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Abstract	
	

Pituitary	 adenomas	 are	 a	 common	 feature	 of	 a	 subset	 of	 endocrine	 neoplasia	

syndromes,	 which	 have	 otherwise	 highly	 variable	 disease	 manifestations.	 We	

provide	 here	 a	 review	 of	 the	 clinical	 features	 and	 human	 molecular	 genetics	 of	

multiple	 endocrine	 neoplasia	 (MEN)	 type	 1	 (MEN1)	 and	 Carney	 complex	 (CNC).	

Both	diseases	are	hereditary	autosomal	dominant	syndromes	that	can	present	with	

pituitary	 adenomas.	MEN1	 is	 caused	 by	 inactivating	mutations	 in	 the	MEN1	 gene,	

whose	product	menin	is	involved	in	multiple	intracellular	pathways	contributing	to	



2	
	

transcriptional	control	and	cell	proliferation.	MEN1	clinical	features	include	primary	

hyperparathyroidism,	 pancreatic	 neuroendocrine	 tumours	 and	 prolactinomas	 and	

other	pituitary	adenomas.	A	subset	of	patients	with	pituitary	adenomas	and	other	

MEN1	 features	have	mutations	 in	 the	CDKN1B	 gene;	 their	disease	has	been	 called	

MEN	 type	 4	 (MEN4).	 Inactivating	mutations	 in	 the	 type	 1α	 regulatory	 subunit	 of	

protein	 kinase	 A	 (PKA)	 (the	 PRKAR1A	 gene),	 that	 lead	 to	 dysregulation	 and	

activation	of	the	PKA	pathway,	are	the	main	genetic	cause	of	CNC,	which	is	clinically	

characterised	 by	 primary	 pigmented	 adrenocortical	 disease	 (PPNAD),	 spotty	 skin	

pigmentation	 (lentigines),	 cardiac	 and	 other	 myxomas	 and	 acromegaly	 due	 to	

somatotropinomas	or	somatotrope	hyperplasia.	

	

	

Introduction	
	

About	5	%	of	pituitary	adenomas	occur	in	a	familial	setting	[1].	The	majority	of	these	

familial	 pituitary	 tumours	 are	 due	 to	multiple	 endocrine	 neoplasia	 (MEN)	 type	 1	

(MEN1)	 [2].	 Other	 genetic	 causes	 include	 Carney	 complex	 (CNC),	 MEN	 type	 4	

(MEN4),	mutations	in	the	aryl	hydrocarbon	receptor	interacting	protein	(AIP)	gene	

leading	 to	 familial	 isolated	 pituitary	 adenomas	 (FIPAs)	 and	 McCune‐Albright	

syndrome	(MAS).	Recently	mutations	 in	succinate	dehydrogenase	subunits	 (SDHx)	

and	 DICER1	 as	 well	 as	 Xq26.3	 microduplication	 have	 also	 been	 associated	 with	

pituitary	 tumours.	 Genetic	 conditions	 (germline	 or	 somatic)	 leading	 to	 pituitary	

tumours	are	summarised	in	table	1.		

	

Despite	 the	 relative	 rarity	 of	 syndromic	 pituitary	 adenomas,	 the	 study	 of	 their	

genetic	 causes	 has	 contributed	 significantly	 to	 the	 understanding	 of	 pituitary	

tumourigenesis	in	general.	MAS	and	CNC	are	caused	by	mutations	in	members	of	the	

cAMP‐dependent	protein	kinase	(protein	kinase	A	or	PKA)	pathway	[3,	4];	similarly,	

the	 PKA	 pathway,	 which	 contributes	 to	 pituitary	 proliferation	 and	 hormone	

secretion,	 is	 also	 altered	 in	 approximately	40%	of	 sporadic	 somatotropinomas	 [5‐

10].	
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On	 the	 other	 hand,	 no	 single	 consistent	 genetic	 mechanism	 for	 pituitary	

tumourigenesis	has	emerged	yet.	Classic	tumour	suppressor	genes,	such	as	TP53	or	

RB1,	 or	 oncogenes,	 including	 Ras,	 are	 all	 involved	 but	 not	 thought	 to	 be	 major	

contributors	to	germline	predisposition	to	pituitary	tumourigenesis	[11‐14].	MEN1	

and	CDKN1B,	whose	mutations	can	cause	pituitary	tumour	formation	in	the	context	

of	multiple	 endocrine	 neoplasia	 syndromes,	were	 shown	 to	 be	mutated	 or	 down‐

regulated	 only	 in	 few	 sporadic	 tumours	 [15‐19].	 Similarly,	 mutations	 in	 AIP	 and	

PRKAR1A,	which	lead	to	familial	pituitary	tumours	in	the	context	of	FIPA	and	CNC,	

respectively,	do	not	seem	to	contribute	significantly	 to	sporadic	pituitary	 tumours	

[10,	 20‐24],	 although	 AIP	 expression	 is	 reduced	 in	 some	 sporadic	

somatotropinomas	in	the	absence	of	AIP	mutations	[25],	probably	due	to	the	actions	

of	 different	microRNAs	 [26,	 27].	The	 variable	 and	 incomplete	penetrance	of	 these	

hereditary	pituitary	tumour	syndromes	suggests	 that	additional	circumstances	are	

required	for	pituitary	tumourigenesis.	These	have	not	been	clearly	defined	yet,	even	

though	some	candidate	loci	have	been	reported	for	AIP‐associated	tumours	[28,	29],	

and	 a	 possible	 association	was	 suggested	 between	 a	CDKN1B	 variant	 and	 tumour	

multiplicity	 in	 MEN1	 [30].	 However	 these	 additional	 circumstances	 required	 for	

pituitary	tumourigenesis	 in	the	context	of	genetic	syndromes	may	well	 involve	the	

same	 pathways	 controlling	 cell	 proliferation	 and	 hormone	 secretion	 that	 are	 also	

dysfunctional	in	sporadic	pituitary	adenomas.	

