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Introduction
Aging is the most prominent risk factor for the occurrence of 
neurodegenerative diseases among others, including oxidative 
stress (Keller et al., 2005; Jain et al., 2011), telomere length 
(Harris et al., 2006), genetic mutations (Anderton et al., 2002) 
and head injury (Maiese et al., 2008). In the United States 
there are over 35 million of people with a mean age of 65 
years and even older, that mainly die from age-related diseas-
es (Drago et al., 2011). Aging increases susceptibility of peo-
ple to environmental stressors, thereby increasing the chance 
to develop neurodegenerative conditions, most likely because 
the self-repair ability is compromised and tissues and/or or-
gans undergo a progressive decline (Musumeci et al., 2014a). 
The aging process is associated with a number of structural, 
biochemical, functional and neurocognitive changes in the 
brain. The structural changes include expansion of cerebral 
ventricles, regional decreases in cerebral volume (Raz et al., 

2005), loss of neural circuits and reduced brain plasticity 
(Burke and Barnes, 2006; Kolb and Gibb, 2011), thinning of 
the cortex (Shahani et al., 2006), decrease in both of the grey 
and the white matter volume (Bartzokis, 2011), changes in 
neuronal morphology (Sowell et al., 2003) and formation 
of neurofibrillary tangles (Hedden and Gabrieli, 2004; Neill, 
2012). Among the age-related biochemical changes there are 
marked alterations in neurotransmitters and their receptors. 
Significant decreases in dopamine receptors D1, D2, and D3 
(Wang et al., 1998; Kaasinen et al., 2000) and decreasing 
levels of different serotonin receptors and their transporters 
such as 5-hydroxytryptamine transporters (5-HTTs) (Chang 
and Martin, 2009; Chang et al., 2009) have been repeatedly 
reported. Among the neuropsychological changes, alterations 
in orientation (Benton et al., 1981) and memory (Hof and 
Morrison, 2004) are the most common ones. Moreover, many 
age-related neurodegenerative diseases are characterized by 
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accumulation of disease-specific misfolded proteins in the 
central nervous system (CNS) (van Ham et al., 2009). These 
include β-amyloid peptides and tau/phosphorylated tau pro-
teins in Alzheimer’s disease (AD), α-synuclein in Parkinson’s 
disease (PD), superoxide dismutase (SOD) in amyotrophic 
lateral sclerosis (ALS) (Durham et al., 1997), and mutant 
huntingtin in Huntington’s disease (HD) (Scherzinger et al., 
1997). The association between age and protein misfolding is 
not clear yet, but it is probably related to alterations of mo-
lecular mechanisms triggered by aging cells, such as telomere 
shortening, cells shrinkage and decline of quality control 
over protein synthesis mechanisms (Hung et al., 2010; Than-
an et al., 2014) (summarized in Figure 1).

