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Abstract

Temperature changes are known to have significant impacts on human health. Accurate estimates 

of population-weighted average monthly air temperature for US counties are needed to evaluate 

temperature’s association with health behaviours and disease, which are sampled or reported at the 

county level and measured on a monthly—or 30-day—basis. Most reported temperature estimates 

were calculated using ArcGIS, relatively few used SAS. We compared the performance of 

geostatistical models to estimate population-weighted average temperature in each month for 

counties in 48 states using ArcGIS v9.3 and SAS v 9.2 on a CITGO platform. Monthly average 

temperature for Jan-Dec 2007 and elevation from 5435 weather stations were used to estimate the 

temperature at county population centroids. County estimates were produced with elevation as a 

covariate. Performance of models was assessed by comparing adjusted R2, mean squared error, 

root mean squared error, and processing time. Prediction accuracy for split validation was above 

90% for 11 months in ArcGIS and all 12 months in SAS. Cokriging in SAS achieved higher 

prediction accuracy and lower estimation bias as compared to cokriging in ArcGIS. County-level 

estimates produced by both packages were positively correlated (adjusted R2 range=0.95 to 0.99); 

accuracy and precision improved with elevation as a covariate. Both methods from ArcGIS and 
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SAS are reliable for U.S. county-level temperature estimates; However, ArcGIS’s merits in spatial 

data pre-processing and processing time may be important considerations for software selection, 

especially for multi-year or multi-state projects.
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1 Background

Spatial data analysis has received considerable attention and played an important role in 

disciplines of environmental science and socio-economic science due to the rapid 

development of Geographic Information Systems (GIS) in recent years. The need for 

reliable environmental geospatial databases is fast-growing (Croner et al. 1996). Ecology is 

the scientific study of the relations that people have with respect to each other and their 

natural environment. The environment is dynamically interlinked, imposed upon and 

constrains people at any time throughout their life. Meteorological measurements such as 

temperature and precipitation are needed to assess links between the environment and 

diseases in the population.

Temperature changes are known to have significant impacts on human health. Research 

findings have documented temperature’s impact on mortality from respiratory and 

cardiovascular disease (Vaaler et al. 2010); transmission of infectious disease (Ludington-

Hoe et al. 2002; Lee et al. 2005; Nommsen-Rivers et al. 2010); and malnutrition due to crop 

failure (Parry et al. 2004). Comprehensive disease surveillance systems in the US monitor 

disease prevalence at national, state, and county levels for developing preventive health 

policies and tracking populations at high risk (Centers for Disease Control and 

Prevention[CDC] 2009). County-level estimates of temperature are needed to further the 

study of temperature’s health impact.

Various spatial interpolation methods including inverse distance weighting (IDW), multiple 

regression, thin plate smoothing spline (TPSS), kriging and cokriging have been evaluated 

(Boer et al. 2001; Lapen and Hayhoe 2003; Zhao et al. 2005; Ishida and Kawashima 1993; 

Mahdian et al. 2009). Kriging has been used widely by researchers in creating temperature 

estimates (Bolstad et al. 1998; Brown and Comrie 2002; Hudson and Wackernagel 1994; 

Benavides et al. 2007; Zhao et al. 2005; Li et al. 2005; Ninyerola et al. 2000; Mahdian et al. 

2009; Ishida and Kawashima 1993) and found to be a valid method with high accuracy and 

low bias compared to other methods by researchers (Boer et al. 2001; Li et al. 2005; 

Mahdian et al. 2009; Ishida and Kawashima 1993; Yang et al. 2004). Studies have shown 

that estimates could be improved by taking elevation into consideration through cokriging 

(Li et al. 2004; Hudson and Wackernagel 1994; Ishida and Kawashima 1993).

SAS and ArcGIS are the most popular tools in statistical analysis in public health research. 

