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Abstract
Polymorphisms rs6232 and rs6234/rs6235 in PCSK1 have been associated with extreme obesity [e.g. body mass index
(BMI)≥ 40 kg/m2], but their contribution to common obesity (BMI≥ 30 kg/m2) and BMI variation in a multi-ethnic context is
unclear. To fill this gap, we collected phenotypic and genetic data in up to 331 175 individuals from diverse ethnic groups. This
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process involved a systematic review of the literature in PubMed, Web of Science, Embase and the NIH GWAS catalog
complemented by data extraction from pre-existing GWAS or custom-arrays in consortia and single studies. We employed
recently developed global meta-analytic random-effects methods to calculate summary odds ratios (OR) and 95% confidence
intervals (CIs) or beta estimates and standard errors (SE) for the obesity status and BMI analyses, respectively. Significant
associations were found with binary obesity status for rs6232 (OR = 1.15, 95% CI 1.06–1.24, P = 6.08 × 10−6) and rs6234/rs6235
(OR = 1.07, 95% CI 1.04–1.10, P = 3.00 × 10−7). Similarly, significant associations were found with continuous BMI for rs6232
(β = 0.03, 95% CI 0.00–0.07; P = 0.047) and rs6234/rs6235 (β = 0.02, 95% CI 0.00–0.03; P = 5.57 × 10−4). Ethnicity, age and study
ascertainment significantly modulated the association of PCSK1 polymorphisms with obesity. In summary, we demonstrate
evidence that common gene variation in PCSK1 contributes to BMI variation and susceptibility to common obesity in the largest
known meta-analysis published to date in genetic epidemiology.

Introduction
The prevalence of obesity has reached epidemic proportions
throughout the world (1). In addition to being the main risk pre-
dictor for the rapid increase of type 2 diabetes (T2D) (2), obesity
also significantly increases the global disease burden of cardio-
vascular disease and cancer (3,4). Rising rates of childhood obes-
ity, combined with an increasing prevalence of obesity in aging
adult populations, suggest that the impact of this disease on
human health will continue to grow in the future (5). Therefore,
there is an urgent need to improve understanding of the etiology
of obesity to help curb the obesity epidemic (6).

Genetic factors have been shown to play a substantial role in
the etiology of obesity (7) and accordingly research has focused
on identifying specific underlying genetic determinants of body
weight regulation. Candidate-gene, gene-centric and genome-
wide association (GWAS) studies have identified 42 loci with sin-
gle-nucleotide polymorphisms (SNPs) that significantly associate
(P < 5 × 10−8) with bodymass index (BMI, as a continuous variable)
(8–17). Additionally, case–control candidate gene and GWAS ap-
proaches have been used to examine the genetics of childhood
and adult obesity (as a binary variable) (13,18–28). These studies
have identified 46 loci with alleles associated with obesity at the
genome-wide significance level. The majority of alleles (N = 24)
influence both BMI variation and the risk for obesity, but 18 and
22 loci have been shown to contribute more specifically to BMI
variation and the genetic risk for obesity, respectively (13,18–
27). These data indicate that the genetic architecture of BMI vari-
ation and obesitymaynot be totally overlapping. Obesitymaynot
only represents the extreme of the phenotypic spectrum of BMI
(18), but perhaps a partially distinct inherited condition (29).

The PCSK1 genemay be illustrative of this paradigm.Mutations
in PCSK1 lead to PC1/3 enzyme deficiency in neuroendocrine cells,
which is characterized bymonogenic obesity inmice andhumans
resulting from the abnormal maturation of hormones involved in
energy and glucosemetabolism (30–32). In a positional candidate-
gene study, Benzinou et al. showed convincing evidence for the as-
sociation of coding variants rs6232 and rs6234/rs6235 (pooled
given perfect linkage disequilibrium between the two SNPs
among diverse ethnic backgrounds) with childhood and adult se-
vere obesity (27). The candidacy of these common variants is fur-
ther strengthened in that they have been shown to reduce PC1/3
enzymatic activity through altered protein secretion, biosynthesis
and catalytic activity (27,30,33,34) and determine glucose-
stimulated proinsulin conversion (35,36), which is also a charac-
teristic of complete human PCSK1 deficiency (31).