Telomeres are an evolutionarily conserved repetitive nu-
cleotide sequences (TTAGGG) localized at the end of each 
chromosome, that are folded into a T loop structure by a 
protein complex called shelterin (Stewart et al., 2012). Telo-
meres play four fundamental roles: protecting genetic in-
formation from erosion during DNA replication; protecting 
DNA from damage; serving as a binding site for DNA repair 
proteins; and providing information about the cell prolif-
eration history (Stewart et al., 2012; Musumeci et al., 2015; 
Giunta et al., 2015). During each round of DNA replication, 
telomeres of cultured cells typically lose about 50–200 bp 
(Allsopp et al., 1992). The telomere length is the sand glass 
of the cell since it specifies the number of divisions a cell 
can undergo before it finally dies; thus, it indicates the cell 
proliferative potential. Telomere shortening leads to the 
attainment of the so-called ‘Hayflick limit’, which indicates 
the transition of cells to the state of senescence. Following 
this step, cells progressively enter a state of crisis, which 
is accompanied metabolic disturbances that culminate in 
massive cell death. An enzyme able to maintain telomere 
length is called telomerase. Telomerase plays a pivotal role in 
the pathology of aging and cancer by maintaining genome 
integrity, controlling cell proliferation, and regulating tissue 
homeostasis. Telomerase is essentially composed of an RNA 
component, the telomerase RNA or TERC, which serves as a 
template for telomeric DNA synthesis, and a catalytic subunit, 
telomerase reverse transcriptase (TERT). The canonical func-
tion of TERT is the synthesis of telomeric DNA repeats, and 
the maintenance of telomere length. However, accumulating 
evidence indicates that TERT may also exert some fundamen-
tal functions that are independent of its enzymatic activity 
(Verdun and Karlseder, 2007) (please refer to Figure 2). A 
reduction in telomerase expression contributes to telomere 
shortening in mitotic cells, while high levels of the enzyme in 
mesenchymal stem cells (MSCs) contribute to their ‘immor-
tal’ phenotype (Rubtsova et al., 2012). The phenomenon of 
telomere shortening is closely associated with aging itself, but 
it has been widely demonstrated that cells can also undergo 
premature aging due to several factors such as oxidative stress, 
inflammation and infections, which are able to speed up this 
process and determine age-related dysfunctions (Hung et al., 
2010; Jenny, 2012; Kong et al., 2013; Kota et al., 2015). There-
fore, given the involvement of these factors (and in particular 
of oxidative stress) in the development of neurodegenerative/

age-associated diseases, it becomes of primary importance to 
also gain more insights on the underlying mechanisms trig-
gered by these stressors, as this could serve to improve current 
therapeutic strategies based on the use of MSCs to treat neu-
rodegenerative conditions.

A reason why telomeres are the preferred targets of oxida-
tive insult seems to be primarily related to their DNA com-
position, which tends to be rich in guanine residues (Coluzzi 
et al., 2014). Indeed, the high incidence of guanine bases 
promotes the generation of alterations to DNA bases to spe-
cies called 8-oxoguanine (8-oxoG), which, if not repaired, 
may lead to single or double strand breaks, mutations or 
even genomic instability (Grollman et al., 1993). Of interest, 
genomic instability, oxidative stress and ageing are not to 
be considered as independent causative factors in telomere 
shortening, but need to be considered as interconnected 
phenomena. Consistent with this theory, convergent data has 
identified an accelerated Wnt/β-catenin cascade activation 
as a common denominator triggered by these insults. Acti-
vation of this pathway reduces MSCs proliferation potential, 
hampers telomerase activity and drives a cellular shift of 
MSCs towards a differentiated/senescent phenotype (as ele-
gantly reviewed by Fukada et al., 2014). In the light of these 
evidences, it is auspicable that strategies aimed at dampening 
the occurrence of these detrimental events in neurons or to 
block the Wnt/β-catenin intracellular pathways could have 
the potential to significantly impact the senescent process, 
including premature telomere shortening.