	

MAS	 is	 a	 genetic	 but	 not	 hereditary	 condition	 caused	 by	 somatic,	 postzygotic	

mutations	 in	 the	 α‐subunit	 of	 the	 Gs	 protein	 (GNAS),	 leading	 to	 somatotrope	 or	

somatolactotrope	 hyperplasia	 and	 growth	 hormone	 (GH)	 hypersecretion	 in	

approximately	20%	of	 patients	 [3,	 31,	32].	 Inactivating	 germline	mutations	 in	AIP	

were	recently	discovered	to	be	the	genetic	cause	in	about	20%	of	FIPA	patients	[33].	

These	 patients	 have	 mostly	 somatotropinomas	 or	 prolactinomas	 (and	 sometimes	

non‐functioning	 pituitary	 adenomas	 and	 rarely	 corticotropinomas),	 and	 no	 other	

recurrent	clinical	manifestations	[33,	34].	MAS,	FIPA	due	to	AIP	mutations	and	their	

contribution	 to	 pituitary	 pathology	 are	 described	 in	 detail	 elsewhere	 [3,	 31‐34].	
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Mutations	 in	 different	 subunits	 of	SDH	 can	 lead	 to	 hereditary	 pheochromocytoma	

and	 paraganglioma	 syndromes	 [35]	 and	 recently	 SDHx	 mutations	 were	 also	

reported	 to	 be	 associated	 with	 pituitary	 adenomas	 [36‐39].	 Pituitary	 blastoma,	

manifesting	 mostly	 in	 early	 childhood	 and	 leading	 to	 Cushing’s	 syndrome,	 was	

recently	described	[40,	41].	Germline	mutations	in	DICER1	were	reported	in	almost	

all	 cases	 of	 pituitary	 blastoma	 [40‐42];	 interestingly,	 germline	DICER1	 mutations	

also	 cause	 other	 early	 childhood	 tumours	 summarised	 as	 pleuropulmonary	

blastoma‐familial	tumour	and	dysplasia	syndrome	(see	table	1).	However,	in	the	few	

cases	that	have	been	reported	the	manifestation	of	another	DICER1‐related	tumour	

in	 association	 with	 pituitary	 blastoma	 is	 rare	 [42].	 We	 have	 recently	 reported	

Xq26.3	 microduplication	 in	 association	 with	 early	 childhood‐onset	 gigantism,	

termed	 X‐linked	 acrogigantism	 [43].	 This	 is	 probably	 due	 to	 overexpression	 of	

GPR101,	 a	 G‐protein	 coupled	 orphan	 receptor	 that	 is	 located	 in	 this	 region,	 and	

downstream	PKA	pathway	activation;	 interestingly	a	GPR101	mutation	 is	 found	 in	

some	 cases	 of	 sporadic	 acromegaly	 [43].	 A	 possible	 association	 was	 suggested	

between	 neurofibromatosis	 type	 1	 and	 acromegaly	 or	 gigantism	 in	 a	 few	 case	

reports	[44];	this	growth	hormone	excess	is	due	to	optic	pathway	tumours	that	are	

hypothesised	to	suppress	hypothalamic	somatostatin	secretion,	and	hence	will	not	

be	discussed	in	detail	here.	

	

In	 this	 review,	 we	 present	 an	 update	 on	 the	 clinical	 manifestations	 and	 human	

molecular	genetics	of	 three	of	the	above	referenced	diseases,	all	caused	by	genetic	

defects	in	the	germline,	MEN1,	MEN4	and	CNC.	

	

	

Multiple	endocrine	neoplasia	type	1	

	

Multiple	 endocrine	 neoplasia	 type	 1	 (MEN1,	 MIM*131100)	 is	 an	 autosomal	

dominant	 disorder,	 leading	 to	 parathyroid	 neoplasms,	 pancreatic	 neuroendocrine	

tumours	and	pituitary	adenomas	[45].	Other	MEN1‐associated	endocrine	and	non‐

endocrine	 neoplasms,	 including	 adrenocortical	 tumours,	 carcinoids	 and	 facial	
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angiofibromas,	may	also	occur	[45,	46].	The	prevalence	of	MEN1	is	about	1:30,000	

[45],	but	geographical	clustering	due	 to	a	 founder	effect	can	be	observed	 [47,	48].	

There	 is	 considerable	 phenotypic	 variability	 of	 tumour	 type	 manifestations	 even	

within	the	same	family	[49].	

	

The	penetrance	of	MEN1	is	generally	high,	with	biochemical	signs	present	in	>95%	

and	clinical	signs	in	80%	of	patients	by	the	fifth	decade	of	life	[49‐51];	for	instance,	

the	age‐related	penetrance	at	50	years	is	73‐75	%	for	primary	hyperparathyroidism,	

31‐48	 %	 for	 pituitary	 adenomas	 and	 for	 45‐49	 %	 islet	 cell	 tumours	 [51,	 52].	

However	the	age	of	presentation	of	specific	tumour	types	is	highly	variable,	and	may	

range	from	9‐25	for	the	earliest	to	68‐77	years	for	the	latest	tumour	manifestation	

[51].	 MEN1	 patients	 have	 a	 decreased	 life	 expectancy	 and	 MEN1‐associated	

mortality	 is	mostly	 due	 to	 enteropancreatic	malignancy	 [51‐55].	MEN1‐associated	

mortality	has	 improved	 since	 the	1980s	due	 to	more	 intense	 screening	programs,	

better	perioperative	survival	and,	since	protein	pump	 inhibitors	became	available,	

reduced	 mortality	 due	 to	 gastrinoma‐associated	 gastric	 ulcer	 perforation	 and	

haemorrhage	[54].		

	

Primary	Hyperparathyroidism	

	

Primary	hyperparathyroidism	(PHPT)	is	frequently	the	presenting	feature	of	MEN1	

[49]	and	also	the	most	common	MEN1‐associated	clinical	manifestation	that	occurs	

in	 more	 than	 90	 %	 of	 mutation	 carriers	 [46,	 49,	 51].	 MEN1‐associated	 PHPT	

develops	 approximately	 30	 years	 earlier	 than	 sporadic	 PHPT,	 and	 has	 an	 almost	

even	gender	 ratio	whereas	 sporadic	PHPT	has	 a	75%	 female	preponderance	 [56].	

