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INTRODUCTION

It is well known that exposure to ambient particulate matter (PM) is associated with adverse 

respiratory and cardiovascular health effects.1-3 The physicochemical composition of PM is 

complex and several epidemiological studies have found that similar ambient PM 

concentrations result in different mortality and morbidity in various locations.4-5 These 

studies suggest that different risk estimates in health by region may result from 

compositional differences of PM. Human exposure and toxicological studies have also 

demonstrated that some chemical constituents in PM are associated with adverse health 

effects.6-9

While these studies are helpful to investigate the association between health effects and 

specific chemical species of PM, understanding the contribution of multiple components of 

PM as a mixture to health outcomes is more challenging. To assess the association between 

ambient exposure to PM as a mixture and health outcomes, it is desirable to use an indicator 

that can reflect PM as a complex mixture rather than the sum of individual components.

One potential approach to data reduction is Principal Component Analysis (PCA). PCA has 

been used to reduce the large number of constituents in PM into one or fewer components 

based on the correlations among the individual constituents in PM.9-12 For example, Wei et 

al (2009) used PCA to reduce 126 chemical species in PM2.5 in China to 3 components, and 

then examined the association between these 3 components of PM to changes in oxidative 

stress.9 In addition to data reduction, PCA can identify compositional patterns that can be 

used to examine the similarities and differences. Another advantage of PCA is that it can be 

used to reduce data complexity without loss of original information. Therefore, PCA can be 

used to explain to what extent PM in a location is different from (or similar to) other 

locations and which components contribute most to this difference (or similarity).
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The objectives of this paper are to describe compositional differences in metals of ambient 

PM2.5 collected from 8 US counties, and to assess the heterogeneity of ambient PM 

collected in multiple locations using PCA but is not to identify emission sources of ambient 

PM that have been reported in many previous studies. Although a source apportionment 

approach provides useful information such as specific sources in a given location, source 

apportionment does not provide how PM in multiple locations quantitatively vary as a 

mixture of constituents.

METHODS

Sampling Locations

Air sample collection from 8 US counties was conducted as part of the US EPA funded 

Johns Hopkins Particulate Matter Research Center (JHPMRC). Sampling locations were 

selected by JHPMRC epidemiologists as representing greater or lesser mortality/ morbidity 

health risk (Figure 1).4

The selected air monitoring sites were located away from large emission sources. All sites 

were classified as a residential area except the Anoka, MN location. The site designation 

was defined by the US EPA. Table 1 contains sampling location descriptions.

Sample Collection

Sampling was conducted between January 2008 and January 2010. Field investigators set up 

and maintained the equipment at each monitoring facility during the study period. Weekly 

(24 h/d for 7days) filter based samples were collected at each site for a duration of 5-6 

weeks. PM2.5 samples were collected on pre-weighed 37 mm Teflon filters (PALL Life 

Sciences, Ann Arbor MI) using the Harvard Impactor at a flow rate of 10 L/min. A field 

investigator maintained the site daily checking flow rates to ensure adequate sampling 

quality control. On the 7th day of sampling, filters were removed from the Harvard Impactor 

and shipped to the JHPMRC laboratory. After post-weights were determined, filters were 

placed in amber jars and stored under argon at 4 °C until metals analysis by Inductively 

Coupled Plasma-Mass Spectrometry (ICP-MS).

Metals Analysis

The method described below was adapted from previous studies.13-14 Samples were acid 

digested using a Mars5 Xpress microwave system (CEM, Matthews NC). Prior to digestion, 

the polyolefin outer support ring was removed from the Teflo filters. The filter membrane 

was then transferred to a 7 mL Teflon digestion microwave vessel (CEM, Matthews NC) 

where it was wetted with 20 μL of ethanol, 60 μL of ultrapure water (Millipore, Billerica 

MA) and 225 μL of concentrated optima grade nitric acid (Fisher Scientific, Columbia MD). 