Both support spatial analysis. Ordinary cokriging is available in the ArcGIS Geostatistical 

Analyst; Ordinary kriging with covariates is also available from the SAS Proc Mixed 

procedure. ArcGIS Geostatistical Analyst estimates variance by modelling a semivariogram 
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cloud and SAS Proc Mixed calculates variance by using restricted maximum likelihood 

estimation. With these two methods, elevation can be taken into consideration as a covariate 

in model-based estimates of monthly temperature by county. These two methods perform 

comparably in terms of prediction accuracy, estimation bias and processing speed. ArcGIS 

Geostatistical Analyst has been used by researchers to obtain temperature estimates (Brown 

and Comrie 2002; Li et al. 2005; Zhao et al. 2005; Ninyerola et al. 2000), however, very 

few peer-reviewed studies have used SAS Proc Mixed to estimate average temperature 

(Boer et al. 2001). To the best of our knowledge, no studies have compared kriging methods 

for temperature estimation in ArcGIS and SAS nor reported county-level temperature 

estimates for population centroids rather than geographic centroids. The purpose of our 

study was to compare the performance and reliability of geospatial models in creating 

population-weighted county-level estimates of monthly population-weighted average 

temperatures in the US using ArcGIS Geostatistical Analyst and SAS Proc Mixed.

2 Methods

2.1 Data source

Our study includes all the states in the US except Alaska and Hawaii, because these two 

states are geographically separated from the US mainland and inclusion would increase 

interpolation prediction error if analyzed in conjunction with mainland data (Fig. 1). A 

comprehensive and integrated spatial database was constructed using data collected by 

different US federal agencies, including monthly weather station temperature data, elevation 

data, county polygon data and population distribution data. Data were provided in different 

formats, including table, raster and vector (point and polygon). All the spatial data were 

converted to the same Geographic Coordinate System (GCS North American 1983) and 

projected Coordinate System (Albers). ArcGIS 9.3 and SAS 9.2 software were used for data 

pre-processing and analyses.

2.1.1 Weather station temperature data—Monthly mean temperature data from 2007 

were chosen to test the methodology of county-level temperature estimation. Data from the 

National Oceanic and Atmospheric Administration (NOAA) were collected at more than 

5000 national temperature stations each month. Stations are distributed unevenly across the 

continental US, with lower density in the west (Fig. 1). There are missing values for some 

stations each month. To maximize the sample size, we retain stations with valid data for any 

month in the analyses; the number of stations with valid data varies by month. From January 

to December of 2007, the number of weather stations with valid data ranges from 5252 to 

5435. Observed monthly average temperature ranged from −30.67 °C to 41.22 °C. Stations 

were mapped as one point layer in ArcGIS using the x, y coordinate information for each 

station from the NOAA data set.

2.1.2 Elevation data—GTOPO30 is a digital elevation model (DEM) for the world, 

developed by United States Geological Survey (USGS). It is in raster format and has a 30-

arc second resolution (approximately 1 km). After comparing the elevation values of the 

stations from NOAA and GTOPO30 DEM data, missing values and discrepant values were 

identified in the NOAA data (Fig. 1), so the final weather station elevation values and 
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population-centroid elevation values in each county were extracted from GTOPO30. Station 

elevations ranged from −65 m to 3664 m.

2.1.3 County polygon data—The county polygon GIS layer from ESRI Data & Maps 

9.3 (updated in 2007) was used to calculate population centroid and average temperature at 

the county level. The total number of counties in the continental US was 3109 in 2007. 

County FIPS codes can be used to connect temperature estimates with disease surveillance 

data.

2.1.4 Population distribution data—The distribution of human population is important 

for improving understanding of human diseases in relation to the environment. Evaluating 

the total number of people at risk from a disease in a specific area requires not just tabular or 

jurisdictional population data, but data that are spatially-explicit and global in extent at a 

moderate resolution (Balk et al. 2006). Many factors can affect the distribution of human 

population, such as land use (Tian et al. 2005), net primary productivity (NPP), elevation, 

city distribution and transport infrastructure distribution (Yue et al. 2005). Data for some of 

these factors are captured in Remote Sensor data, such as Thematic Mapper (TM) imagery 

(Wu and Murray 2005).

Population distribution data for this study were obtained from LandScan 2008™, ORNL, 

UT-Battelle, LLC (Developed under Prime Contract with the US Department of Energy). It 

is in raster format at nearly 1 km resolution (30"×30"). Each cell value represents the 

number of people in that 30 arc second cell. It uses spatial data and imagery analysis 

technologies and a multivariate dasymetric modelling approach to disaggregate US Census 

counts within an administrative boundary (Dobson et al. 2000). In the LandScan models, the 

typical dasymetric model is improved by integrating multiple ancillary or indicator data 

layers. The modelling process uses sub-national level census counts for each country and 

primary geospatial input or ancillary datasets, including land cover, roads, slope, urban 

areas, village locations, and high resolution imagery analysis, all of which are key indicators 

of population distribution (ORNL: http://www.ornl.gov/sci/landscan/landscan/

documentation.shtml). Population distribution data were also used to calculate the 

population centroid of each county with county polygon data.

