Skip to main content
. 2015 Jul 8;93(1):97–107. doi: 10.4269/ajtmh.14-0596

Table 4.

Logistic regression model statistics: goodness-of-fit, prediction statistics, likelihood ratio test and multimodel inference statistics

Model 1 Model 2 Model 3 Model 4
Full model logistic regression
 AIC 1,257 1,102 1,203 1,078
 Hosmer–Lemeshow test
  χ2 7.19 11.57 4.09 14.19
  P 0.52 0.17 0.85 0.08
 Prediction statistics
  Threshold of presence 0.20 0.20 0.20 0.20
  Highest kappa value 0.19 0.39 0.29 0.42
  Sensitivity 0.32 0.54 0.49 0.54
  Specificity 0.90 0.91 0.88 0.92
  Positive predictive value 0.25 0.40 0.31 0.43
  Negative predictive value 0.92 0.95 0.94 0.95
 Likelihood ratio test
  Residual deviance 1,175 1,018 1,119 992
  Residual df 2,022 2,021 2,021 2,020
  Difference vs. Model 1 (χ2) 157 56 183
  P < 0.01 < 0.01 < 0.01
Multimodel inference
 Lowest AIC 1,177 1,042
 Highest Akaike weight 0.11 0.14
 Number of generations 680 640
 Weighted models
  Threshold of presence 0.20 0.30
 Prediction statistics
  Highest kappa value 0.28 0.42
  Sensitivity 0.47 0.49
  Specificity 0.88 0.94
  Positive predictive value 0.31 0.46
  Negative predictive value 0.94 0.94

df = degrees of freedom.