The sample was initially digested using a two-stage ramp-to-temperature method with a 

maximum temperature of 165 °C and a hold time of 30 min. Following the first digestion, 

100 μL of concentrated optima nitric acid and 40 μL of concentrated optima grade 

hydrofluoric acid (Fisher Scientific, Columbia MD) were added and a second digestion 

performed according to the same ramp-to-temperature method. At the completion of the 

second digestion, the Teflon membrane was removed and the sample diluted for metals 

Han et al. Page 2

J Air Waste Manag Assoc. Author manuscript; available in PMC 2015 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



analysis of the 25 elements listed in Table 2 by ICP-MS. Internal standard, 50 μg/L Li, Ge, 

Sc, Tb, Bi, Y, In (CPI International, Santa Rosa CA), was added to each sample to monitor 

for instrument drift over analysis time. For every batch of 21 samples, 3 samples of the 

NIST standard reference material 1648a Urban Particulate Matter (National Institutes of 

Standards and Technologies, Rockville MD) and reagent blanks were digested and analyzed 

for quality control. Total metals analysis was performed using an Agilent 7500ce ICP-MS 

(Agilent Technologies, Santa Clara CA). The analytical limit of detection (LOD), calculated 

as 3 times the standard deviation of the lowest detectable calibration standard (1 μg/L), was 

determined for each metal analyzed and ranged between 0.01 and 1.76 ng/m3 assuming a 

sampling rate of 10 L/min for 7 days (sampling volume = 6,048 m3). For samples with 

values that were below the analytical LOD, ½ the LOD was substituted for all statistical 

analyses.

Statistical Analysis

Metal composition data from analysis of weekly samples were pooled and analyzed using 

Principal Component Analysis (PCA) in order to examine the heterogeneity of ambient PM. 

Twenty one (21) out of 25 metals were used in the PCA. Ag, Cs, Tl, and Be were excluded 

from the analysis due to having two thirds or more samples below the LOD. The first step in 

the PCA was to transform the 21 metal concentrations into dimensionless normalized 

numbers with a mean of zero (Z-statistic) for each metal to diminish the impact of large 

differences in variation between the metals. After normalization the standardized numbers 

have the same order of magnitude for each metal.

All statistical analyses were performed in SAS 9.2 (SAS Inc, Cary NC). Principal 

components were determined by running Proc Factor using Prin options. Eigenvalues 

greater than 1.0 were retained in this analysis.10 For each location, weekly scores were 

determined for each of the retained components. The general equation to determine the 

standardized principal component score is shown below: 11

Where,

PCSp = the standardized principal components score on principal component p

βmp = the standardized loadings for a measured metal m on principal component p.

Xm = the standardized number from each metal concentration

RESULTS AND DISCUSSION

Summary of PM2.5 and Metal Concentrations

A total of 45 filter samples from 8 counties were used in the analysis (Table 2). Weekly 

average PM2.5 mass concentrations varied by approximately two fold across these counties, 

where the highest were Jefferson (11.27 μg/m3) and Allegheny (10.32 μg/m3) and lowest 

were Sacramento (6.86 μg/m3) and Pinellas (5.77 μg/m3). Metal composition also greatly 

varied across the counties. The sum of 21 metals in Maricopa was 1,799 ng/m3 while the 
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sum in 7 other counties ranged from 201 to 610 ng/m3. In Maricopa total metal mass 

concentrations accounted for 19.3% of PM2.5 mass while for the remaining counties total 

metal mass concentration explained less than 9%.