PHPT	in	the	context	of	MEN1	is	associated	with	higher	severity	of	bone	involvement	

with	 borderline	 rather	 than	 elevated	 parathyroid	 hormone	 levels	 and	 only	mildly	

elevated	 serum	 calcium	 [57].	 Usually	 MEN1‐associated	 PHPT	 is	 due	 to	

multiglandular	 hyperplasia	 whilst	 there	 is	 more	 often	 one	 evident	 adenoma	 in	

sporadic	PHPT	 [58‐61].	Consequently	 surgery	 is	often	more	 challenging,	 involving	

intraoperative	identification	and	removal	of	all	four	glands,	and	recurrence	rates	are	
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high	[62,	63].	In	addition,	supernumerary	or	ectopic	parathyroid	glands	occur	in	up	

to	20	%	of	patients	[59]	and	their	identification	is	crucial	to	prevent	recurrence.	In	

conjunction	 with	 open	 bilateral	 neck	 exploration,	 total	 thymectomy	 is	 also	 often	

performed	since	 this	 is	 the	most	 common	 location	 for	ectopic	parathyroid	glands;	

intraoperative	parathyroid	hormone	measurement	can	aid	to	determine	successful	

removal	of	all	overactive	glands	[64].	

	

	

Pancreatic	neuroendocrine	tumours	

	

Pancreatic	neuroendocrine	tumours	(PNET)	are	also	a	frequent	feature	of	MEN1	in	

up	to	75	%	of	patients	[46,	49,	51],	but	patients	are	often	asymptomatic	and	the	real	

prevalence	 may	 be	 higher	 [46,	 65].	 These	 tumours	 are	 most	 often	 gastrinomas,	

insulinomas	 or	 nonfunctioning	 PNETs,	 occasionally	 glucagonomas,	 VIPomas	 or	

somatostatinomas	[46,	51,	54].	Most	MEN1	patients	have	multiple	microadenomas	

in	pancreas	and	duodenum,	only	 few	of	which	become	clinically	 relevant	 [66,	67],	

consequently	 metastases	 are	 frequently	 present	 (30‐50	 %)	 at	 the	 time	 of	

appearance	 of	 symptoms	 [67,	 68].	 Gastrinomas	 associated	 with	 excessive	 gastric	

acid	 production	 and	 gastric	 ulceration,	 referred	 to	 as	 Zollinger‐Ellison	 syndrome,	

are	 a	 major	 contributor	 to	 MEN1‐associated	 mortality	 [48,	 69].	 MEN1‐associated	

gastrinomas	 are	 usually	 located	 in	 the	 duodenum,	 and	 are	 small	 and	multicentric	

compared	 to	 the	 larger	 and	 mostly	 singular	 sporadic	 gastrinomas	 [70‐72];	

consequently	 the	 surgical	 resection	 of	 a	 single	 tumour	 is	 not	 likely	 to	 be	 curative	

and	 therapy	 of	 small	 non‐metastatic	 tumours	 is	 primarily	 symptomatic	 [46].	

Importantly,	gastrinomas	are	relatively	rare	in	the	general	population,	and	20	%	of	

patients	with	 gastrinomas	 have	MEN1	 [72].	Non‐functioning	 PNETs	 have	 recently	

attracted	attention	due	to	the	finding	that	their	prevalence	and	associated	mortality	

are	higher	 than	previously	 thought	 [54,	73].	Their	prognosis	 is	worse	 than	 that	of	

functioning	PNETs	and	clinical	assessment	is	difficult	due	to	the	absence	of	specific	

symptoms	or	biochemical	markers	[54,	73].	Insulinomas	are	the	first	manifestation	

of	MEN1	in	10	%	of	patients,	and	even	though	there	is	often	more	than	one	tumour,	
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surgery	 is	 recommended	 [64].	 VIPomas,	 glucagonomas	 and	 somatostatinomas	 are	

rare,	however	 if	present	 they	have	a	high	risk	of	malignancy	[67,	74],	and	surgery	

should	be	performed	in	the	absence	of	distant	metastases	[74].	

	

Pituitary	adenomas	

	

The	 frequency	of	pituitary	adenomas	(PAs)	 in	MEN1	is	around	40%	depending	on	

the	patient	population	[46,	49,	51,	75];	conversely,	only	3%	of	patients	with	PA	have	

MEN1	 [2].	Mean	 age	 of	 presentation	 is	 around	 38	 years,	 but	 can	 vary	 between	 5	

years	and	the	ninth	decade	of	life	[75,	76].	PAs	are	the	first	MEN1	manifestation	in	

about	20	%	of	patients	[52,	75].	PAs	are	most	commonly	prolactinomas,	followed	by	

non‐functioning	PAs,	somatotropinomas	and	corticotropinomas;	this	distribution	is	

approximately	the	same	as	that	seen	in	sporadic	PAs.	However	in	MEN1	PAs	there	is	

a	higher	incidence	of	multiple	hormone	expression	and	multiple	adenomas	[75,	77].	

MEN1‐associated	PAs	are	more	aggressive	than	sporadic	PAs,	are	macroadenomas	

in	 85	 %	 of	 cases	 compared	 to	 40	 %	 in	 sporadic	 PAs,	 and	 they	 may	 infiltrate	

surrounding	tissues	more	frequently	[75,	77].	This	is	accompanied	by	a	worse	rate	

of	hormonal	control	in	MEN1	PAs	[75]:	44	%	of	MEN1‐associated	prolactinomas	are	

resistant	 to	 dopamine	 agonist	 therapy	 [75,	 78].	 The	 presence	 of	 pituitary	

enlargement	 in	 imaging	 studies	 does	 not	 preclude	 elevated	 hormone	 production	

elsewhere,	and	in	rare	cases,	PNETs	that	secrete	hypothalamic	hormones	and	lead	

to	 excessive	 secretion	 of	 pituitary	 hormones	 have	 been	 encountered	 [77,	 79,	 80].	

Sporadic	PAs	and	MEN1	PAs	are	similarly	more	common	 in	 females	 than	 in	males	

(approximately	70	%	 female	 in	MEN1	patients);	 there	 is	 currently	no	 explanation	

for	 this	 although	 oestrogen	 was	 hypothesised	 to	 stimulate	 the	 proliferation	 of	

pituitary	cells,	as	seen	experimentally	[75,	81].	