Leukocyte Telomere Length (LTL), a Biomarker 
in Neurodegenerative Disorders
Early neuronal cell death is a feature of neurodegenerative 
disorders and reduced telomere length has been associated 
with premature cellular senescence. Studies have shown that 
reduced telomere length in peripheral blood is associated 
with the incidence of illnesses associated to the aging pheno-
types, such as dementia (Thomas et al., 2008), neurodegen-
erative disorders such as HD and genetic neurovascular dis-
eases such as ataxia telangiectasia (AT) (Metcalfe et al., 1996; 
Kota et al., 2015). Since LTL is reflective of global cellular 
morbidity and mortality, it has been proven that it could be 
used as a useful tool to screen neurodegenerative disorders 
(Sahin and DePinho, 2012). It is worth emphasizing, howev-
er, that leukocytes include diverse cell populations that play 
complementary roles in tissue homeostasis and responses to 
infections and diseases, and the possibility exists that simply 
monitoring LTL may lead to misleading results. Indeed, the 
three major classifications of leukocytes are granulocytes, 
lymphocytes, and monocytes. These populations have 
different telomere lengths and erosion rates as a result of 
differences in telomerase activity, proliferation history, and 
telomere trimming (Stewart et al., 2012). These differences 
have to be carefully taken into account when considering a 
possible study of age-related processes in neurodegenerative 
disorders. However, a recent study has consistently showed 
that the LTL was reduced in individuals suffering from 
neurodegenerative disorders as described above, suggesting 
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that the phenomenon of telomere shortening could at least 
be partly implicated or could contribute to the triggering of 
pathological pathways activated in these diseases (Kota et al., 
2015). In dementia, the reduced telomere length has been at-
tributed to oxidative stress, aberrations in mitochondrial ho-
meostasis, deficient DNA repair mechanisms, and decreased 
DNA methylation status (von Zglinicki, 2002; Blasco, 2007; 
Gackowski et al., 2008; Coppedè and Migliore, 2009; van 
Groen, 2010; Sahin and DePinho, 2012). Nevertheless, the 
precise mechanism for this attrition needs to be studied fur-
ther. Interestingly, a review of data from literature concern-
ing the potential use of LTL as a biomarker in AD and PD 
showed to be inconsistent in both cases, since the number 
of studies reporting no association between LTL and disease 
states almost overlapped the ones indicating a correlation 
between LTL shorthening and neurodegeneration (Eitan et 
al., 2014). Interestingly enough, a recent study reported an 
even longer LTL in PD patients, associating short telomeres 
with reduced risk of PD (Schürks et al., 2014). The reason of 
these inconsistencies could be dependent on the population 
number used in these studies, as the low number of patients 
together with the inter-individual variability may often re-
sult in significantly reduced statistical power, and purport-
edly to unreliable results. It has been shown that variability 
in LTL in individuals can be induced by different factors 
such as chronic stress, diet, lifestyle, chronic inflammation 
state and hormone levels (Liu et al., 2010; Broer et al., 2013). 
The interaction between these factors and genotype can also 
play a role in LTL variability (Takata et al., 2012). Certainly, 
further investigation in this field are needed to clarify the 
precise role and diagnostic or therapetic potential of LTL in 
neurodegeneration. 

MSCs-based Therapy for Neurodegenerative 
Disorders 
The limited regeneration power of the CNS represents a ma-
jor challenge for the development of new therapeutic strate-
gies efficacious to promote its functional repair. MSCs have 
been proposed as a viable therapeutic tool for degenerative 
disorders as they possess high proliferative ability and they 
are able to differentiate into multiple lineages (Mobasheri et 
al., 2014; Musumeci et al., 2014c; Tanna and Sachan, 2014). 
MSCs can differentiate into neuron-like cells and determine 
a paracrine effect by modulating the plasticity of damaged 
host tissues; by secreting neurotrophic and survival-pro-
moting growth factors that inhibit apoptosis and promote 
neurogenesis, glial scar formation, immunomodulation, an-
giogenesis and neuronal and glial cell survival; by restoring 
synaptic transmitter release; by integrating into existing neu-
ral and synaptic networks; and by re-establishing functional 
afferent and efferent connections (Siniscalco et al., 2010; 
Teixeira et al., 2013; Ooi et al., 2014). In addition, low immu-
nostimulating and high immunosuppressive properties make 
MSCs a suitable source for cellular therapy (Abumaree et al., 
2012; Kwon et al., 2014). Another point in favor to MSCs em-
ployment in therapy is that cells can be transplanted directly 
without any prior genetic modification or reprogramming, 

and are able to migrate to the tissue injury sites (Amado et 
al., 2005). MSCs have also been proven to be useful for the 
treatment of pathologies in which tissue damage is caused 
by oxidative stress and thus in those pathologies linked to 
stress-induced telomere shortening and premature aging, 
where MSCs are likely to be more resistant to oxidative in-
sult than normal somatic cells (Benameur et al., 2015). This 
feature is particularly important since it makes MSCs an in-
teresting and testable model for the treatment of age-related 
neurodegenerative disorders.