2.2 Population distribution at county level

Population health studies focus on the impact of temperature on the health of the population 

of each county. The average temperature can have greater spatial variation within each 

county, especially in the larger counties of the western US. There are two methods to 

accurately estimate the population distribution at county level. The better one is called 

population proportion method at county level. It was thought that the population in each cell 

(1 km2) in one county will proportionally contribute to the population distribution based on 

the total population in this county. The population proportion of each cell will be regarded 

as population weight when the county-level temperature was calculated. The ArcGIS 

calculating process is shown in Fig. 2.

The second one is called population centroid method at county level. Population centroid 

can be thought of as a mean population location and might be another way to represent the 
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location of the majority of the population. Temperature of this center point is regarded as the 

county-level temperature. The population-weighted mean center method is used for the 

population centroid calculation:

where xi and yi are the coordinates for each grid cell of the population distribution in each 

county; wi is the population number in each grid cell; and n is the number of population grid 

cells in a county. The resulting X̄, Ȳ coordinate pair is the location of the population-

weighted mean center, which is called population centroid. The ArcGIS calculating process 

is shown in Fig. 3.

From this, we obtain the number of grids in each county, the grid locations and the 

population number in each grid. Then the population mean center in each county is 

calculated based on the formula above. One of the problems of population centroid is that 

the centroid will not represent the population cluster if there were two or more population 

centers in one county. The centroid will be located in the middle of the two centers.

Simple average temperature, population centroid temperature and population proportion at 

the county level have been compared. If the population proportion method was thought as 

the golden standard, the result from population centroid method is closer to it (StDev is 

0.05) than the simple average method (StDev is 0.18) based on the whole areas. For some 

specific counties, such as counties in the western mountain areas, simple average method 

can bring more biases. In this paper, population centroid was selected finally because SAS 

software cannot interpolate temperature at cell level on US scale, which will cost months of 

time.

2.3 Geostatistical analysis with ArcGIS

Geostatistics is a branch of statistics focusing on theory and methods for spatial or 

spatiotemporal analyses with wide application in environmental surveys (Juan et al. 2010). 

It is intimately related to interpolation methodology, but extends far beyond simple 

interpolation problems. It consists of a collection of numerical and mathematical techniques 

to characterize spatial phenomena. Our goal is to take a set of spatially related data points 

(temperature measured at weather station locations) and create a model describing the 

distribution of temperature across the contiguous US, at locations with and without recorded 

temperature measurements (Goovaerts 2000).

2.3.1 Exploratory Spatial Data Analysis (ESDA)—The intent of ESDA is to gain a 

better understanding of the data and make better decisions when creating a surface, the 

results of a model of the distribution of temperature. ESDA includes visualizing the 

distribution of the data, assessing the presence of trends and global and local outliers, 

examining spatial autocorrelation and understanding the covariation among multiple data 
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sets (ESRI 2001). Histograms, Normal QQ Plots, trend analyses and Semivariogram/

Covariance clouds are the methods used for ESDA (Johnston et al. 2003).

ESDA of the weather station data found that: temperature measurements at weather stations 

were approximately normally distributed and the normal QQ Plot affirmed the normal 

distribution, so no transformations were needed for subsequent analyses; trend analysis 

revealed a ‘U’ shaped trend from the northwest to southeast suggesting that a model with a 

second order polynomial would fit the data well. The semivariogram indicated spatial 

autocorrelation among observed temperature measurements.

2.3.2 Kriging and Cokriging interpolation—Many researchers have evaluated various 

methods for interpolation of point climate data, such as Thiessen polygons, inverse distance 

weighting, least-squares polynomial regression, spline surface fitting, kriging and cokriging 

(Zhao et al. 2005; He et al. 2005; Li et al. 2006; Lapen and Hayhoe 2003). In our study, we 

employed ordinary cokriging considering elevation as a covariate because, at larger scales, 

elevation is most closely related to temperature (Stahl et al. 2006).