However, replication of the association of PCSK1 variants with
obesity has provided conflicting results (27,37–45) with the lack of
statistical power and genetic/phenotypic/ethnic heterogeneity
being likely contributors to this variability. Additionally, conflict-
ing evidence for the association of PCSK1 variants with BMI

variation has been observed in individual studies (35,37–
40,43,44,46,47) and only nominal evidence of association with
BMI variation has been found for rs6232 and rs6235 in large
GWAS meta-analyses (12,36). To give a more conclusive answer
regarding whether PCSK1 variants differ in their contribution to
extreme obesity (e.g. BMI ≥ 40 kg/m2), common obesity (BMI≥ 30
kg/m2) and continuous BMI variation,wehave systematically col-
lected data from the literature and unpublished sources to per-
form a meta-analysis of the association of variants rs6232 and
rs6234/rs6235 with quantitative BMI variation and common
obesity risk in up to 331 175 subjects from diverse ethnic groups.

Results
Study selection

Results of the systematic search and data collection are pre-
sented in Figure 1. In total, 85 unique records were screened by
title and abstract and 40 records were reviewed in full text, of
which 10 were excluded. Reasons for exclusion after full text re-
view included overlap with larger studies from the literature re-
view, family-based studies (where clustering was not accounted
for in the analysis), candidate-gene studies not examining the
variants of interest, neither obesity nor BMI variation having
been evaluated, lack of response from the authors and overlap
with larger datasets. In total, 30 records were included from the
literature, consortia, the Database of Genotypes and Phenotypes
(dbGap), direct collaboration and novel contributions by the
authors, as detailed in Supplementary Material, Table S1. Of
these, 19 contained data on rs6232 and 28 contained data on
rs6234/rs6235. Details and characteristics of all data sources in-
cluded in the analysis can be found in Supplementary Material,
Table S1. The minor allele frequency for each variant for rs6232,
rs6234 and rs6235 are provided for the EpiDream cohort and from
the 1000 Genomes Project in Supplementary Material, Tables S2
and S3, respectively.

Study quality

Study characteristics, genotyping and analysis methods of the
included studies are described in the Supplementary Material,
Table S1. As many studies were not initially designed to evaluate
obese cases compared with non-obese controls, population
structure was variable with many studies containing few obese
cases and therefore likely underpowered to evaluate genetic as-
sociations with obesity. Hardy–Weinberg equilibrium was either
reported or obtained via correspondencewith P > 0.05 for all stud-
ies included. Similarly, all studies included were found to have
SNP-wise call rates of >95% and all study estimateswere adjusted
for age and/or sex as covariates.
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Binary obesity analysis

The results for the meta-analyses of rs6232 and rs6234/rs6235
with obesity are presented in Figure 2 using both classical
random-effects meta-analytic techniques and a global random-
effects meta-analytic method, designed to detect genetic asso-
ciations among multi-cohort studies with high heterogeneity
(48). The combined analysis of 131 284 individuals demonstrated
a significant association of the G allele of rs6232 with obesity sta-
tus [odds ratio (OR) = 1.15; 95% confidence interval (CI), 1.06–1.24]
with a globalmethod P-value (PG) = 6.08 × 10−6 and a classical ran-
dom-effects method P-value (PC) = 4.38 × 10−4. Similarly, the ana-
lysis of 239 581 individuals demonstrated an OR of 1.07 (95% CI
1.04–1.10; PG = 3.00 × 10−7; PC = 2.75 × 10−5) for the association of
rs6234/rs6235 with obesity status. Low-to-moderate between-
study heterogeneity was observed for the association of both
rs6232 (I2 = 43%; 95% CI, 9–64%, P = 0.011) and rs6234/rs6235
(I2 = 68%; 95% CI, 54–77%, P = 2.18 × 10−9) with binary obesity.
Finally, exclusion of the initial PCSK1 discovery cohort (27) con-
sisting of 1045 obese French adults and 1265 non-obese controls
did not significantly impact the significance of our analysis for
rs6232 (OR = 1.13; 95% CI 1.05–1.22; PG = 8.31 × 10−5; PC = 0.002) or

rs6234/rs6235 (OR = 1.06; 95% CI 1.03–1.09; PG = 4.45 × 10−5;
PC = 2.05 × 10−4).

Continuous BMI variation analysis

The results for the meta-analysis of rs6232 and rs6234/rs6235
with BMI variation are presented in Figure 3. In the analysis of
202 803 individuals, the average BMI increase for each G allele
at rs6232 was 0.03 (95% CI 0.00–0.07; PG = 0.047; PC = 0.123). In the
analysis of rs6234/rs6235, each effect-allele conferred a 0.02 (95%
CI 0.00–0.03; PG = 5.57 × 10−4; PC = 0.008) unit increase in BMI
among 331 175 individuals. The between-study heterogeneity
was non-significant for the associations of rs6232 (I2 = 30%; 95%
CI, 0–59%, P = 0.102) and rs6234/rs6235 (I2 = 22%; 95% CI, 0–50%,
P = 0.137).