	

Other	MEN1‐associated	features	

	

Approximately	 40%	 of	 MEN1	 patients	 develop	 additional	 functioning	 or	 non‐

functioning	 endocrine	 tumours	 [51].	 Most	 commonly	 these	 are	 benign	 non‐
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functioning	adrenocortical	 lesions,	but	primary	aldosteronism,	adrenocorticotropic	

hormone	 (ACTH)‐independent	 Cushing’s	 syndrome	 or	 (more	 rarely)	 adrenal	

hyperandrogenism	due	to	adrenal	adenomas	are	found	in	about	15	%	[82].	This	 is	

significantly	 higher	 than	 the	 rate	 of	 endocrine	 activity	 among	 sporadic	 adrenal	

incidentalomas,	 indicating	 that	 adrenocortical	 tumours	 or	 bilateral	 hyperplasia	 in	

MEN1	 are	 frequently	 functional	 [82].	 Facial	 angiofibromas	 occur	 in	 up	 to	 88%	 of	

patients	 and	 collagenomas	 in	 up	 to	 72	 %	 [83,	 84],	 and	 their	 presence	 may	 aid	

diagnosis	(the	presence	of	three	facial	angiofibromas	and	one	collagenoma	is	75	%	

sensitive	and	95	%	specific	for	MEN1)	[84].	Pheochromocytoma	is	rarely	observed	

(<1	%)	[82].	Interestingly,	MEN1	patients	have	impaired	fasting	glucose	(17	%	vs.	6	

%	 in	 controls)	 that	 cannot	 be	 adequately	 explained	 by	 the	 presence	 of	 hormone	

secreting	 tumours	 or	 previous	 pancreatic	 surgery,	 and	 may	 contribute	 to	

cardiovascular	mortality	[85,	86].	

	

	

Molecular	genetics	

	

The	genetic	 cause	of	MEN1	was	 initially	 localized	 to	11q13	and	 later	 identified	as	

the	 tumour	 suppressor	 gene	MEN1,	which	 consists	 of	 10	 exons	 and	 codes	 for	 the	

protein	menin	[87‐89].	Loss	of	heterozygosity	(LOH)	of	the	MEN1	locus	is	frequently	

found	in	MEN1	tumours	[87,	90,	91].	

	

Menin	 is	a	610	amino	acid	protein	with	no	homology	 to	other	known	proteins;	 its	

expression	is	ubiquitous	and	the	mechanism	of	how	loss	of	function	of	menin	leads	

to	MEN1	is	still	unclear	[88,	89,	92].	Menin	predominantly	localises	to	the	nucleus,	

containing	two	classical	nuclear	localisation	signals	(NLSs)	and	at	least	one	further	

non‐classical	 NLS	 in	 its	 C‐terminus	 [93,	 94].	 In	 the	 nucleus	 it	 can	 associate	 with	

chromatin	[95],	dsDNA	[96],	the	lysine‐specific	histone	methyltransferases	KMT2A	

and	KMT2B	 [97,	 98]	 and	 components	 of	 a	 transcriptional	 repressor	 complex	 also	

including	 histone	 deacetylases	 (HDACs)	 [99].	 Menin	 interacts	 with	 transcription	

factors	 including	 activating	 protein‐1	 (AP‐1),	 JunD,	 nuclear	 factor‐κB	 (NF‐κB),	 β‐



9	
	

catenin,	 mothers	 against	 decapentaplegic	 (SMAD)	 family	members	 and	 oestrogen	

receptor	α	(ERα)	[97,	100‐106].	Menin	binds	to	cytoskeletal	proteins,	e.g.	vimentin	

[107],	 and	 cytoplasmic	 cell	 signalling	 mediators	 including	 Akt1/protein	 kinase	 B	

(PKB)	and	forkhead	box	protein	O1	(FoxO1)	[108,	109].	Some	of	the	known	menin	

interaction	partners	are	depicted	 in	Fig.	1.	Menin	was	shown	to	play	a	 role	 in	cell	

proliferation	 [110‐112],	 apoptosis	 [113,	 114]	 and	 genome	 integrity	 [115].	 Menin	

and	KMT2A	in	complex	regulate	expression	of	several	Hox	genes	as	well	as	CDKN1B,	

and	they	interact	with	ERα	to	coactivate	ERα‐mediated	transcription	[97,	106,	116,	

117].	 Interestingly,	chromosomal	rearrangements	 involving	KMT2A	lead	to	mixed‐

lineage	leukaemia,	and	in	this	context	menin	was	shown	to	be	required	for	KMT2A‐

dependent	oncogenic	transformation	[118].	This	illustrates	the	functional	versatility	

of	menin	in	different	tissues	that	may	also	help	to	understand	the	yet	unexplained	

tissue	 selectivity	 of	 MEN1‐associated	 tumours	 even	 in	 the	 presence	 of	 the	 same	

mutation.	

	

Hundreds	 of	MEN1	 mutations	 have	 been	 described,	 which	 are	 located	 along	 the	

whole	coding	region	and	splice	sites	of	the	gene	[119].	While	most	MEN1	cases	are	

familial,	10	%	of	cases	occur	in	a	non‐familial	context	and	are	due	to	de	novo	MEN1	

mutations	 [119].	 The	 majority	 of	 mutations	 leading	 to	 MEN1	 are	 frameshift	

deletions	or	insertions	and	nonsense	mutations	leading	to	truncation	or	absence	of	

the	protein	[51,	119].	Missense	mutations	leading	to	single	amino	acid	substitutions	

were	 assumed	 to	 cause	 less	 severely	 impaired	 protein	 function,	 but	 no	 notable	

difference	 was	 observed	 in	 clinical	 manifestation	 of	 those	 patients	 [51].	 Some	

mutations	leading	to	single	amino	acid	substitutions	were	demonstrated	to	lead	to	

proteasomal	 degradation	 and	hence	markedly	 reduced	protein	 levels	 [120],	while	