Figure 2 illustrates differences in concentration between sites for selected metals. The metals 

with average PM 2.5 concentrations greater than 10 ng/m3 for all counties were Ca, Fe, Al, 

K, and Mg. Within this metal group the distribution of concentrations differed across 

counties. Average concentrations of Na in Sacramento and Maricopa were greater than 400 

ng/m3 while those in Anoka and Jefferson were less than 10 ng/m3 (Figure 2-a). The average 

concentration of Ca in Maricopa was 3-10 times higher than in the other counties (Figure 2-

b). Average concentrations of Fe in Maricopa and Allegheny were also significantly, 3-17 

times, higher (Figure 2-c). Aluminum in Maricopa was also 5-8 times higher (Figure 2-d) 

whereas Zn in Allegheny (29.1 ng/m3) and Queens (21.1 ng/m3) were the highest metal 

concentration of all counties (Figure 2-e). Metals with concentrations between 1 and 10 

ng/m3 included Ti, Mn, Cu, and Pb. Average concentrations of Ti in Maricopa (81.7 ng/m3) 

were 15-40 times higher than any other counties (Figure 2-f). Average concentrations of Mn 

in Maricopa and Allegheny were 3-34 times higher. Average concentrations of Pb were 

approximately 10 ng/m3 in Anoka and Allegheny while those in other counties were less 

than 3 ng/m3 (Figure 2-g).

Some metals including Ni, V, and Se also showed important variations in average 

concentrations between counties. Average concentrations of Ni in Maricopa, Queens, and 

Harris were above 1 ng/m3 while those in the other counties were less than 0.5 ng/m3 

(Figure 2-h). Average concentrations of V were highest in Harris followed by Maricopa, 

Queens, and Pinellas while those in the remaining four counties were below 0.3 ng/m3 

(Figure 2-i). Average concentrations of Se in Jefferson and Allegheny were above 2.5 ng/m3 

while those in the remaining counties were below 0.6 ng/m3 (Figure 2-j). The remaining 

metals did not show large variations between the counties.

PM is a complex mixture and understanding the factors that contribute to this complexity 

and its human heath significance are important areas of research. Numerous studies have 

characterized PM composition using an established national monitoring network that 

provides data on the chemical composition of PM or by using year-long intensive 

compositional monitoring at the local level. Bell et al (2007) conducted descriptive analyses 

to examine the spatial and temporal variation of 52 PM constituents in 187 US cities during 

2000-2005.15 Kim et al (2000) conducted a 1-year air quality monitoring study in southern 

California to examine spatial variations of 43 constituents of PM.16 These studies concluded 

that spatial variations of numerous constituents in PM exist at the local and national level. 

The findings in these studies are similar to the results observed in this study. PM 

characterization by individual chemical constituents is useful to explore health effects. 

However, PM characterization by individual chemical constituents cannot explain the 

impact of the combined chemical constituents on health outcomes due to the largely 

unknown interactions among constituents in PM. Clustering constituents of PM can be an 

approached to explore the impact of combined chemical constituents on health effects. In 

studies of ambient air pollution, PCA has been used to group constituents of PM in a given 

location.
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Principal Component Analysis

Based on an eigenvalue greater than 1.0, five (5) principal components (PCs) were extracted 

from the 21 metals included in the dataset. The 5 PCs explained 85% of the total variance in 

the dataset (Table 3). The first three PCs explained 74% of the original data variance. 

Principal component 1 (PC-1), the most significant component, is explained by Ca, Fe, Al, 

K, Mn, Ti, Cu, and Cr. The possible sources for this component are crustal minerals and 

resuspension road dust. Similar source profiles were observed in previous studies using 

factor analysis for source apportionment of metals.17-18 PC-2 is characterized by Zn, Pb, 