Kriging is an advanced geostatistical procedure that generates an estimated surface from a 

scattered set of points with measured values. Its weights depend on a model fitted to the 

measured points, the distance to the prediction location, and the spatial relationships among 

the measured values around the prediction location. Cokriging is similar to kriging except 

that cokriging incorporates infonnation from multiple variables. The main variable of 

interest in our study is weather station temperature, and both autocorrelation for temperatme 

and cross-correlations between temperatme and elevation are used to make better 

predictions. Weighted least squares is the main algorithm in Arcgis cokriging. Based on the 

ESDA results, we chose ordina1y cokriging for this study. It assumes the models :

where the symbol s indicates the location; Z1(s) describes temperature as a function of 

location and Z2(s) describes elevation as a function of location; µ1 and µ2 are unknown 

constants, ε1(s) and ε2(s) are two random errors. There is autocorrelation among errors 

within each model and cross-correlation between errors from both models. The detailed 

algorithm of Arcgis cokriging has been published elsewhere (Cressie 1993).

Several semivariogram models can be chosen in Ordina1y Cokriging, such as SPHERICAL, 

CIRCULAR, EXPONENTIAL, GAUSSIAN, and LINEAR methods, which are used to fit a 

line or curve to the semivariance data in the semivariogram (Calder et al. 2009) . The 

semivariogram quantifies the assumption that things nearby tend to be more similar than 

things that are farther apart. After comparing the results from cross-validation and 

validation, the EXPONENTIAL method was chosen because it shows the lowest et1'or. 

Below is the general shape and the equation of the EXPONENTIAL model used to describe 

the semivariance.
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where γ(h) represents semivariance as a function of the distance between observations; h is a 

lag distance; c0, or the "nugget" is defined as the intercept; c is known as the partial sill or 

strnctural variance, which is the difference of the sill minus the nugget; the sill is defined as 

the value of the semivariogram at the plateau reached for larger h; r represents range which 

is defined as the value of r at which the semivariogram reaches the sill. For distances less 

than the range, observations are spatially c01Telated. For distances greater than or equal to 

the range, spatial correlation is effectively zero.

2.4 Spatial Analysis with SAS Proc Mixed

The spatial correlation model employed by Proc Mixed can be conceptualized as follows 

(Littell et al. 2006):

where Yi represents the ith observed air temperature with mean μ and the ei represents the 

corresponding error term. An independent error structure cannot be assumed due to spatial 

autocorrelation, unlike inference from the ordinary least squares regression.

In general, the spatial correlation model can be defined as (Littell et al. 2006):

Let si and sj denote geographic locations, which are specified by the coordinates latitude and 

longitude; dij denotes the distattce between si and sj. The covariance is a function of the 

distance between the locations si and sj, and it has the general fom1(Littell et al. 2006):

Several common isotropic variance models can be fitted in Proc Mixed. In our study, we test 

two widely used models—spherical and exponential—to estimate monthly population-

weighted average temperature.
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The parameter σ2 corresponds to the sill and ρ is the range of the process. The range of a 

second-order stationary spatial process is that distance at which observations are no longer 

correlated (Littell et al. 2006).

The ordina1y kriging model with elevation as a covariate in SAS Proc Mixed (SAS 

cokriging) can be expressed as:

where Temperature represents an estimate of air temperature, β0 is the fixed effect of 

geographic locations. β1 is the regression coefficient of covrariate-elevation and ei is a 

random error of a spatial correlation model. However, unlike standard regression, inference 

on this model must take into account spatial correlation runong the errors (Littell et al. 

2006).

The covariance between two observations (with coordinates x and y is computed as (Littell 

et al. 2006):

where θ1, θ2 are the decay parameters which tell us how quickly the correlation decays as 

the distances increases; σ2 is the partial sill or va11ance.

Proc Mixed does not compute semivariograms or use them in model fitting . The variance 

components of these models are estimated using a restricted maximum likelihood (REML) 

method (Littell et al. 2006). Although Proc Mixed can fit models by using parameters of the 

range, sill, and nugget estimated from separate analyses, such as in SAS procedures Proc 

Variogram, Proc Kt1g2d and Proc NLIN, these approaches were not explored in our study 

because they require user interaction to select parruneters for each area, which is not feasible 

for a study with a large number of areas.

2.5 Evaluation

2.5.1 Cross validation—ArcGIS Geostatistical Analyst includes a cross-validation 

procedme that uses all of the data. The procedure omits one location point, calculates the 

value of this location using the remaining points, and then repeats the procedure for each 

remaining location. Finally, measured and predicted values from all points are compared. 