other	 mutations	 lead	 to	 nonsense‐mediated	 mRNA	 decay	 [121].	 A	 reduction	 of	

interaction	 capacity	 of	menin	with	 its	 binding	 partners	was	 also	 shown	 for	 some	

mutations	 leading	 to	 single	 amino	 acid	 substitutions	 [97,	 100].	 Some	 intronic	

mutations	were	 demonstrated	 to	 lead	 to	 alternative	 splicing,	 suggesting	 that	 they	

are	causative	for	MEN1	[122‐124].	Interestingly,	in	approximately	10	%	of	patients	

with	clinical	MEN1,	no	MEN1	gene	mutations	could	be	identified	[119,	125‐127].	In	a	
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small	 number	 (1	%)	 of	 these	 cases,	 large	 deletions	 of	 one	 exon	or	more	 could	 be	

detected	 using	 multiple	 ligation‐dependent	 probe	 amplification	 (MLPA)	 or	 long‐

range	PCR	amplification	[128,	129].	 In	the	remaining	cases,	 the	phenotype	may	be	

due	to	intronic	mutations	that	are	not	detected	by	routine	sequencing,	however	the	

involvement	of	mutations	in	other	genes	cannot	be	excluded.	

	

Genotype‐phenotype	correlation	

	

Due	 to	 the	 large	 number	 of	 different	 mutations	 in	 combination	 with	 the	

heterogeneity	 of	 disease	manifestations	 it	 has	 proved	 difficult	 to	 establish	 subtle	

genotype‐phenotype	 correlations	 in	MEN1.	One	 study	 found	 that	 all	 patients	with	

frameshift	mutations	have	PNETs	[130],	while	another	study	showed	a	higher	rate	

of	malignant	tumours	for	mutations	in	MEN1	exons	2,	9	and	10	[131].	However,	no	

genotype‐phenotype	correlation	could	be	consistently	confirmed	in	different	patient	

populations	 [51,	 119].	 In	 addition,	 studies	 of	 unrelated	 kindreds	 with	 the	 same	

mutation	showed	large	variability	of	different	MEN1	associated	tumours	[50,	132],	

and	 there	are	 reports	of	 identical	 twins	with	different	MEN1	manifestations	 [133‐

135].	 Remarkably,	 some	 families	 with	 particular	 MEN1	 mutations	 develop	 only	

isolated	 hyperparathyroidism,	while	 the	 same	mutations	 in	 other	 families	 lead	 to	

full	 MEN1	 [119].	 Epigenetic	 mechanisms	 caused	 by	 environmental	 factors	 may	

influence	 disease	 phenotype	 in	 patients	 carrying	 the	 same	MEN1	 mutation	 [136].	

Recently,	 a	 specific	 variant	 of	 the	 CDKN1B	 gene	 was	 demonstrated	 to	 be	 disease	

modifying	 in	 MEN1	 patients	 with	 truncating	 MEN1	 mutations,	 causing	 a	 higher	

number	of	MEN1	related	tumours	[30].	

	

MEN4	

	

In	the	approximately	10	%	of	patients	with	a	MEN1‐like	phenotype	where	no	MEN1	

mutations	could	be	detected,	other	genes	were	suspected	to	be	responsible	for	the	

clinical	 manifestation	 [119,	 125‐127].	 A	 rat	 model	 displaying	 a	 MEN1‐like	

phenotype	was	discovered	 to	 harbour	 a	mutation	 in	 the	CDKN1B	 gene,	 leading	 to	
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premature	 termination	 [137].	 CDKN1B	 transcription	 is	 regulated	 by	 menin	 [116,	

138].	 CDKN1B	 encodes	 for	 the	 cyclin‐dependent	 kinase	 inhibitor	 p27Kip1,	 which	

participates	 in	 cell	 cycle	 regulation	 by	 interaction	 with	 cyclin‐dependent	 kinases	

[139],	 and	 in	 turn,	 p27Kip1	 levels	 are	 regulated	 via	 the	 mitogen‐activated	 protein	

kinase	(MAPK)	and	the	phosphatidyl	inositol‐3	kinase	(PI3K)	pathways	[140,	141].	

In	 a	 small	 number	 (up	 to	 3	%)	 of	MEN1	 mutation‐negative	 patients	 fulfilling	 the	

diagnostic	 criteria	 for	 MEN1,	 mutations	 in	 CDKN1B	 have	 been	 detected	 and	 the	

corresponding	 clinical	 syndrome	 has	 been	 termed	 MEN4	 (MIM#610755)	 [137].	

Mutations	in	some	of	those	patients	were	shown	to	either	lead	to	decreased	cellular	

levels	of	p27Kip1	by	reduced	translation	or	proteasomal	degradation,	or	to	functional	

defects	 causing	 reduced	 binding	 to	 interacting	 partners	 or	 decreased	 nuclear	

localisation	 [137,	 142‐144].	 Interestingly,	 a	 novel	 mechanism	 of	 CDKN1B	 loss	 of	

function	leading	to	MEN4	was	recently	discovered:	a	4	bp	deletion	in	an	upstream	

ORF	 within	 the	 CDKN1B	 5’UTR	 led	 to	 decreased	 translation	 reinitiation	 and	

decreased	p27Kip1	levels	[145].	

	

Primary	hyperparathyroidism	 is	present	 in	 all	 the	MEN4	patients	 reported	 so	 far,	

but	tumour	manifestations	seem	to	be	more	variable	than	in	MEN1	and	due	to	the	

small	number	of	patients	so	far	reported	a	comprehensive	phenotype	has	not	been	

established	 [146].	 PAs	 (corticotropinomas,	 somatotropinomas	 and	 non‐

functioning),	as	well	as	neuroendocrine	tumours,	uterine	neoplasms,	adrenocortical	

masses	and	 thyroid	 tumours	have	been	described	 in	 the	MEN4	context	 [137,	142‐

144,	147].	
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Carney	complex	

	

Carney	 complex	 (CNC,	 MIM#160980)	 is	 a	 rare	 endocrine	 tumour	 syndrome	with	

currently	about	750	documented	cases	worldwide	[148,	149].	Initially	described	as	

the	 complex	 of	 myxomas,	 spotty	 skin	 pigmentation	 (lentigines),	 and	 endocrine	

overactivity,	 the	 familial	 syndrome	 is	 inherited	 in	 an	autosomal	dominant	 fashion	