Mo, Sn, As, and Cd. These metals can originate from industrial emissions such as smelter 

and metal production facilities.19 PC-3 explains the variation of Ni, Sb, and Co. The 

possible sources for this component are a combination of oil combustion and vehicle 

sources. Nickel is considered an indicator of residual oil combustion20 and Sb originates 

from brake dust. 17, 20-23 PC-4 is attributed to Na, Se, As. The sign of the component 

loadings between Na (0.782), Se (−0.638), and As (−0.532) indicates that two different 

sources may explain this component. The possible sources of PC-4 include marine aerosol 

and coal power plant emissions. Na is a strong indicator of sea salt particles24 but Se is 

related to coal power plant emission.25-26 PC-5 is explained by V. This indicates that PC-5 

is associated with shipping activities and fuel oil combustion.22, 27-28 In studies of ambient 

air pollution, factor analysis (FA) or PCA has been used to group contaminants in a given 

location. FA is typically used to answer questions regarding the relative contribution of 

different contaminants from identified sources to the PM mixture.28-29 For example, 

Thurston et al. (2005) demonstrated the association between mortality and source-specific 

groups of air pollutants.30 However, misclassification or misinterpretation of source 

contribution is highly likely because designated source-specific pollutants can be emitted 

from multiple sources, and pollutants are inter-correlated among other measured 

pollutants.21

PCA is typically used to reduce a large number of variables to a few groups in genetic 

analysis.31-32 Recent air pollution studies have used PCA to qualitatively distinguish 

regional differences in ambient air quality in multiple locations.33-35 For example, Pires et al 

(2008) categorized ambient PM into two groups from 10 different monitoring sites in 

European urban areas. In our study, we applied PCA to our complex compositional dataset 

to quantitatively distinguish differences in ambient PM between 8 locations based on metal 

composition data. To identify differences, locations were ranked based on normalized 

principal component scores. The normalized principal component scores were obtained by 

transforming the measured concentrations to dimensionless normalized values with a mean 

of zero (Z-statistics) minimizing the influence of disproportionately high (e.g., Pb in Anoka) 

and low (e.g., Ni in Jefferson) values.

Figure 3 summarizes principal component scores by location. Based on Tukey's test, PC-1 

scores (Figure 3-a) can be classified into three clusters. The first cluster consisted only of 

Maricopa (PC-1 score = 2.30). The second cluster consisted of Harris, Jefferson, and 

Allegheny (PC-1 scores = −0.33, −0.29, and 0.10 respectively). The third cluster consisted 

of Sacramento, Pinellas, Anoka, and Queens (PC-1 scores = −0.48, −0.50, −0.52, and −0.43 

respectively). The PC-1 score suggests that PM in Maricopa is strongly infuluenced by 
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resuspended dust. However, PM scores in Sacramento, Pinellas, Anoka, and Queens do not 

appear to be attributed to resuspended dust. These findings are consistent with previous 

studies.12, 15

Average PC-2 scores indicated two clusters, with Allegheny (PC-2 score = 2.11) 

significantly different from the other locations (Figure 3-b). The significance of PC-2 scores 

between Allegheny and the rest of the counties may result from the specific industrial 

facilities. It is known that steel factories and smelting industry are major industrial sources 

in Allegheny.19, 25

Figure 3-c also shows that the average PC-3 scores distinguish the 8 locations into 3 clusters 

with cluster 1 consisting of only Queens, which had the highest PC-3 score (2.11). Maricopa 

(PC-3 score = 0.85) comprised the second cluster, and the remainder of the locations 

comprised the third cluster. The highest average PC-3 score in Queens may be related to oil 

combustion for residential heating and vehicle emission. 20, 22 It is surprising that the 

average PC-3 score in Maricopa is the second highest. This suggests that PM in Maricopa 

may be affected by other undetermined emission sources in addition to fuel combustion.