Currently, there is a great interest towards the use of MSCs 
in pioneering therapies aimed at treating chronic and pro-
gressive neurodegenerative diseases, which are currently 
incurable and whose attempts to find disease-modifying 
therapies have failed, such as AD, PD, ALS and HD. It has 
been shown that after transplantation into the brain, MSCs 
promote neuronal growth, decrease apoptosis, reduce the 
levels of free radicals, stimulate the formation of new synap-
tic networks from damaged neurons by supporting axonal 
outgrowth, modulate neuroinflammatory activities and pro-
mote proteosomal degradation of ubiquitinated misfolded 
proteins (Caplan and Dennis, 2006; Mezey, 2007; Uccelli et 
al., 2011). Through paracrine mechanisms, MSCs are also 
able to interact with neighbouring damaged host cells and 
influence their microenvironment, by sharing proteins, 
RNAs and even mitochondria (Spees et al., 2006; Olson 
et al., 2012). As a proof-of-concept, Mazzini et al. demon-
strated that MSCs can decrease motor neuron cell death 
through paracrine actions when implanted into the CNS of 
ALS patients (Mazzini et al., 2003; Boucherie et al., 2009). 
Recently, the paracrine properties of bone marrow-derived 
MSCs (BM-MSCs) have been also shown in rat model of 
AD, suggesting their potential therapeutic role in this disease 
(Salem et al., 2014). The potential efficacy of human MSCs 
(hMSCs) has been also confirmed recently, as treatment suc-
ceeded to ameliorate some behavioral defects observed in a 
rodent model of HD, hence demonstrating that xenologous 
transplantation of hMSCs could be considered a potentially 
successful approach to counteract neurodegeneration caused 
by HD, and perhaps other CNS disorders (Hosseini et al., 
2014).

MSCs can be readily isolated from various tissues, show 
high plasticity and are capable to differentiate into many 
functional cell types (Woodbury et al., 2000; Krampera et 
al., 2007; Singec et al., 2007). Numerous studies have shown 
that BM-MSCs can differentiate into cells that display neu-
ronal or even dopaminergic characteristics both in vitro and 
in vivo (Ni et al., 2010; Zeng et al., 2011). A recent study re-
ported that mouse BM-MSCs provided neuroprotection by 
secreting a key factor, prosaposin, a molecule capable of res-
cuing mature neurons from apoptotic death. The secretome 
of BM-MSCs showed to reduce toxin-induced cell death in 
cultures of rat pheochromocytoma cells, human ReNcell 
cortical neurons, and rat cortical primary neurons (Li et 
al., 2010). Unfortunately, the medical procedure to obtain 
BM-MSCs from the bone marrow is invasive and definite-
ly painful to patients. Therefore, efforts have been made 
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to find more practical alternatives. Indeed, recently other 
MSCs sources have gained clinical interest for use in regen-
erative medicine; and adipose tissue represents one of these 
sources with a broad spectrum of benefits. Human adipose 
tissue represents a readily available autologous source of 
MSCs (Ghasemi and Razavi, 2014). Human adipose tis-
sue-derived MSCs (hAT-MSCs) retain morphological, phe-
notypic and functional characteristics resembling those of 
BM-MSCs (Zuk et al., 2002), are stable over long term cul-
ture, expand efficiently in vitro and possess multi-lineage 
differentiation potential (Zuk et al., 2001; Musumeci et al., 
2011; Choudhery et al., 2013; Musumeci et al., 2014b). Lat-
est observations suggest that transplantation of hAT-MSCs 
into the brains of elderly mice improved both locomotor 
activity and cognitive functions. Transplanted cells rapidly 
differentiated into neurons and in part, into astrocytes, 
and produced choline acetyltransferase proteins, restoring 
acetylcholine levels in thebrain. Moreover, transplantation 
of hAT-MSCs restored neuronal integrity by stimulating the 
release of neurotrophic factorsby neighbouring cells (Park 
et al., 2013). In this regard, an aspect to be considered in 
MSCs therapies is that it is now well-recognized that many 
pleiotrophic molecules endowed with neuroprotective po-
tential, including some neuropeptides produced locally by 
resident glial cells or neurons (i.e., pituitary adenylyl cyclase 
activating polypeptide and/or vasoactive intestinal peptide), 
when stimulated by neighbouring cells (i.e., implanted 
MSCs) may prevent cognitive decline caused by aging (Pirger 
et al., 2014), facilitate nerve recovery after injury both in the 
CNS (reviewed by Waschek, 2013) and the periphery (Tamas 
et al., 2012), stimulate remielination processes and glial re-
generative support to neurons (Castorina et al., 2014, 2015) 
and are even capable to prevent retinal damage and mantain 
retinal barrier properties (Giunta et al., 2012; Scuderi et al., 
2013) or impede oxidative insults (Castorina et al., 2012), 
a broad spectrum of physiopathological events that, at dif-
ferent degrees, are negatively impacted by senescence. Even 
more interesting, combinatorial administration of these 
molecules with MSCs has been suggested to support spinal 
cord recovery after damage (Fang et al., 2010), inferring on 
the mutual reciprocity between the two, especially desirable 
to complement the existing gaps determined by the single 
therapeutic employment of MSCs in aged patients affected 
by neurodegenerative disorders. 