[150,	 151].	 Further	 manifestations	 include	 primary	 pigmented	 nodular	

adrenocortical	 disease	 (PPNAD)	 leading	 to	 Cushing’s	 syndrome,	 PAs,	 thyroid	

nodules,	 testicular	 neoplasms,	 ovarian	 cysts,	 psammomatous	 melanotic	

schwannomas,	ductal	breast	adenomas	and	osteochondromyxomas	[152].	Most	CNC	

patients	 initially	 present	 with	 ACTH‐independent	 Cushing’s	 syndrome	 due	 to	

PPNAD	or	heart	myxomas,	although	abnormal	skin	pigmentation	may	be	present	at	

birth	and	is	most	often	the	first	manifestation	[152‐154].	The	majority	of	CNC	cases	

are	caused	by	inactivating	germline	mutations	in	the	type	1α	regulatory	subunit	of	

protein	 kinase	 A	 (PRKAR1A)	 gene	 [155],	 and	 those	mutations	 lead	 to	 CNC	with	 a	

penetrance	close	to	100	%	[148,	149].	About	70	%	of	CNC	cases	occur	in	a	familial	

context	[148].	

	

Cushing’s	syndrome	due	to	PPNAD	

	

PPNAD	is	most	frequently	seen	in	the	context	of	CNC,	and	60	%	of	CNC	patients	have	

PPNAD	 [148,	 156].	 Conversely,	 of	 all	 patients	with	PPNAD,	 about	 80	%	have	CNC	

while	20	%	have	isolated	PPNAD,	where	no	other	CNC‐associated	 lesions	could	be	

detected	[148].	PPNAD	typically	manifests	at	a	young	age	(median	age	34	years)	and	

leads	to	ACTH‐independent	adrenocortical	Cushing’s	syndrome	[148].	Diagnosis	can	

be	challenging	in	cases	of	cyclical	(14	%)	or	subclinical	Cushing’s	syndrome	(19	%)	

[156].	Interestingly,	most	CNC	patients	with	PPNAD	have	a	paradoxical	increase	of	

cortisol	 secretion	 after	 dexamethasone	 administration,	 which	 is	 diagnostically	

particularly	useful	in	patients	with	normal	baseline	cortisol	levels	[156].	
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Pituitary	adenomas	

	

While	75	%	of	CNC	patients	have	abnormal	GH,	IGF‐1	or	prolactin	levels	basally	or	

during	 dynamic	 testing,	 PAs	 can	 only	 be	 detected	 in	 about	 10	%	 [148,	 152,	 157,	

158].	 This	 may	 be	 due	 to	 prolonged	 periods	 of	 somatolactotrope	 hyperplasia	

preceding	 adenoma	 formation	 [152,	 158‐160].	 CNC‐associated	 PAs	 are	 mostly	

positive	 for	GH	or	GH	and	prolactin,	and	can	 lead	to	acromegaly	or	gigantism,	and	

rarely	 to	 clinically	 significant	 hyperprolactinaemia	 [151,	 157‐161].	 A	 minority	 of	

adenomas	also	stained	positive	 for	 thyroid‐stimulating	hormone	(TSH),	 luteinising	

hormone	(LH)	or	α‐subunit	[159,	161]	but	these	do	not	cause	a	clinical	phenotype.	

CNC‐related	 adenomas	 are	 often	multiple,	 surrounded	by	hyperplasia,	 and	mostly	

microadenomas,	 but	 there	 are	 also	 cases	 of	 very	 aggressive	 and	 invasive	

macroadenomas	[159].	

	

Cardiac	myxomas	

	

CNC‐associated	cardiac	myxomas	can	be	found	in	30	%	of	CNC	patients	[148].	They	

have	 an	 even	 age	 and	 gender	 distribution	 and	 occur	 anywhere	 in	 the	 heart	 as	

opposed	to	sporadic	cardiac	myxomas	more	frequently	occurring	in	the	left	atrium	

and	 in	older	 females	 [152].	Tumours	 can	be	multiple	 and	 can	 recur	 after	 removal	

[148].	The	age	of	manifestation	varies	between	3‐67	years	[148].	Although	these	are	

benign	 neoplasms,	 they	 can	 lead	 to	 serious	 complications	 including	 cardiac	

insufficiency,	stroke	or	pulmonary	embolism	[152].	

	

Skin	manifestations	

	

Lentiginosis	 (present	 in	 70	 %	 of	 the	 patients)	 and	 other	 pigmented	 cutaneous	

lesions	(blue,	Spitz	and	compound	naevi	and	café‐au‐lait	spots,	50	%)	are	frequently	

observed	 and	 may	 be	 present	 at	 birth	 or	 appear	 in	 early	 childhood	 [148,	 152].	
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Cutaneous	myxomas	 are	 found	 in	 20	%	of	 CNC	patients	 [148].	 Twenty	percent	 of	

affected	 women	 have	 mammary	 myxomas	 [148].	 Other	 skin	 tumours	 include	

lipomas,	collagenomas	and	ear	canal	trichofolliculoepitheliomas.	

	

Other	CNC‐associated	tumours	

	

Psammomatous	melanotic	schwannomas	are	a	relatively	rare	manifestation	of	CNC;	

however,	they	cause	significant	morbidity	and	can	even	be	the	cause	of	death	of	CNC	

patients,	because	they	can	(depending	on	their	location)	cause	significant	neurologic	

deficits,	obstructive	pulmonary	disease,	or	 increased	 intracranial	pressure.	Finally,	

they	 can	 become	malignant	 and	when	 they	 do	 they	 are	 aggressive	 tumours	 with	

frequent	lung	or	cerebral	metastases	[152].		

	

Testicular	 neoplasms	 occur	 in	 more	 than	 two	 thirds	 of	 male	 patients	 (by	

ultrasonography)	 and	 are	 mostly	 large	 cell	 calcifying	 Sertoli	 cell	 tumours	 [148].	