Unlike scores from PC-1 through PC-3 which indicated a maximum of 3 clusters, 4 clusters 

were observed within the PC-4 scores (Figure 3-d). A distinct difference was found between 

cluster 1 consisting of Sacramento (PC-4 score = 0.97) and Maricopa (PC-4 score = 0.90) 

and cluster 2 containing Harris (PC-4 score = −0.57), Jefferson (PC-4 score = −1.06), and 

Allegheny (PC-4 score = −0.66). Another cluster (3) consisted of Pinellas (PC-4 score=0.58) 

and Queens (PC-4 score= 0.00). Anoka (PC score = −0.31) was also considered as an 

independent cluster (4) different from the other three clusters. The three clusters may 

indicate that the PC-4 scores may be influenced by 4 different emission sources. The first 

cluster is likely associated with crustal sources while cluster 2 may result from utility 

generation process such as electricity.25,26 The third cluster suggests the impact of marine 

aerosol24 and the cluster 4 may result from a combination of these sources or undetermined 

sources. Figure 3-e shows that the average PC-5 scores defined two clusters: cluster 1 

consisted of Harris (PC-5 score=1.36), Pinellas (PC-5 score=0.48), and Maricopa (PC-5 

score=0.47). Cluster 2 consisted of the remaining 5 counties with PC-5 scores ranging from 

−0.03 to −0.78. Cluster 1 may represent combination of vessel shipping activities and 

mineral dust but cluster 2 is associated with unidentified sources.

These computed PC scores suggest a qualitative and quantitative rank order of differences. 

For example for PC-1 (Figure 3-a), the magnitude of the absolute difference between 

Maricopa and Anoka (2.82) as compared to that of Pinellas and Anoka (0.02) suggests that 

the overall composition of PM is very different between the former and similar between the 

latter. It should be noted that the highest PC score in a given location does not imply that 

PM in this location is more toxic than PM in another location that has a lower PC score. 

Unlike FA, PCA can include both positive and negative values on component loadings and 

component scores. Expanding the scale to include negative scores allows us to evaluate 

broad range of differences in metal composition between locations. Identifying these 

clusters of PM components may be used to help explain differences in PM toxicity or health 

effects varied across different locations.
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A limitation of this study was that we were able to visit each location only one time. 

Another limitation is the relatively small number of filter samples collected at each location. 

The sample size recommended for PCA is preferably 50 plus the number of variables of 

interest. However, work done by Henry et al (1984) showed that the minimum number of 

samples needed to obtain a statistically stable PCA results require N > 30 + (S+3)/2; where 

S is the number of variables of interest. Under this definition, the dataset used in this study 

(N=45) is larger than the minimum acceptable criteria (N=42) as defined by Henry et al.36

CONCLUSIONS

In this study we characterized metal concentrations in ambient PM2.5 collected from 8 US 

counties for a time period of 5-6 weeks at each location. Each location showed a unique 

metals profile and the percent contribution of each metal to the total mass differed widely by 

location as expected. Metal composition in fine particles for weekly samples collected in 

eight US counties has been analyzed using PCA to evaluate the heterogeneity of PM as a 

metal mixture. PCA showed that 5 principal components explained 85% of the total 

variance. The average standardized PC scores representing compositional differences in PM 

significantly differed between the counties. The results in this study showed that systematic 

comparison using principal component analysis can be used to evaluate differences in metal 

composition across location.
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IMPLICATIONS

Previous studies have demonstrated associations between health effects and particulate 

matter (PM) using a single component or a combination of few components. Other 

studies have shown constituents of PM can vary greatly by location and that these 

differences may explain why the health effects associated with PM exposure are different 

by location. However, a single or a combination of a few components cannot represent 

PM as a whole. To address the need for evaluating PM as a complex mixture, we 

demonstrated the utility of principal component analysis to assess heterogeneity of PM.
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Figure 1. 
Map showing locations of the sampling sites and sampling period in the US.
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Figure 2. 
Average concentrations of selected elements for 8 US counties. Error bars represent standard 

deviations: (a) Na, (b) Ca, (c) Fe, (d) Al, (e) Zn, (f) Ti, (g) Pb, (h) Ni, (i) V, and (j) Se.
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Figure 3. 
Average principal component (PC) scores for 8 US counties. Closed circles represent 

average PC scores. Error bars represents standard deviations: (a) average PC score 1, (b) 

average PC score 2, (c) average PC score 3, (d) average PC score 4, and (e) average PC 

score 5.
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Table 2

Summary of average PM2.5 and metal concentrations at each sampling location.