Another source of MSCs that has captured minor scientif-
ic interest is represented by dental pulp stem cells (DPSCs). 
DPSCs have also been recognized as capable to differentiate 
into a variety of cell lineages (Zhang et al., 2006; Huang et 
al., 2009), but more studies are required to better define their 
potential. Other sources of stem cells are that obtained from 
human-exfoliated deciduous teeth (SHED), which have been 
shown to contain multipotent stem cells (Miura et al., 2003). 
The importance of SHED is that they are derived from a 
tissue similar to the umbilical cord. Notably, both kinds of 
DSCs can be induced to differentiate into neuron-like cells 
and be transplanted in brain injury and/or neurodegenerative 
disease animal models to conduct neuroregeneration studies 

(Sakai et al., 2012; Tamaki et al., 2012; Yamagata et al., 2013). 
Based on these findings, it is plausible to believe that the 
extracted teeth, considered a common waste product from 
dental extraction procedures, could be employed in the fu-
ture to exploit in tissue engineering strategies as a promising 
substitute of BM-MSCs.

Limits of MSCs-based Therapy
A major issue that has significantly limited the use of MSCs-
based therapy is the low yielding of viable MSCs from 
donor tissue. In fact, in order to harvest sufficient MSCs to 
procure some clinical benefits cells need to replicate sever-
al times in vitro. Unfortunately, a number of studies have 
demonstrated that MSCs from various animals undergo 
spontaneous transformation when cultured for long terms, 
posing a limit to this approach. Indeed, transformed MSCs 
show some of the features of senescent cells, with a pro-
gressive shortening of telomers and consequently, cell death 
(Ahmadbeigi et al., 2011; Ren et al., 2011; He et al., 2014). 
Such an aging process occurring in MSCs appears to be 
tissue-specific and has been shown to be regulated by evo-
lutionarily conserved signaling pathways. More recently, a 
signaling pathway that has shown to be tightly associated to 
age-related cellular changes is the Wnt/β-catenin signaling 
cascade (Decarolis et al., 2008; Hiyama et al., 2010; Stevens 
et al., 2010). Wnt/β-catenin signaling plays a functional role 
as a key regulator of self-renewal and differentiation prop-
erties in MSCs. Jeoung et al. (2014) found that activation 
of the Wnt/β-catenin pathway delays the progression of 
cellular senescence as shown by the decrease in senescence 
effectors p53 and phospho-retinoblastoma (pRb), lowered 
senescence-associated β-galactosidase (SA-β-gal) activity, 
and increased telomerase activity. In contrast, suppression 
of the Wnt pathway promoted senescence in MSCs (Jeoung 
et al., 2014). Hoffmeyer et al. (2012) also showed that Wnt/
β-catenin pathway is connected and regulates TERT ex-
pression through the interaction with Kruppel-like factor 
4 (Klf4), a core component of the pluripotency transcrip-
tional network (a schematic representation is depicted in 
Figure 2). Unfortunately, to date, the mechanism through 
which the Wnt/β-catenin signaling pathway regulates 
age-related neurogenic differentiation in MSCs still remains 
unclear and needs further investigations.