Heterogeneity and subgroup analysis

As low-to-moderate between-study heterogeneity was observed
for the association of both rs6232 and rs6234/rs6235 with binary
obesity, causes of heterogeneity were explored through pre-
specified subgroup analyses (Table 1). Stratification by ethnicity,

Figure 1. Flowdiagramof literature search and study selection formeta-analysis of the association of rs6232 and rs6234/rs6235with obesity and BMI. GWAS, genome-wide

association study; dbGaP, Database of Genotypes and Phenotypes; BMI, body mass index; SNPs, single-nucleotide polymorphisms.
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cohort size (≤1000 or >1000) and study ascertainment did not
have any significant impact on the association of rs6232 with
obesity. Stratification by cohort age-group (child/adolescent

versus adult) resulted in a significantly different association be-
tween rs6232 and obesity in children/adolescents (OR = 1.53,
95% CI 1.22–1.93; PG = 3.68 × 10−5; PC = 2.84 × 10−4) and in adults

Figure 2. Association of rs6232 (A) and rs6234/rs6235 (B) with obesity status. OR, odds ratio; CI, confidence interval.
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(OR = 1.10, 95%CI 1.03–1.17; PG = 0.001; PC = 0.006; Pdifference = 3.00 ×
10−4). Between-study heterogeneity still remained significant for
the association between rs6232 and obesity, after stratifying by
ethnicity, cohort size or study ascertainment (Table 1). However,
no more between-study heterogeneity was observed when

children/adolescent and adult subgroups were analyzed apart
(P = 0.250 and 0.182, respectively).

Stratification by cohort size also did not have a significant im-
pact on the association of rs6234/rs6235 with obesity. However,
stratification by ethnicity, cohort age-group (child/adolescent

Figure 3. Association of rs6232 (A) and rs6234/rs6235 (B) with BMI. OR, odds ratio; CI, confidence interval.
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versus adult) or study ascertainment resulted in a significantly
different association between rs6234/rs6235 andobesity (Table 1).
The OR estimate of rs6234/rs6235 for obesity was comparable in
white Caucasian (OR = 1.09, 95% CI 1.04–1.14; PG = 4.28 × 10−9; PC =
2.04 × 10−4), Hispanic (OR = 1.13, 95% CI 0.99–1.27; PG = 0.103;
PC = 0.050) and African (OR = 1.16, 95% CI 0.92–1.46; PG = 0.115;
PC = 0.222) ethnic groups, but the rs6234/rs6235 variant conferred
no evidence for an increase in the odds for obesity in East Asian
populations (OR = 1.00, 95% CI 0.98–1.03; PG = 1.00; PC = 0.961;
Pdifference = 5.13 × 10−7), which included Chinese, Japanese, Kor-
ean and Malay individuals. A significantly different association
between rs6234/rs6235 and obesity was observed in children/
adolescents (OR = 1.13, 95% CI 1.00–1.29; PG = 5.61 × 10−4; PC =
0.053) and in adults (OR = 1.06, 95% CI 1.02–1.09; PG = 6.35 × 10−5;
PC = 0.001; Pdifference = 0.005). The association of rs6234/rs6235
with obesity was significantly different depending on the type
of recruitment [population-based or other recruitment (e.g. hos-
pital): OR = 1.05, 95% CI 1.00–1.09; PG = 0.005; PC = 0.040 and OR =
1.11, 95% CI 1.05–1.17; PG = 3.65 × 10−6; PC = 1.60 × 10−4, respective-
ly; Pdifference = 0.001]. Between-study heterogeneity still remained
significant for the association between rs6234/rs6235 and obes-
ity, after stratifying by ethnicity, cohort age-group, cohort size
or study ascertainment (Table 1).

Therewas no evidence of small study effects in the analysis of
rs6232 for obesity (Supplementary Material, Figure S1). However,
a funnel plot for rs6234/rs6235 demonstrated asymmetry for the
obesity analysis (Supplementary Material, Figure S2), which was

supported by the Egger’s (P < 0.05), but not the Begg’s (P > 0.05)
tests. Additionally, the association of rs6234/rs6235 with obesity
status did not significantly differ in studies with greater than
1000 individuals compared with those with 1000 participants or
less (P = 0.439).