Element
a

>LOD
b
 (%)

Mean ± S.D.

CA (n=6) AZ (n=6) MN (n=5) KY (n=6) FL (n=6) TX (n=6) PA (n=5) NY (n=5)

PM2.5 100 6.86±2.50 9.33±1.96 7.92±3.02 11.27±2.60 5.77±1.21 8.68±2.98 10.32±2.81 8.21±2.50

Na 98 427±374 405±592 5.11±4.86 2.78±1.77 158±61.2 81.6±30.6 38.1±21.4 53.0±17.2

Ca 100 21.9±6.67 205±83.3 37.0±11.5 29.8±5.89 46.7±18.8 63.4±30.2 51.5±26.2 56.3±24.5

Fe 100 36.9±12.2 518±158 38.4±7.48 46.8±5.96 23.3±8.17 48.0±19.7 172±106 63.1±18.0

Al 100 25.8±14.5 167±103 17.5±10.2 35.8±15.8 29.8±9.95 33.5±27.6 29.1±15.4 21.1±14.5

K 100 63.1±15.0 326±87.1 42.0±15.9 50.9±9.14 47.1±13.1 66.3±21.3 77.8±34.6 38.5±9.01

Mg 100 17.0±9.42 29.8±30.4 7.01±2.93 9.38±3.53 37.9±14.5 18.9±13.6 12.2±7.32 10.0±3.28

Zn 100 8.97±4.41 20.4±6.51 7.91±1.89 6.90±0.82 3.14±1.47 11.1±4.97 66.2±53.2 44.9±30.9

Ti 96 2.16±0.96 81.7±65.6 4.12±6.25 3.20±1.00 5.88±6.97 7.79±13.8 2.99±1.42 2.44±0.58

Mn 100 0.82±0.29 13.4±4.06 1.10±0.22 2.50±2.18 0.39±0.19 1.64±0.63 10.7±7.28 2.61±1.35

Cu 100 1.72±0.33 8.36±2.20 1.50±0.24 1.92±0.54 0.57±0.19 3.01±1.49 4.98±2.66 5.14±1.37

Pb 100 1.23±0.45 2.15±0.74 9.85±5.01 2.21±0.56 0.88±0.42 1.72±0.57 12.1±6.73 3.09±1.08

Ni 76 0.05±0.05 10.5±4.65 0.13±0.12 0.03±0.01 0.30±0.08 1.30±0.82 0.53±0.36 8.13±4.39

V 100 0.17±0.09 2.36±0.74 0.14±0.07 0.23±0.05 1.22±0.24 4.21±1.36 0.30±0.14 2.12±1.08

Cr 98 0.15±0.09 3.37±1.08 0.55±0.41 1.15±0.97 0.25±0.07 0.86±0.51 1.95±1.08 0.37±0.14

Sb 96 0.49±0.12 1.30±0.95 0.61±0.12 0.77±0.23 0.16±0.06 0.51±0.20 1.67±0.79 3.75±1.38

Mo 87 0.18±0.06 1.00±0.35 0.18±0.07 0.25±0.11 0.11±0.07 0.88±0.40 1.91±1.20 1.69±1.00

Sn 98 0.95±0.41 1.00±0.36 0.70±0.26 0.51±0.12 0.14±0.06 0.79±0.74 1.51±0.74 0.89±0.22

Se 82 0.02±0.01 0.16±0.05 0.29±0.10 3.92±4.19 0.42±0.08 0.55±0.24 2.81±1.10 0.55±0.28

As 100 0.66±0.27 0.42±0.15 1.24±0.73 1.21±0.41 0.39±0.18 1.39±0.90 1.59±0.71 0.43±0.07

