despite this considerable variation (Hillenbrand, Getty, Clark, & 

Wheeler, 1995; Pickett, 1999). The acoustic-perceptual categories of human speech are quite 

robust since a variety of vertebrates have been shown to be sensitive to some of these 

categories in the face of within-category variation in talker, intonation, and gender (e.g., 

Burdick & Miller, 1975; Dooling & Brown, 1990; Kluender, Diehl, & Killeen, 1987). 

Similarly, the seven acoustic categories of budgerigar warble elements are robust in that 

humans, canaries, and finches, also behave as if they perceive these acoustic categories 

roughly as budgerigars do.

Budgerigar warble elements are acoustically variable and overlapping in acoustic space 

presenting some of the challenges often seen in studies of the acoustic-perceptual categories 

of natural human speech (e.g., Lisker & Abramson, 1964; Peterson & Barney, 1952). 

Having demonstrated the existence of acoustic categories for warble elements, the 

perceptual problem to be addressed is whether birds perceive these as belonging in groups or 

categories in spite of extensive within-category acoustic variations. Here, using 

psychophysical tests with multiple elements from different acoustic categories produced on 

different occasions by different birds, we show that budgerigars behave as if they have 

perceptual categories corresponding to the acoustic of their own vocalization.

The stimulus sets and the task adopted in these experiments tested natural, multidimensional 

variation with the warble element categories and, in this sense, is analogous to the 

perception of different vowels and consonants spoken by different speakers and in different 

contexts. As with human listening to speech, we would assume that budgerigars can 

perceive these categories of warble elements at a rate that is at least as fast as the normal 

delivery rate of warble, though this has yet to be tested.

The fact that these seven acoustic-perceptual categories obtain across individuals is a 

promising first step and may serve as a platform to begin to investigate the importance of 

element frequency, combinations, and ordering in long warble streams. Even the most 

cursory review of warble shows that these elements are arranged in a variety of ways though 

all elements do not all occur with the same frequency (Farabaugh et al., 1992; Tu & 

Dooling, 2010). To extend the potential parallels with human speech, the uniqueness of 

human language clearly lies in the syntactical and grammatical capabilities that allow us to 

string together a limited number of words using rule-based orders to create a vast number of 

sentences for intra-species communication. The case for any kind of a similar capability 

remains to be made for budgerigars.

Finally, male warble song, delivered in close quarters, is a critical component of a very 

elaborate set of courtship behaviors in budgerigars (Brockway, 1964b, 1969). It would not 

be hard to imagine that sexual selection drives this process and there is an underlying 

structure to the sequences of male warble in response to female preference for more 

complex songs such as those of mockingbirds, blackbirds (see review in Searcy & 

Yasukawa, 1996), or Bengalese finches (Okanoya, 2004). With the current findings that 

elements can be reliably sorted into acoustic groups, and budgerigars respond as if they 

perceived these elements in categories, it is now possible to examine whether the sequences 
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of elements in natural warble have perceptual significance for the bird. There is a number of 

obvious potential information-bearing aspects of warble song including the relative 

proportion of different elements, grouping of elements, or sequences of elements. It would 

be interesting to know whether a bird produces the same proportion of elements on different 

occasions, whether different birds always show roughly the same proportion of elements, 

and whether female behavior, either on a short term or long term basis, alters the frequency 

or pattern of warble elements produced by males.
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Figure 1. 
A spectrogram of a 20-second selection of warble recorded from a male budgerigar; 

frequency in kHz on the y-axis and time in second on the x-axis.
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Figure 2. 
Sonograms of examples of the seven elemental groups (A–G) and the compound group (H) 

which is a contact call-like element immediately followed by a broadband sound.
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Figure 3. 
A comparison of the distribution of the elements in different categories among individuals.
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Figure 4. 
An illustration of the random presentation of background and target sounds during a 

sequence of two trials. Bird identity is indicated in superscript (R = Ricky; P = Puffy; Y = 

Yuri). Token number is indicated in subscript (randomly selected from each bird). There 

were a total of 150 tokens in each background set, including 50 tokens from each bird. There 

were a total of 70 tokens in each target set, including 10 tokens from each acoustic category 

that were randomly selected from 3 birds. This schema shows two trials in a session where 

elements from Group A were in the background set. There were 7 acoustic categories, 

making up 7 background sets. Each background set was repeatedly used for 3 sessions for 3 

unique target sets. In other words, each subject was run 21 sessions to complete this 

experiment.

Tu et al. Page 21

J Comp Psychol. Author manuscript; available in PMC 2015 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Comparison of between-category and within-category discriminations by (A) response 

latency, error bars indicate standard deviation among four individuals; (B) d prime, error 

bars indicate 95% confidence interval.
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Figure 6. 
Comparisons of d primes of between-category and within-category discriminations. Error 

bars indicate 95% confidence interval.
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Table 1
The Relative Merit of Twenty Acoustic Measures in Categorizing Warble Segments

Measures Parameters Relative merit (%)

Spectral Roughness Quality 83

Tonality Quality 61

Harmonic Strength Frequency 48

1st Frequency Quartile Frequency 47

Duration Temporal 28

Skewness of Power Amplitude 24

Zero-Crossing Frequency Frequency 22

3rd Frequency Quartile Frequency 18

2nd Frequency Quartile Frequency 13

Average Peak Spacing Frequency 11

Amplitude Modulation Amplitude 9

Number of Harmonic Lines Frequency 7

Frequency of Max Amplitude Frequency 6

80% Bandwidth Frequency 5

Entropy Quality 5

Time to Peak Amplitude Temporal 3

Kurtosis of Power Amplitude 3

Frequency Modulation Frequency 2

Standard Deviation of Power Amplitude 0

Average Power Per Sample Amplitude 0
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