Finally, published data from the Genetic Investigation of An-
thropometric Traits (GIANT) consortium for the association of
rs6232 and rs6235 with different classes of obesity are presented
in Table 2. In all analyses, the control group consisted of normal
weight individuals (BMI < 25 kg/m2). For the rs6232 variant, there

Table 1. Subgroup analysis for the association of rs6232 and rs6234/rs6235 with obesity

rs6232 Random-effects
OR (95% CI)

P-value Heterogeneity χ2-test for
difference

No. of studies/
cohorts

Sample
sizeClassical Global I2 (95% CI) P-value

Ethnicity
White Caucasian 1.14 (1.06–1.24) 0.001 1.08 × 10−5 44 (7–66) 0.015 0.485 22 125 579
East Asian 0 0
Hispanic 1.52 (0.65–3.55) 0.335 0.182 67 (0–90) 0.049 3 3679
African 0.83 (0.32–2.13) 0.694 0.810 a 0.597 2 2026

Cohort age-group
Child/adolescent 1.53 (1.22–1.93) 2.84 × 10−4 3.68 × 10−5 25 (0–68) 0.250 3.00 × 10−4 6 7077
Adult 1.10 (1.03–1.17) 0.006 0.001 22 (0–54) 0.182 21 124 207

Cohort size
≤1000 1.14 (0.92–1.40) 0.223 0.351 0 (0–71) 0.536 0.756 7 5983
>1000 1.16 (1.06–1.26) 0.003 1.17 × 10−5 53 (21–72) 0.003 20 125 301

Population-based recruitment
No 1.19 (1.02–1.38) 0.030 7.15 × 10−4 53 (13–75) 0.012 0.222 13 29 799
Yes 1.12 (1.03–1.22) 0.010 0.004 28 (0–62) 0.157 14 101 485

rs6234/rs6235
Ethnicity
White Caucasian 1.09 (1.04–1.14) 2.04 × 10−4 4.28 × 10−9 64 (44–77) 1.25 × 10−5 5.13 × 10−7 23 163 385
East Asian 1.00 (0.98–1.03) 0.961 1.00 22 (0–67) 0.274 5 66 721
Hispanic 1.13 (0.99–1.27) 0.050 0.103 0 (0–85) 0.579 4 4711
African 1.16 (0.92–1.46) 0.222 0.115 59 (0–86) 0.064 4 4764

Cohort age-group
Child/adolescent 1.13 (1.00–1.29) 0.053 5.61 × 10−4 68 (29–86) 0.004 0.005 7 10 296
Adult 1.06 (1.02–1.09) 0.001 6.35 × 10−5 66 (49–77) 4.19 × 10−7 29 229 285

Cohort size
≤1000 1.02 (0.91–1.15) 0.69 0.576 44 (0–77) 0.096 0.439 7 6363
>1000 1.07 (1.04–1.11) 2.56 × 10−5 3.48 × 10−7 71 (58–80) 1.71 × 10−9 29 23 3218

Population-based recruitment
No 1.11 (1.05–1.17) 1.60 × 10−4 3.65 × 10−6 76 (61–85) 1.35 × 10−7 0.001 16 92 067
Yes 1.05 (1.00–1.09) 0.040 0.005 46 (8–68) 0.014 20 14 7514

OR, odds ratio; CI, confidence interval.
aAnalysis not possible if <2 degrees of freedom.

Table 2. Association of rs6232 and rs6235 with obesity class in GIANT

OR (95% CI) P-value Cases Controls

rs6232
Overweight 1.04 (1.00–1.08) 0.078 78 671 60 578
Obesity class I 1.06 (1.00–1.13) 0.057 22 947 47 263
Obesity class II 1.08 (0.98–1.20) 0.120 5983 35 721
Obesity class III 1.13 (0.95–1.34) 0.180 1534 23 221

rs6235
Overweight 1.03 (1.01–1.05) 0.005 92 808 65 660
Obesity class I 1.04 (1.01–1.07) 0.010 32 746 64 864
Obesity class II 1.07 (1.02–1.11) 0.003 9723 61 085
Obesity class III 1.11 (1.02–1.20) 0.011 2550 35 900

OR, odds ratio; CI, confidence interval.
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was an OR of 1.04 (95% CI 1.00–1.08), 1.06 (95% CI 1.00–1.13), 1.08
(95%CI 0.98–1.20) and 1.13 (95%CI 0.95–1.34), across theoverweight
andobese classes I, II and III groups, respectively (0.057≤ PC≤ 0.18).
Similarly, the rs6235 analysis showed a similar increasing risk pat-
tern with an OR of 1.03 (95% CI 1.01–1.05), 1.04 (95% CI 1.01–1.07),
1.07 (95% CI 1.02–1.11) and 1.11 (95% CI 1.02–1.20), across the over-
weight and obese classes I, II and III groups, respectively (0.003≤
PC≤ 0.011). However, the ORs of rs6232 and rs6235 SNPs for differ-
ent classes of obesity were not significantly different (P > 0.05).

