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Abstract

Herein we describe the chemical reactivity of the mononuclear [MnII(N4py)(OTf)](OTf) (1) 

complex with hydrogen peroxide and superoxide. Treatment of 1 with one equivalent superoxide 

at −40 °C in MeCN formed the peroxomanganese(III) adduct, [MnIII(O2)(N4py)]+ (2) in ~30% 

yield. Complex 2 decayed over time and the formation of the bis(μ-oxo)dimanganese(III,IV) 

complex, [MnIIIMnIV(μ-O)2(N4py)2]3+ (3) was observed. When 2 was formed in higher yields 

(~60%) using excess superoxide, the [MnIII(O2)(N4py)]+ species thermally decayed to MnII 

species and 3 was formed in no greater than 10% yield. Treatment of [MnIII(O2)(N4py)]+ with 1 
resulted in the formation of 3 in ~90% yield, relative to the concentration of [MnIII(O2)(N4py)]+. 

This reaction mimics the observed chemistry of Mn-ribonucleotide reductase, as it features the 

conversion of two MnII species to an oxo-bridged MnIIIMnIV compound using O2
− as oxidant. 

Complex 3 was independently prepared through treatment of 1 with H2O2 and base at −40 °C. The 

geometric and electronic structures of 3 were probed using electronic absorption, electron 

paramagnetic resonance (EPR), magnetic circular dichroism (MCD), variable-temperature, 

variable-field MCD (VTVH-MCD), and X-ray absorption (XAS) spectroscopies. Complex 3 was 

structurally characterized by X-ray diffraction (XRD), which revealed the N4py ligand bound in 

an unusual tetradentate fashion.
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Introduction

The diverse chemistry of manganese-dependent enzymes commonly features the reaction of 

a redox-active manganese ion with molecular oxygen or one of its reduced derivatives (i.e., 

superoxide, hydrogen peroxide, and water).1–3 For example, Mn-dependent dioxygenases4,5 

and oxalate oxidase6,7 react with molecular oxygen to perform substrate oxidations. 

Manganese superoxide dismutase3,8,9 and manganese catalase2 react with superoxide and 

hydrogen peroxide, respectively, as defence against reactive oxygen species. The 

tetramanganese cofactor in the oxygen-evolving complex of photosystem II converts water 

to O2.10,11 Finally, it was recently established that Mn-ribonucleotide reducatase (Mn-RNR) 

from Bacillus subtilis requires superoxide for the assembly of an oxo-bridged 

dimanganese(III,IV) species.12 The MnIIIMnIV form of Mn-RNR rapidly converts to a 

MnIII
2-Y• cofactor that itself generates a cysteine radical to initiate the conversion of 

nucleotides to deoxynucleotides.13–15 The molecular mechanism by which the MnIIIMnIV 

form of Mn-RNR is assembled is unknown, although a (hydro)-peroxomanganese(III) 

species was proposed as an intermediate.12

Examination of the spectroscopic properties and reactivity of Mn-containing model 

complexes has played a prominent role in advancing our understanding of Mn 

enzymes.1,2,11,16–18 With respect to Mn-RNR, for example, there are numerous model 

complexes featuring bis(μ-oxo)dimanganese(III,IV) cores that serve as potential mimics of 

the MnIIIMnIV form of the enzyme.11,19 These model complexes, which are often observed 

upon treatment of manganese(II) complexes with H2O2 at room temperature,2,19 are 

generally very stable thermodynamically. Crystal structures of these complexes reveal 

typical Mn-Mn separations of ~2.7 Å.11,19–23 Some of these bis(μ-oxo)dimanganese(III,IV) 

complexes have been shown to oxidize substrates by a H-atom transfer mechanism, thus 

mimicking tyrosine oxidation by the MnIIIMnIV form of Mn-RNR.24,25

Mononculear side-on peroxomanganese(III)26–38 and end-on 

alkylperoxomanganese(III)39–41 intermediates have also been reported and characterized. 

These intermediates can be generated from their corresponding manganese(II) precursors 

using a variety of oxidants, including superoxide, hydrogen (or alkyl) peroxide, and 

molecular oxygen. They often, but not always,30–32 are thermally unstable and must be 

formed and characterized at low temperatures. Reactivity studies of peroxomanganese(III) 

adducts have shown that the peroxo group is nucleophilic and attacks aldehydes to initiate a 

deformylation reaction.27,30,31,34,42 Notably, although several examples of oxo-bridged 

dimanganese(III,IV) and (alkyl)peroxomanganese(III) species exist, there is, to the best of 

our knowledge, limited evidence that (alkyl)peroxomanganese(III) adducts can serve as 

intermediates in the generation oxo-bridged dimanganese(III,IV) complexes.39–41

To better understand the relationship of peroxomanganese(III) and bis(μ-

oxo)dimanganese(III,IV) species, we have explored the chemical reactivity of the 

mononuclear [MnII(N4py)(OTf)](OTf) complex with superoxide and hydrogen peroxide. In 

a previous, collaborative study with Dorlet and Anxolabéhère-Mallart, we established that 

the [MnII(N4py)(OTf)](OTf) complex converts to a MnIII-O2 adduct upon treatment with 

excess superoxide (Scheme 1).28 On the basis of detailed spectroscopic and computational 
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studies of [MnIII(O2)(N4py)]+, as well as the closely related [MnIII(O2)(mL5
2)]+ and 