Thyroid	nodules	can	also	be	observed	frequently,	but	thyroid	cancer	is	rare	[148].	

	

Molecular	genetics	

	

The	most	frequent	genetic	cause	(in	about	73%	of	the	patients)	of	CNC	is	a	PRKAR1A	

defect	 [4,	 148,	 162].	PRKAR1A	 acts	 as	 a	 tumour	 suppressor	 by	 haploinsufficiency,	

although	 loss	of	 the	wild‐type	allele	 is	also	 found	 in	most	CNC‐associated	tumours	

[4,	152,	162].	

	

PRKAR1A	 encodes	 for	 the	 type	 1α	 regulatory	 subunit	 (R1α)	 of	 PKA.	 PKA	 is	 a	

heterotetramer	 composed	 of	 two	 catalytic	 subunits	 (Cα,	 Cβ,	 Cγ	 or	 Cx)	 and	 two	

regulatory	subunits	 (R1α,	R1β,	R2α	or	R2β).	Stimulation	of	 the	Gs	protein	 leads	 to	

activation	 of	 adenylyl	 cyclase	 that	 produces	 cAMP.	 cAMP	 is	 then	 bound	 by	 PKA	

regulatory	 subunits,	 which	 leads	 to	 activation	 of	 PKA	 by	 dissociation	 of	 the	

regulatory	 subunits	 from	 the	 active	 sites	 of	 the	 catalytic	 subunits.	 The	 active	

catalytic	subunits	are	then	free	to	act	as	a	serine/threonine	kinases	phosphorylating	
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downstream	 targets	both	 in	 the	 cytoplasm	and	 in	 the	nucleus.	These	downstream	

targets	 include	 CREB	 (cAMP	 responsive	 element	 binding	 protein),	 which	 in	 turn	

mediates	 CRE	 (cAMP	 responsive	 element)‐dependent	 transcription	 [163,	 164]	

(Figure	2A).	

	

A	 reduction	 of	 R1α	 levels	 therefore	 causes	 disinhibition	 of	 PKA,	 leading	 to	 an	

increase	of	cAMP‐stimulated	PKA	activity	[4,	165‐167]	(Figure	2B).	R1α	deficiency	

leads	to	decreased	SMAD3	expression,	thereby	reducing	transforming	growth	factor	

β	 (TGFβ)‐mediated	 apoptosis	 in	 adrenocortical	 cells	 [168].	 In	 addition,	 MAPK	

pathway	 activity	 was	 shown	 to	 increase	 in	 response	 to	 inactivating	 PRKAR1A	

mutations,	causing	increased	cell	proliferation	[165,	169,	170].	R1α	deficiency	also	

leads	 to	 an	 up‐regulation	 of	 different	 components	 of	 the	Wnt	 signalling	 pathway	

[171,	172].	Interestingly,	some	CNC	patients	with	PPNAD	have	somatic	mutations	in	

the	β‐catenin	gene	(CTNNB1)	within	the	adrenal	nodules,	which	 is	also	part	of	 the	

Wnt	signalling	pathway	[173,	174].	

	

More	 than	 120	 different	PRKAR1A	mutations	 have	 been	 identified	 to	 date	 in	 CNC	

patients	 [148,	 155,	 162,	 167].	 Sanger	 sequencing	 is	 used	 for	 the	 large	majority	 of	

routine	clinical	sequence	analysis	and	recently,	large	deletions	have	been	identified	

in	 about	 20	 %	 of	 those	 patients	 previously	 thought	 to	 be	 PRKAR1A	mutation‐

negative	 by	 array‐based	 comparative	 genomic	 hybridisation	 [175].	 Almost	 all	

mutations	generate	a	premature	stop	codon,	either	directly	or	by	frameshift,	leading	

to	 nonsense‐mediated	 mRNA	 decay	 and	 absence	 of	 the	 R1α	 protein	 [4,	 155],	

although	some	PRKAR1A	mutations	in	CNC	were	demonstrated	to	lead	to	expressed	

R1α	that	had	lost	its	inhibitory	effect	on	PKA	signalling	[166,	167].	

	

Genotype‐phenotype	correlation	

	

No	 obvious	 genotype‐phenotype	 correlation	 could	 initially	 be	 detected	 in	 CNC	

patients	 with	 different	 PRKAR1A	 mutations;	 most	 different	 mutations	 invariably	

lead	to	the	absence	of	the	R1α	protein	[155].	However,	a	small	intronic	deletion	in	
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PRKAR1A	which	has	been	identified	in	CNC	patients	can	also	be	found	in	some	cases	

of	 isolated	 PPNAD;	 this	 mutation	 also	 leads	 to	 nonsense‐mediated	 decay	 but	 is	

associated	with	 lower	penetrance	 than	CNC	 [176].	 In	addition,	PRKAR1A	mutation	

carriers	 manifest	 with	 myxomas,	 thyroid	 tumours,	 schwannomas	 and	 Sertoli	 cell	

tumours	more	frequently	and	generally	present	earlier	than	CNC	patients	where	no	

PRKAR1A	 mutations	 were	 found	 [148].	 Patients	 with	 large	 deletions	 of	 PRKAR1A	

were	suggested	to	present	with	CNC	at	an	earlier	age	(14	years	vs.	20	years)	[149,	

175].	

	

Conclusions	

	

The	multifactorial	and	heterogeneous	pathogenesis	of	pituitary	tumours	is	reflected	

by	the	multitude	of	different	tumour	manifestations	in	genetic	syndromes	that	also	

cause	pituitary	adenomas,	such	as	MEN1	and	CNC.	The	study	of	such	rare	diseases	

can	contribute	immensely	to	the	faster	diagnosis	and	better	monitoring	of	affected	

patients,	 as	 reflected	 by	 the	 improvement	 of	MEN1‐associated	mortality	 over	 the	

last	 decades.	Moreover,	 the	 study	of	multiple	 endocrine	neoplasia	 syndromes	will	

also	aid	our	understanding	of	endocrine	physiology	and	tumourigenesis.	