Discussion
In this study, we provide evidence that common variants in
PCSK1 contribute to BMI variation and common obesity. The pro-
protein convertase 1 encoded by the PCSK1 gene belongs to the
subtilisin-like proprotein convertase family. Proprotein conver-
tase 1 is known to cleave key peptides in the regulation of energy
balance such as proinsulin or proopiomelanocortin (49). Rare
loss-of-function codingmutations in PCSK1have been associated
with a Mendelian form of hyperphagic obesity in mice and hu-
mans (30,32,50). Benzinou and colleagues provided evidence of
association between the frequent coding variants N221D
(rs6232) and Q665E/S690T (rs6234/rs6235) and childhood and
adult severe obesity in European populations (27). However, con-
flicting results have been reported regarding the association of
the rs6232 and rs6234/rs6235 polymorphisms with common
obesity (27,37–45) or BMI variation (12,35–40,43,44,46,47) in di-
verse ethnic backgrounds. This prompted us to assess the contri-
bution of rs6232 and rs6234/rs6235 with common obesity and
BMI variation using a meta-analytic approach. We enhanced
the power of our analyses, and therefore the ability to detect
associations, using both a classicmeta-analytic approach in add-
ition to data extraction from pre-existing GWAS or custom-arrays
from consortia and single studies aswell as internal data and col-
laboration. In total, we collected phenotypic and genetic data in
up to 331 175 individuals from diverse ethnic groups, which re-
presents to our knowledge the largest meta-analysis published
to date in the field of genetic epidemiology.

Overall, our data demonstrate that the common functional
variants rs6232 and rs6234/rs6235 in PCSK1 not only predispose
to severe obesity but also modestly increase the risk of common
obesity and increased BMI within populations. Our results are in
linewith the conclusions of a large-scale GWASmeta-analysis for
BMI and different clinical classes of obesity performed in up to
263 407 subjects (20). In this study, Berndt et al. found a large over-
lap of SNPs contributing to both quantitative BMI and different
thresholds of obesity and concluded that there was little etio-
logical heterogeneity between these traits at least at the level of
common SNP variation (20). Our data are only partially concord-
ant with a recent meta-analysis published by Stijnen and collea-
gues (51). However, the 65% lower sample size in this study in
comparison with ours (N = 200 000 versus 331 175), added to
methodological considerations lead us to interpret the conclu-
sions of this study with caution (52).

Children with congenital proprotein convertase one-third de-
ficiency display early growth abnormalities and reduced height
as a consequence of growth hormone deficiency (53). Therefore,
we cannot totally exclude that the association of rs6232 and
rs6234/rs6235 SNPs with BMI may be in part confounded by an
additional genetic effect on height variation. We consulted
the publically available data released in 2014 by the GIANT
consortium (54) and did not find an association between the
rs6232 SNP and height (B =−0.0086 ± 0.0068, P = 0.21, N = 233 697).
On the contrary, and in line with the observations made in

monogenic patients, the rs6235 SNP BMI-increasing allele evi-
denced a strong association with decreased height (B =−0.0224 ±
0.0033, P = 5.4 × 10−11, N = 251 342).