Co 42 0.02±0.01 0.54±0.15 0.02±0.01 0.02±0.01 0.02±0.01 0.04±0.02 0.05±0.02 0.62±0.32

Cd 76 0.05±0.02 0.05±0.03 0.13±0.05 0.01±0.01 0.05±0.03 0.09±0.03 0.49±0.29 0.08±0.03

Ag 0 0.21±0.04 0.20±0.05 0.23±0.06 0.23±0.07 0.21±0.04 0.22±0.07 0.20±0.03 0.22±0.06

Cs 22 0.02±0.01 0.18±0.06 0.02±0.01 0.01±0.01 0.02±0.01 0.02±0.01 0.07±0.05 0.02±0.01

Tl 8.9 0.02±0.01 0.02±0.01 0.02±0.01 0.03±0.02 0.02±0.01 0.02±0.01 0.07±0.05 0.02±0.01

Be 0 0.02±0.01 0.02±0.01 0.02±0.01 0.02±0.01 0.02±0.01 0.02±0.01 0.02±0.01 0.02±0.01

CA: Sacramento County, CA; AZ: Maricopa County, AZ; MN: Anoka County, MN; KY: Jefferson County, KY; FL: Pinellas County, FL; TX: 
Harris County, TX; PA: Allegheny County, PA; NY: Queens County, NY.

a
Unit : μg/m3 for PM2.5 and ng/m3 for 25 metals.

b
LOD: Limit of detection
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Table 3

Standardized rotated factor loading and communalities from PCA in PM2.5

Component1 Component2 Component3 Component4 Component5

Metal Loadings Metal Loadings Metal Loadings Metal Loadings Metal Loadings

K 0.955 Cd 0.942 Sb 0.869 Na 0.782 V 0.761

Fe 0.952 Pb 0.825 Co 0.852 Se -0.638 Mg 0.644

Cr 0.923 Zn 0.804 Ni 0.738 As -0.562 Al 0.364

Ca 0.880 Sn 0.695 Mo 0.591 Mg 0.427 Ca 0.335

Al 0.862 Mo 0.980 Cu 0.488 Pb -0.172 Ti -0.217

Mn 0.808 As 0.578 Zn 0.450 K 0.168 Pb -0.190

Ti 0.750 Mn 0.519 V 0.366 Cr -0.155 Se -0.183

Cu 0.730 Sb 0.374 As -0.305 Al 0.137 Mo 0.169

Ni 0.627 Cu 0.370 Ca 0.233 Mo -0.136 Cu 0.144

Co 0.446 Cr 0.268 Mg -0.186 Co 0.134 K 0.138

Mg 0.333 Se 0.266 Sn 0.185 Fe 0.123 Ni 0.129

Sn 0.282 Ti -0.229 Fe 0.177 Ca 0.097 As 0.091

V 0.183 Fe 0.163 Mn 0.160 Cd -0.093 Co 0.089

Na 0.163 V -0.136 Se -0.159 V -0.081 Fe 0.076

Mo 0.161 Ni -0.104 Ti 0.148 Cu 0.065 Cr 0.051

Zn 0.102 Mg -0.043 Na -0.143 Sb -0.042 Sb 0.041

As -0.096 Ca 0.036 K 0.096 Ni 0.038 Na -0.036

Sb 0.056 Co -0.029 Al 0.082 Ti 0.031 Cd -0.031

Se 0.053 K 0.023 Cr 0.062 Zn -0.020 Sn -0.024

Cd 0.021 Na 0.006 Pb -0.058 Sn -0.017 Zn -0.014

Pb -0.010 Al -0.005 Cd -0.034 Mn -0.015 Mn 0.008

Eigen
a 8.51 Eigen 4.25 Eigen 2.10 Eigen 1.20 Eigen 1.00

Var
b
 (%)

42.5 Var (%) 21.3 Var (%) 10.5 Var (%) 5.9 Var (%) 5.0

a
Eigen: eigenvalue

b
Var: variance explained
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