	

Interestingly,	 pituitary	 adenomas	 are	mostly	 benign	 and	 only	 very	 rarely	 acquire	

malignant	 properties.	MEN1‐associated	 pituitary	 adenomas	 and	 FIPAs	 due	 to	AIP	

mutations	 are	 more	 aggressive	 than	 sporadic	 PAs,	 with	 more	 frequent	

macroadenomas	 and	 a	 younger	 age	 at	manifestation	 in	AIP‐associated	 FIPAs	 [75,	

177,	 178].	 Conversely,	 pituitary	 hyperplasia	 is	 presumed	 to	 precede	 adenoma	

formation;	in	MAS	and	CNC,	a	pituitary	adenoma	is	rarely	observed,	however	there	

are	 prolonged	 periods	 of	 pituitary	 hyperplasia	 in	 conjunction	with	 abnormal	 GH,	

IGF‐1	or	prolactin	levels	[159].	Each	of	these	diseases	can	therefore	serve	as	a	model	

for	the	understanding	of	the	steps	leading	to	pituitary	tumourigenesis.	
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Figure	legends	

	

Figure	1.	 Interacting	partners	of	menin.	Menin	 interacts	with	 transcription	 factors	

including	 nuclear	 factor‐κB	 (NF‐κB),	 JunD,	 β‐catenin,	 activator	 protein‐1	 (AP‐1),	

mothers	against	decapentaplegic	(SMAD)	family	members	and	oestrogen	receptor	α	

(Erα);	with	proteins	regulating	chromatin	structure	 including	histone	deacetylases	

(HDACs)	and	the	histone	methyltransferases	KMT2A	and	KMT2B;	with	cytoskeletal	

proteins	 such	 as	 vimentin,	 with	 cytoplasmic	 cell	 signalling	 mediators	 including	

forkhead	box	protein	O1	(FoxO1)	and	Akt1/protein	kinase	B	(PKB);	and	with	DNA	

repair	proteins	including	Fanconi	anaemia	group	D2	protein	(FANCD2).		

	

	

Figure	2.	The	PKA	pathway.	A.	Ligand	activation	of	the	G‐protein	coupled	receptor	

(GPCR)	leads	to	activation	of	the	stimulatory	G‐protein	(Gs)	and	its	α‐subunit	in	turn	

activates	adenylyl	cyclase	(AC).	AC	converts	ATP	into	cAMP.	In	the	basal	state,	PKA	

consists	of	two	regulatory	subunits	(R)	bound	to	two	catalytic	subunits	(C).	cAMP‐

binding	 to	 R	 causes	 dissociation	 from	 C,	 which	 is	 now	 free	 to	 act	 as	 a	

serine/threonine	kinase.	 It	 can	 activate	 cAMP‐responsive	 element	binding	protein	

(CREB)	 by	 phosphorylation,	 which	 mediates	 transcription	 of	 genes	 with	 cAMP‐

responsive	 element	 (CRE)‐containing	promoters.	 The	PKA	pathway	 contributes	 to	

the	 control	 of	 cell	 proliferation	 and	 differentiation,	 metabolism	 and	 hormone	

secretion.	The	phosphodiesterases	 (PDEs)	 hydrolyse	 cAMP,	 thereby	 reducing	PKA	

pathway	activity.	B.	In	Carney	complex,	R1α	levels	are	reduced,	leading	to	increased	

PKA	activation,	 reduced	 transforming	growth	 factor	β	 (TGFβ)‐mediated	apoptosis,	

increased	mitogen	activated	protein	kinase	(MAPK)‐dependent	proliferation	and	a	

stimulated	Wnt	signalling	pathway.	

	

	



	
	

Table	1.	Genetic	conditions	that	lead	to	pituitary	adenomas.	
	

	 Genetic	cause	 General	pathology Endocrine	pathology
Multiple	 endocrine	
neoplasia	 type	 1	
(MEN1)	

MEN1	(90	%)	  Facial	angiofibromas	
 Collagenomas	
 Lipomas	
	

 Primary	hyperparathyroidism	
 Pancreatic	 neuroendocrine	
tumours	

 Pituitary	 adenomas	 (mostly	
prolactinomas)	

Carney	 complex	
(CNC)	

PRKAR1A	(73	%)	  Myxomas	 (cardiac,	 cutaneous,	
mammary)	

 Lentigines	

 Primary	 pigmented	 nodular	
adrenocortical	disease	

 Gonadal	tumours	
 Thyroid	tumours	
 Acromegaly	 (somatolactotrope	
hyperplasia)	

MEN4	 CDKN1B	(100	%)	  Uterine	tumours	  Primary	hyperparathyroidism	
 Pituitary	 adenomas	
(corticotropinomas,	
somatotropinomas,	 non‐
functioning	pituitary	adenomas)	

 Adrenocortical	tumours	
 Thyroid	tumours	
 Gastrointestinal	 neuroendocrine	
tumours	

McCune‐Albright	
syndrome	(MAS)	

GNAS	(90	%)	  Polyostotic	fibrous	dysplasia	
 Café‐au‐lait	spots	

 Acromegaly/gigantism	
(somatolactotrope	hyperplasia)		

 Precocious	puberty	
 Adrenal	Cushing’s	syndrome	
 Thyrotoxicosis	

Familial	 isolated	
pituitary	 adenoma	
(FIPA)	

AIP	(20	%)	 None  Pituitary	 adenoma	 (mostly	
somatotropinomas)	

	
Familial	
pheochromocytoma/	
paraganglioma	
syndromes	

SDHx	(40	%)	  Paraganglioma	
 Pheochromocytoma	
 Pituitary	adenoma	

DICER1	 syndrome	
(pleuropulmonary	
blastoma‐familial	
tumour	 and	
dysplasia	syndrome)	

DICER1	(90	%)	  Pleuropulmonary	blastoma	
 Cystic	nephroma	
 Embryonal	
rhabdomyosarcoma	

 Pituitary	 blastoma	 (Cushing’s	
syndrome)	

 Sertoli‐Leydig	cell	tumour	
 Multinodular	goiter	

X‐linked	
acrogigantism	 (X‐
LAG)	

Xq26.3	microduplication  Gigantism	 (early	 childhood	 onset	
somatotropinoma	or	somatotrope	
hyperplasia)	
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