If the genetic architecture of BMI variation in general popula-
tions and the risk of common obesity includesmany overlapping
genetic variants, these variants may be more prevalent in severe
and/or familial forms of childhood and adult obesity. Benzinou
et al. indeed reported odds ratios (OR) for obesity of 1.34 (95% CI
1.20–1.49; P = 7.27 × 10−8) and 1.22 (95% CI 1.15–1.29; P = 2.31 ×
10−12) for rs6232 and rs6234/rs6235 in a European sample en-
riched in familial forms of childhood and adult extreme obesity
in European populations (27). Lower OR for common obesity
were observed for rs6232 (OR = 1.15) and rs6234/rs6235 (OR = 1.07)
in our meta-analysis. Importantly, the larger ORs for obesity ob-
served in the Benzinou et al. original study are less likely to result
from initial overestimation of the true effect (i.e. winner’s curse),
as they were estimated from ameta-analysis of seven independ-
ent cohorts (27). Additionally, exclusion of the initial PCSK1
discovery cohort in sensitivity analyses did not impact the sig-
nificance of our results. A more plausible explanation is that
extreme familial forms of early-onset and adult obesity are en-
riched for susceptibility variants. Consistent with this hypoth-
esis, a non-significant progressive enrichment of rs6232 and
rs6234/rs6235 effect variants was observed for increasing degrees
of obesity in the GIANT sample (Supplementary Material,
Table S3). Our results indicate that an enrichment sampling strat-
egy (selection of obese individuals having a strong family back-
ground of the disease, an early age of onset and/or a more
severe phenotype) is a cost-effective and efficient approach to
identify loci that also contribute to BMI variation and risk for
common obesity in general populations (20,55).

Our data show a substantial degree of between-study hetero-
geneity in the association of PCSK1 SNPs rs6232 and rs6234/
rs6235 with obesity. Benzinou et al. similarly reported significant
between-study heterogeneity while analyzing the association of
the SNP rs6235 with severe obesity in seven independent cohorts
(27). We investigated the potential causes of this heterogeneity
and made several observations. Ethnicity significantly modu-
lated the association between rs6234/rs6235 and obesity. Where-
as similar effect sizes for the association of rs6234/rs6235 with
obesitywere found inwhite Caucasian, African andHispanic eth-
nic groups, no evidence for association was found in East Asian
populations. As the rs6234/rs6235 coding non-synonymous
SNPs exhibit functional effects on the proprotein convertase 1 ac-
tivity (34), and therefore do not represent proxy SNPs, the ab-
sence of evidence for an association restricted to only East
Asian populations is very unlikely to be explained by differential
linkage disequilibrium structure at the PCSK1 locus in certain
ethnic groups. Notably, another SNP in PCSK1, independent of
the rs6234/rs6235 signal, has been recently identified as an im-
portant contributor to BMI variation in East Asian populations
(15). Therefore, the lackof association of rs6234/rs6235with obes-
ity in East Asians in the current study is unlikely to be explained
by an interaction between the PCSK1 locus and ethnic-specific
lifestyle factors that may inhibit the genetic effect on obesity at
this specific locus. Ethnic-specific epistasis effects may account
for this intriguing pattern of association. In contrast to rs6234/
rs6235, ethnicity did not modulate the association between
rs6232 and obesity. However, this may have been secondary to
decreased power and no available data examining the associ-
ation of rs6232 and obesity or BMI in East Asian populations.

Study ascertainment in the overallmeta-analysis significantly
modulated the association of rs6234/rs6235with obesity. Not sur-
prisingly, obese cases recruited in hospitals, which tended to be
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more obese, or obtained from pedigrees enriched in obese cases
displayed 2-fold higher ORs for obesity in comparison with cases
issued from the general population. Additionally, there is a sug-
gestion of possible small study effects for the rs6234/rs6235, due
to a lower than predicted representation of smaller negative
studies in our analysis, which may also explain a degree of the
observed heterogeneity.

Cohort age-group significantly modulated the association be-
tween rs6232, rs6234/rs6235 and obesity with the effect sizes for
both SNPs being stronger in children/adolescents than in adults
(Table 1). Similar trends have been observed for the association
of rs6232 with BMI and obesity in younger versus older adult Eur-
opeans in two independent reports (38,44). Asprohormoneconver-
tase 1 cleaves proopiomelanocortin, a key peptide in the regulation
of energy balance and appetite, it is tempting to speculate that the
genetic effect of common functional variants in PCSK1 may be
more pronounced in the context of the more recent ‘obesogenic’
environment with unlimited access to high-caloric food (56).

Additional environmental or biological factors (e.g. physical
activity) are likely to modulate the association between rs6234/
rs6235 and obesity in the current study. Between-study hetero-
geneity indeed remained significant after stratifying the genetic
association test by ethnicity, cohort age-group or population re-
cruitment. Our data, in line with previous reports, confirm that
heterogeneity may be a common feature of genetic association
studies involving obesity predisposing variants (57–59). In that
context, the globalmeta-analytic random-effectsmethod recent-
ly developed by Lebrec et al. is especially relevant as it is designed
to detect genetic associations among multi-cohort studies that
convey a high level of between-study heterogeneity (48). Neu-
pane and colleagues recently demonstrated that the globalmeth-
od achieves higher power and lower rates of false positives
compared with classic methods in the presence of high be-
tween-study heterogeneity, using both simulated and real data-
sets (60). We observed the same trends in our study with the
global method providing greater precision of estimates than the
classic random-effects inverse variance weighted method in
the setting of high between-study heterogeneity. We therefore
support the wider use of global meta-analytic random-effects
model for the genetic dissection of complex traits.