Influence of MSCs Donor Age on Cellular 
Therapy
It has been assumed that aging is presumably linked to di-
minished organ repair capacity due to reduced functionality 
of MSCs. For this reason, it should be taken into account 
that the effectiveness of MSCs-based therapies are highly in-
fluenced by donor age. There are several studies supporting 
this concept. It was observed that progressively aging murine 
BM-MSCs exhibit a decline in MSCs number, proliferation, 
differentiation, angiogenic and wound healing properties, 
along with enhanced apoptotic and senescent features 
(Kretlow et al., 2008; Choudhery et al., 2012a, b). In a study 
using adipose tissue-derived mesenchymal stem cells (AT-
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MSCs) from both young and old donors, it was observed 
that both were able to form colonies, but AT-MSC from 
younger donors produce more colonies containing larger 
numbers of cells and increased proliferative rate than those 
obtained from older donors (Alt et al., 2012). Moreover, 
AT-MSCs obtained from aged donors displayed increased 
senescent features, as indicated by the greater expression 
levels of p16 and p21 genes, which have been indicated as 
markers of senescence (Stolzing et al., 2008). In the lat-
ter study, the expression of SA-β-gal was measured and it 
was also found at higher levels in aged AT-MSCs cultures, 
while SOD activity was decreased (Stolzing et al., 2008). It 
was further identified that MSCs from elderly donors be-

came more granular and developed a more flat and larger 
morphology at passages 5–6, indicating the appearance of 
typical morphological signs of replicative senescence (Khan 
et al., 2009). Recently, in a study conducted on hBM-MSCs 
from young and old donors used to differentiate and pro-
mote neurite outgrowth from dorsal root ganglia neurons 
(DRGn), Brohlin and coworkers observed that treatment 
of hBM-MSCs with growth factors induced protein expres-
sion of the glial cell marker S100 in cultures from young 
but not old donors. However, exogenous administration 
of growth factors enhanced the levels of brain-derived 
neurotrophic factor (BDNF) and of vascular endothelial 
growth factor (VEGF) transcripts in both donor cell groups 

Figure 1 Schematic representation
illustrating some of the most common risk 
factors that contribute to the onset and/or 
progression of neurodegenerative diseases 
and the related mechanisms driving the 
neurodegenerative process. 
ROS: Reactive oxygen species; SA-β-gal: se-
nescent-associated β-galactosidase.