SAS Proc Mixed does not include a cross–validation option, and we did not manually 

conduct a cross-validation in SAS.

2.5.2 Split Validation—In ArcGIS Geostatistical Analyst, test and training data sets were 

created by randomly selecting data points’ geographic locations based on certain percentage 

cut points. Training data points were used to fit the models, omitting the test data points. We 

tested the model performance using different cut points: 60%, 65%, 70%, 75% and 80% for 
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training data sets and found that lowest RMSE and highest adjust R2 were achieved with 

70% of the samples in the training data set. So in our study, we randomly selected 30% of 

weather stations as test data points, and the remaining 70% of weather stations served as the 

training data points. The same test and training datasets for split validation were used in 

SAS Proc Mixed and ArcGIS Geostatistical Analyst.

2.5.3 Mean Absolute Error (MAE) and Root Mean Square Error (RMSE)—MAE 

and RMSE were used in evaluating prediction precision and bias. MAE and RMSE were 

calculated using the following equations:

where Z* is the estimated temperature, Z is the observed temperature, and n is the number of 

weather stations.

MAE measures the magnitude of error ignoring direction. RMSE provides a measure of 

error magnitude that is sensitive to outliers. Lower MAE and RMSE represent higher 

prediction accuracy and lower prediction bias.

3 Results

3.1 Correlation between temperature and elevation, latitude and longitude

Strong correlation exists between monthly temperature average and latitude, between 

monthly temperature average and elevation for all twelve months of 2007 (Table 1). Inverse 

relationships between monthly temperature average and latitude, and between monthly 

temperature average and altitude were found.

3.2 Split validation of monthly population-weighted average temperature estimates

Split validation results are shown in Table 2. Seventy percent of weather stations were 

spatially randomly assigned to the training data set and the remaining 30% of weather 

stations were assigned to the test data set. Models were fit using the training data set. The 

prediction accuracy and bias were examined by comparing estimates from the training data 

set to observed values for locations in the test data set. Three different models of Arc GIS 

cokriging, SAS ordinary kriging and SAS cokriging were used to estimate monthly 

population-weighted average temperature for the training and test data sets separately. 

Compared with estimates from SAS ordinary kriging, SAS cokriging had higher prediction 

accuracy (higher adjusted R2) and lower estimation bias (lowers MAE and lower RMSE). 

Results from Arc GIS cokriging and SAS cokriging indicated that estimates from SAS 

cokriging had higher adjusted R2 and lower MAE and RMSE.

Xiaopeng et al. Page 9

J Resour Ecol. Author manuscript; available in PMC 2015 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.3 County-level estimation using ArcGIS cokriging and SAS co kriging

Table 3 shows mean, minimum and maximum of standard prediction error for the monthly 

population-weighted average temperature estimates in 3109 US counties and correlation 

coefficients of predicted values from ArcGIS cokriging and SAS cokriging. All correlation 

coefficients for each of the 12 months were larger than 0.95. If using mean standard 

prediction error to judge which method has better prediction comprehensively, SAS 

cokriging produced better estimates in most of the months.

3.4 Estimation bias distribution at the grid and county level

The prediction standard errors for each grid ranged from 0.7 to 3.6 °C (Fig. 4) and for 

counties ranged from 0.3 to 1.67 °C (Fig. 5). The distribution illustrates the higher 

estimation bias of monthly temperature averages in the western and mid-western United 

States. Similar patterns of estimated prediction standard errors were found for other months 

of the year (not shown).

3.5 Processing times for SAS Proc Mixed and ArcGIS

Table 4 displays the processing times for SAS ordinary kriging and cokriging in producing 

monthly population-weighted average temperature estimates for counties using the spherical 

and exponential models. Processing time was tested on a Citrix-based platform with SAS 

version 9.2 during January and February of 2011. For test data, ordinary kriging with the 

spherical model was 3 to 15 times faster than the same kriging method with the exponential 

model; cokriging with the spherical model was about 29 times faster than cokriging with the 

exponential model. For county data, cokriging with the spherical model was about 16 times 

faster than cokriging with the exponential model. Although a little higher prediction 

accuracy and a little lower prediction bias were achieved with the exponential model relative 

to the spherical model in our primary analysis for 2007 April and May data (For April’s 

estimation, Adj. R2 is 0.9329 and 0.9328 respectively with spherical and exponential model; 

RMSE is 1.19767 and 1.19700 respectively with spherical and exponential model), the 

spherical model was chosen for the final analysis due to its shorter processing time.