The strengths of this meta-analysis include a comprehensive
data collection strategy, an exceptionally large sample size repre-
sentative of high ethnic diversity, the use of the most up-to-date
meta-analyticmethods and the selection of functionally relevant
coding polymorphisms. Limitations of this study include themo-
dest statistical powerof subgroup analyses and the limited access
to a broad range of environmental exposure information that
may modulate the association of PCSK1 SNPs with obesity.

In summary, we provide evidence that SNPs rs6232 and
rs6234/rs6235 in PCSK1 contribute to BMI variation as well as in-
creased susceptibility to common obesity. Our data confirm the
power of gene identification strategies based on extreme forms
of obesity to identify loci that also contribute to BMI variation
and risk for common obesity in general populations.

Methods
The PRISMAstatement guidelineswere utilized for this systemat-
ic review and meta-analyses (61).

Eligibility criteria

Individual studies, meta-analyses and GWAS consortia examin-
ing obesity status or BMI variation with respect to exposure to

the previously defined effect alleles of rs6232 (G), rs6234 (G) or
rs6235 (C) were eligible for inclusion (27,41). As rs6234 and
rs6235 are in perfect linkage disequilibriumamongdiverse ethnic
backgrounds (r2 = 1.0), they are considered as identical and are
analyzed together (62,63). Additionally, studies in East Asian,
South Asian and white Caucasian populations reporting on the
SNP rs7713317 (effect allele: G) were eligible, as this variant is in
perfect linkage disequilibrium (r2 = 1.0) with rs6234 and rs6235
among these groups in both the HapMap (62) and 1000 Genomes
projects (63). Only analyses of variants under the additive model
were eligible for inclusion as this has been demonstrated to be
the most likely inheritance model (27). In addition, studies that
recorded BMI or obesity status and used genotyping platforms
known to contain these variants were also eligible and corre-
sponding authors were contacted to share the unpublished
data in a collaborative manner. Studies examining obesity status
were eligible if they compared an obese group with a non-obese
group as defined according to the study population. Our exclu-
sion criteriawere clustered datasets such as family-based studies
(unless clustering was accounted for in the analysis), data from
the analysis of variants not shown to be in Hardy–Weinberg equi-
librium of P ≥ 0.05 and data with an imputation quality of <0.9.

Information sources

The search strategy was designed to identify all sources of pub-
lished and unpublished data both in the literature and in avail-
able databases. Electronic searches without language or date
restrictionwere carried out in PubMed (1966–present),Web of Sci-
ence (1899–present), Embase (1974–present) and the NIH GWAS
catalog (64). Search terms used in all databases to identify rele-
vant studies, along with a representative search strategy used
for the PubMed query, can be found in Supplementary Material,
Table S4. All articles identified through the searchwere evaluated
based on the title and abstract. Clearly, irrelevant studies were
excluded from further consideration. The remaining articles re-
ceived a full text review. The last search was undertaken on
9 June 2013.

Studies recording data on study participant BMI and/or obes-
ity status and utilizing genotyping arrays known to include
rs6232, rs6234, rs6235 or rs7713317 were searched for in dbGaP
(65). Relevant genotyping arrays and proxy SNPs were identified
using the SNP Annotation and Proxy Search (66). Additional
data were obtained through collaboration with other investiga-
tors and through consortia (Supplementary Material, Table S1).