Figure 2 Telomerase reverse transcriptase 
(TERT)’s telomere-dependent and 
independent functions. 
The telomerase is composed of an RNA 
component, telomerase RNA or telomerase 
RNA component (TERC), which serves as a 
template for telomeric DNA synthesis, and 
a catalytic subunit, TERT. TERT besides its 
canonical function in telomere elongation 
has also a role as a transcriptional modula-
tor of the Wnt-β-catenin (β-cat) signalling 
pathway. TERT acts as a cofactor in the β-cat 
transcription complex; in this complex, 
TERT interacts with BRG1, a chromatin 
remodeling factor, to regulate the Wnt/β-cat 
signalling pathway. TERT is not only acti-
vated by the Wnt/β-cat pathway, but β-cat 
could also be directly regulated by TERT 
induction, which results in maintenance of 
telomere length. In the mitochondria, TERT 
also plays a role in regulating apoptosis in-
duced by oxidative damage of mitochondrial 
DNA (mtDNA). Oxidative stress triggers nu-
clear export of TERT to the mitochondria. 
CEN: Centromere.
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Figure 3 Influence of donor age on neurogenic potential of mesenchymal stem cells (MSCs). 
Representation of the most relevant differences between MSCs isolated from old and young donors. SA-β-gal: Senescent-associated β-galactosidase; 
SOD: superoxidedismutase.

and partly recovered stemness properties of MSCs from 
elderly, supporting the hypothesis stated above. Finally, in 
the same study it was demonstrated that MSCs co-cultured 
with DRGn significantly enhanced total neurite length only 
when obtained from young but not old donors. Moreover, 
MSCs from young donors maintained their proliferation 
rate while those from the old ones showed increased popu-
lation doubling times (Brohlin et al., 2012). These observa-
tions suggest that MSCs isolated from either young or old 
donors may benefit of a combinatorial approach to retain, 
at least in part, their regenerating properties on neurons. 
Nevertheless, to date MSCs from young donors are still to 
be considered the first choice MSCs source to use for CNS 
repair (Figure 3).

Conclusions
The fact that MSCs can be conveniently obtained from dif-
ferent accessible tissues (such as bone marrow, blood, adipose 
and dental tissue) and demonstrate neuroprotective effects, 
immunomodulatory properties and self-migratory activi-
ty, makes them an attractive therapeutic tool for potential 

application in neurodegenerative disorders. However, there 
are some critical points that still need to be clarified before 
MSC-based therapy can be adopted in clinical practice. These 
include the reduced stemness properties of MSCs isolated 
from elderly or caused by long-term expansion in vitro, which 
could result in reduced efficacy for regenerative cellular ther-
apy. The complex pathways involved in neurodegenerative 
disorders, should be evaluated with care, in the attempt 
to extend the current understanding of the pathogenesis 
of these diseases and identifying targets for intervention.
To be suitable for use inneuroregenerative therapy, the 
mechanisms that govern the self renewal capacity of MSCs 
should be characterized in depth. For this purpose, it is 
proposed that scientific effort should focus more on find-
ing the appropriate microenvironment (culture conditions) 
that more likely will allow to yield sufficient number of 
functional MSCs. As previously discussed, amolecular 
mechanism worthy of attention could be represented by 
the Wnt/β-catenin signaling pathway, whose involvement 
in triggering the shift of MSCs towards a senescent pheno-
type appears to be clear. These findings, together with the 
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evidences obtained with combinatorial approaches using 
neuroprotective agents, support the idea that trophic mole-
cules, including some neuropeptides, may elicit a regulatory 
function on the Wnt signaling cascade, which in turn, could 
be the key element in controlling MSCs senescence (Jeoung 
et al., 2014). A similar effect could be achieved by targeting 
the Wnt/β-catenin directly with Wnt analogues. Alternatively, 
another critical mechanism to target could be telomere regu-
lation, but this strategy has already reach general consensus, 
since studies on the mechanisms controlling telomere status 
and regulation in these cells have progressively gained impor-
tance in the last years.In fact, strategies to prevent telomere 
loss or to increase telomere length of MSCs may prevent 
or delay degeneration and hence the onset of symptoms in 
neurodegenerative disorders, improving the results of MSCs-
based therapetic approaches. Finally, a further and reason-
able method to expand MSCs validity in therapy could be 
represented by banking younger adipose tissue for later use. 
Preservation of MSCs at a younger age, when their biological 
utility is maximal, could provide a usable source of functional 
MSCs with full regenerative potential for future applications 
in regenerative medicine.
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