Processing time of ArcGIS was tested on a Citrix-based platform with ArcGIS Info 9.3. 

Processing time in ArcGIS was much shorter than in SAS. Producing estimates for one 

month with ordinary cokriging took about two minutes in processing. However, model 

adjustments that require user interaction, including optimizing parameters and removing 

trends, would take longer, from 10 minutes to one hour for the models used in this study.

4 Discussion

Relative to ArcGIS ordinary kriging and SAS ordinary kriging, ArcGIS cokriging and SAS 

cokriging using elevation as a covariate increased precision and decreased bias substantially 

in estimation of population-weighted average temperature for each month in 2007. This 

result is consistent with previously published findings from other researchers (Ishida and 

Kawashima 1993; Hudson and Wackernagel 1994; Li et al. 2004).
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Results from the split validation using SAS cokriging and ArcGIS cokriging indicated that 

better precision can be achieved with SAS cokriging than with ArcGIS cokriging. Cokriging 

in SAS uses the restricted maximum likelihood method to estimate variance and covariance 

of the models. The estimation processes do not require building semivariograms and 

computing corresponding semivariogram parameters. The model fitting process can be 

automated without manual intervention required by ArcGIS cokriging. However, cokriging 

in SAS had longer processing times, especially for the exponential model.

ArcGIS Geostatistical Analyst obtained spatial interpolations of monthly population-

weighted average temperature by constructing semivariogram models. The model building 

process requires manual intervention to select model parameters such as nugget, range and 

lag size. Although the precision obtained by ArcGIS methods is not higher than that 

obtained by SAS cokriging method, ArcGIS has a strong advantage in the pre-processing of 

spatial data, such as import of elevation data; spatially random division of training and 

testing data; and estimating county population centroid point. Considering the models, 

restricted maximum likelihood (REML) is the most accurate method for determining 

variography parameters; however, it doesn't scale well. For large datasets, the method 

quickly becomes computationally infeasible. Because SAS uses REML, it takes an very long 

time to process larger data sets with thousands or millions of points. The ArcGIS weighted 

least-squares algorithm, however, is able to efficiently handle datasets with billions of 

points.

The results of split validation showed that prediction accuracy rates in all twelve months of 

2007 were above 90% for about 1600 weather stations using SAS cokriging; similar 

prediction accuracy rates were also reached in ten months of 2007 (except for June and July 

2007) for the same test locations using ArcGIS cokriging. MAEs of the estimates ranged 

from 0.74 to 0.87 °C using ArcGIS cokriging and ranged from 0.68 to 0.77 °C with SAS 

cokriging. Among other temperature interpolation studies: Mahdian et al. estimated monthly 

temperature averages in southeastern Iran using cokriging and obtained MAEs of the 

estimates ranging from 1.2 to 2.0 °C (Mahdian et al. 2009); Bolstad et al. conducted daily 

mean temperature interpolation in the southern Appalachian mountains with autoregressive 

moving average models and reported MAEs of the estimates ranging from 1.39 to 2.40 °C 

(Bolstad et al. 1998); Ninyerola et al. reported correlation coefficients between observed and 

estimated monthly mean temperatures ranging from 0.75 to 0.97 through validation with 

independent data (Ninyerola et al. 2000); Jiang et al. found R2 values ranging from 0.76 to 

0.97 between observed and predicted values from cokriging estimates of daily maximum 

temperature in China (Jiang et al. 2010). Compared with these studies, our study found 

much lower MAEs and much larger correlation coefficients between observed and predicted 

values. These results indicated that both SAS cokriging and ArcGIS cokriging used in our 

study reached higher prediction accuracy and can be effective spatial interpolation methods 

for producing county-level monthly average temperature estimates.

Highly positive relationships (all adjusted correlation coefficient for twelve months are 

greater than 0.95) were found from cokriging in SAS and cokriging in ArcGIS for 

corresponding estimates in all twelve months of 2007 for 3109 US counties. These results 
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support the performance of both methods in creating county-level estimates for monthly 

population-weighted average temperature.