Descriptive informationwas extracted from each study includ-
ing: (i) SNPs available, (ii) study design, (iii) participant selection,
(iv) eligible phenotype (obesity or BMI), (v) genotyping method,
(vi) sample size, (vii) number of obese and non-obese individuals
(for obesity analyses), (viii) obese and non-obese definitions,
(ix) ethnicity, (x) included age groups and (xi) model adjustments.
As datawere gathered from individual studies,meta-analyses and
GWASconsortia, particular carewastaken toavoid the inclusionof
duplicate data. Detailed cohort information was requested from
participating consortia and key study characteristics were com-
pared across all eligible studies to determine if multiple publica-
tions with data from the same study were present. If study
duplication existed, data from the publicationwith themost com-
plete analysis of the duplicated study was used. Where possible,
corresponding authors were contacted to provide study data that
did not overlap with other data sources. The literature search
and article review were carried out independently by two re-
viewers (K.N. andD.M.)with consensus reached by discussion.De-
tails of study selection can be found in Figure 1.
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Unpublished data from the EpiDREAM (Epidemiological arm
of the Diabetes Reduction Assessment with Ramipril and Rosigli-
tazoneMedication) (67), SHARE (Study of Health Assessment and
Risk in Ethnic groups) (68) and SHARE-AP (Study of Health As-
sessment and Risk Evaluation in Aboriginal Peoples) (69) cohorts
were also included. Briefly, the EpiDREAM multi-ethnic longitu-
dinal cohort is the epidemiological arm of the DREAM study com-
prised of individuals with an increased risk for T2D who were
screened for trial eligibility. The SHARE and SHARE-AP studies
are cross-sectional cohorts investigating atherosclerosis and car-
diovascular diseases among different ethnic groups living in
Canada. Genetic and clinical data were available from 1172 parti-
cipants from the SHARE and SHARE-AP population. In the Epi-
DREAM study, 17 453 subjects from six ethnic groups (South
Asian, East Asian, European, African, Latin American and Native
North American) and having both genetic and baseline clinical
information have been included here. Self-reported ethnicity
has been validated in the SHARE, SHARE-AP and EpiDREAM stud-
ies using the eigensoft software (http://genepath.med.harvard.
edu/~reich/Software.htm). The SHARE, SHARE-APand EpiDREAM
cohorts were genotyped using the cardiovascular gene-centric
50 K SNP ITMAT-Broad-CARe (IBC) array (70). Subjects in the
SHARE and SHARE-AP cohorts were genotyped using the Illumi-
na HumanCVD BeadChip. SNPs rs6232, rs6234 and rs6235 in
PCSK1 were part of the 50K array SNP list and were extracted for
further study.

Statistical analysis

The primary analyses examined the effect of exposure to the ef-
fect alleles of rs6232 (G) or rs6234/rs6235/ rs7713317 (G/C/C) on
obesity status and BMI variation. The OR and 95% CI were col-
lected to examine the effects of the variants on obesity status.
The beta estimates and SE were collected to examine the effects
of the variants on BMI. If eligible studies did not report data ne-
cessary for inclusion in the meta-analysis, the corresponding
authors were contacted directly.

We implemented a global random-effects meta-analytic
method, designed to detect genetic associations among multi-
cohort studies with high heterogeneity (48), to calculate a sum-
mary OR and 95% CI or summary beta estimate and SE for the
obesity status and BMI variation analyses, respectively. Com-
pared with classical random-effects meta-analytic techniques,
which consider each study to be a random sample of the true ef-
fect distribution and calculates the combined effect estimate as
the mean of this distribution, the global random-effects method
tests if the overall association or between-cohort variance of as-
sociations is non-zero. This approach was implemented because
it has demonstrated improved power and lower rates of false po-
sitives compared with classical methods in the setting of hetero-
geneity (60). The meta-analyses were additionally performed
using classical random-effects inverse variance weighted
methods.

Between-study heterogeneity was evaluated using Cochran’s
Q-statistic and the proportion of heterogeneity due to study vari-
ation was quantified using the I2 statistic (71). If substantial het-
erogeneity was detected (P < 0.1), sources of this heterogeneity
were explored. The presence of small study effects was evaluated
using funnel plots, by calculating Begg and Egger statistics and by
comparing subgroup analysis of small studies (n ≤ 1000) versus
large studies (n > 1000) as previously described (72). Subgroup
analysis was further examined according to pre-specified cat-
egories including ethnicity (white Caucasian, East Asian and His-
panic, African), studies using population-based recruitment

compared with studies using other recruitment methods (e.g.
hospital based) and by age category.Within subgroup heterogen-
eity was examined using a chi-squared test for difference.

Additionally, using summary statistics from the GIANT con-
sortium (20), we examined the risk of obesity conferred by the
PCSK1 variants with increasing classes of obesity including over-
weight (BMI ≥ 25 kg/m2) and obesity classes I (BMI ≥ 30 kg/m2),
II (BMI ≥ 35 kg/m2) and III (BMI ≥ 40 kg/m2) compared with a
lean control group (BMI < 25 kg/m2).

All analyses were carried out using Stata version 12 (Stata-
Corp, College Station, TX, USA) or the R software.

Supplementary Material
Supplementary Material is available at HMG online.
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