The geographic distribution of weather stations in Fig. 1 displayed uneven geographic 

distribution characteristics of weather stations in the US. The densities of weather stations 

are lower in the western and mid-western US than that in the eastern US The lower densities 

of weather stations in the West and Midwest likely contributed to the larger estimation bias 

in the area.

5 Conclusions

The study confirmed findings from previous studies that reported the value of elevation as a 

covariate to improve estimation precision and reduce bias in temperature interpolation using 

cokriging methods.

This study first compared precision, bias, and advantages and disadvantages of using SAS 

cokriging and ArcGIS cokriging for county-level temperature estimation from weather 

surface observing stations. The study found that higher prediction accuracy and lower 

estimation bias can be achieved with cokriging in SAS as compared to cokriging in ArcGIS. 

ArcGIS has strong advantages in pre-processing of spatial data and in processing time for 

estimation. Both methods from ArcGIS and SAS produced reliable US county-level 

temperature estimates; however, ArcGIS’s advantages in data pre-processing and estimation 

processing time may be important considerations for software selection, especially for multi-

year or multi-area projects.

The study first created monthly temperature average estimates in US county level by using 

SAS cokriging and ArcGIS cokriging and confirmed the reliability and performance of SAS 

cokriging and ArcGIS cokriging in creating these estimates. Population-weighted monthly 

temperature estimates is the specific application in public health since it considers the 

interaction between environment and population within the ecosystem. It can be used by 

researchers to study temperature’s health impacts at the county level.
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Fig. 1. 
Weather station locations and elevation values in January 2007.
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Fig. 2. 
Computing process of population proportion.
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Fig. 3. 
Computing process of population centroid.
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Fig. 4. 
Grid’s temperature average estimates prediction standard errors in January 2007.
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Fig. 5. 
County’s temperature averages estimates prediction standard errors in January 2007.
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Table 1

Correlations of temperature with elevation, latitude and longitude.

Month No. of stations used
Correlation between temperature and:

Elevation P value Latitude P value Longitude P value

1 5389 −0.5054 <0.0001 −0.7900 <0.0001 −0.1655 0.0001

2 5435 −0.1096 <0.0001 −0.7851 <0.0001 0.2845 0.0001

3 5384 −0.3310 <0.0001 −0.8461 <0.0001 0.0657 0.0001

4 5397 −0.3941 <0.0001 −0.8571 <0.0001 −0.0123 0.3653

5 5374 −0.5738 <0.0001 −0.7575 <0.0001 −0.2620 0.0001

6 5326 −0.4978 <0.0001 −0.7468 <0.0001 −0.3060 0.0001

7 5317 −0.2198 <0.0001 −0.5502 <0.0001 −0.0862 0.0001

8 5357 −0.4310 <0.0001 −0.7648 <0.0001 −0.2580 0.0001

9 5300 −0.5190 <0.0001 −0.8357 <0.0001 −0.2973 0.0001

10 5374 −0.5984 <0.0001 −0.8366 <0.0001 −0.3933 0.0001

11 5334 −0.3663 <0.0001 −0.8943 <0.0001 −0.0304 0.0264

12 5252 −0.4193 <0.0001 −0.8452 <0.0001 −0.1276 0.0001
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Table 3

Correlations between ArcGIS and SAS Proc Mixed estimates of county-level monthly temperature averages 

(3109 US counties)

Month No. of stations
used

Standard predicted error

Adj. R2ArcGIS SAS Proc Mixed

Mean Minimum Maximum Mean Minimum Maximum

1 5389 0.843 0.671 1.343 0.796 0.296 1.671 0.992

2 5435 0.614 0.035 1.432 0.734 0.266 2.102 0.994

3 5384 1.021 0.903 1.349 0.748 0.247 1.621 0.985

4 5397 1.324 1.275 1.450 0.655 0.165 1.453 0.969

5 5374 0.909 0.771 1.302 0.692 0.209 1.511 0.962

6 5326 0.480 0.027 1.108 0.715 0.194 1.576 0.966

7 5317 0.662 0.037 1.430 0.706 0.182 1.557 0.951

8 5357 0.503 0.028 1.006 0.712 0.202 1.560 0.974

9 5300 1.436 1.391 1.589 0.708 0.186 1.557 0.959

10 5374 0.884 0.787 1.176 0.672 0.219 1.461 0.977

11 5334 1.131 1.079 1.264 0.730 0.244 1.582 0.983

12 5252 1.034 0.923 1.363 0.724 0.240 1.546 0.992
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