[MnIII(O2)(imL5
2)]+ complexes (mL5

2 = N-methyl-N,N′,N″,-tris(2-

pyridylmethyl)ethane-1,2-diamine and imL5
2 = N-methyl-N,N′,N″,-tris((1-methyl-4-

imidazolyl)methyl)ethane-1,2-diamine), we concluded that the N4py ligand in [MnIII(O2)

(N4py)]+ is bound in an unusual tetradentate fashion (termed herein κ4-N4py), whereas the 

peroxo is coordinated in a side-on (i.e., η2-O2) mode. Because tetradentate binding of the 

N4py ligand could be achieved by either dissociation of a methylenepyridine or a 

dipyridinylmethane moiety, two isomers of [MnIII(O2)(κ4-N4py)]+ are possible. Molecular 

structures of these isomers, which were previously developed using density functional 

theory (DFT) computations, are shown in Scheme 1.28 While the DFT-optimized structures 

are very similar, the [MnIII(O2)(κ4-N4py)]+ isomer with a dissociated methylenepyridine 

arm was lower in total energy by ~6 kcal/mol, and TD-DFT-computed spectroscopic 

properties for this isomer were more consistent with the available spectroscopic data. Thus, 

we favoured this isomer, but were unable to make a definitive conclusion on the basis of the 

available data.¤

In this current work, we extend our understanding of the reactivity of [MnII(N4py)(OTf)]

(OTf) by showing that this complex converts to [MnIIIMnIV(μ-O)2(κ4-N4py)2]3+ upon 

treatment with H2O2 and base even at −40 °C. Intriguingly, the [MnIIIMnIV(μ-O)2(κ4-

N4py)2]3+ complex can be formed in ~90% yield by reaction of the peroxomanganese(III) 

complex [MnIII(O2)(κ4-N4py)]+ with [MnII(N4py)(OTf)](OTf). As this reaction features the 

conversion of two MnII species to a MnIIIMnIV compound using O2
− as oxidant, it mimics 

formation of the MnIIIMnIV form of Mn-RNR.

Results and analysis

Formation and decay of [MnIII(O2)(κ4-N4py)]+

The molecular structure of [MnII(OTf)(N4py)](OTf) (1) has been previously determined by 

X-ray crystallography.43,44 In the structure, the N4py ligand is coordinated in a pentadentate 

fashion, with the four pyridine nitrogen ligands defining the equatorial plane. The amino 

group of the N4py ligand is in an axial position trans to the monodentate triflate anion (see 

Scheme 1). When 1 is treated with KO2 in MeCN at −40 °C, it converts to the 

peroxomanganese(III) complex [MnIII(O2)(κ4-N4py)]+ (2), as previously reported.28 Figure 

1 (left) shows the electronic absorption spectrum of the formation of 2 from the addition of 

one equiv. KO2 and four equiv. 18-crown-6 ether at −40 °C. The electronic absorption 

spectrum of 2 displays a prominent band at 16 200 cm−1 (617 nm) and a shoulder at 22 800 

cm−1 (438 nm). Although formation of 2 is observed using one equiv. KO2, it is not 

maximally formed under these conditions. In recent work, Anxolabéhère-Mallart and co-

workers have shown that 2 is formed in high yield using electrochemically generated O2
−.45 

In contrast, the chemical method employing one equiv. KO2 affords 2 in only a ~30% yield 

(this yield is estimated assuming 100% formation of 2 by the electrochemical method of 

Anxolabéhère-Mallart and co-workers).

¤Magnetic circular dichroism (reference 28) and electron paramagnetic resonance (this work) data collected for frozen solutions of 
[MnIII(O2)(N4py)]+ indicate only the presence of one peroxomanganese(III) unit, suggesting that a mixture of the two isomers is not 
present.
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The conditions under which 2 is maximally formed by chemical oxidation were determined 

by performing a KO2 titration on a 5 mM acetonitrile solution of 1. The intensity of the band 

at 16 200 cm−1 maximizes at two equiv. KO2 (Figure 1, left inset). The use of three equiv. 

KO2 does not noticeably increase the yield. We attribute the increased formation of 2 under 

these conditions to the instability of KO2 and not to a two-electron oxidation of 1. MCD28 

and EPR experiments45 firmly establish 2 as a high-spin MnIII complex.‡ For example, the 

parallel-mode X-band EPR spectrum of 2 displays a six-line signal centered at 84.5 mT with 

a hyperfine splitting of 6.8 mT (Figure 1, right), indicative of high-spin MnIII.37,38 The 

intensity of this signal decreases with increasing temperature (ESI; Figure S1), consistent 

with a negative axial zero-field splitting parameter (i.e., D < 0 cm−1).

Given that 2 is metastable even at low temperatures, we used electronic absorption and EPR 

spectroscopies to investigate the products formed upon thermal decay. Notably, the identity 

of the decay products depends on the amount of KO2 used to form 2. When 2 is generated in 

high yields (~60%) using 2 equiv. KO2, the peroxomanganese(III) complex decays over the 

course of 3 hours to give a solution with an ill-defined absorption spectrum (ESI; Figure 

S2). The perpendicular-mode EPR spectrum of the decayed solution of 2 in butyronitrile 

reveals the presence of MnII species. The MnIII signal at 84.5 mT, is no longer observed in 

the corresponding parallel-mode spectrum (ESI; Figure S3). We note that the MnII species 

observed under these conditions display EPR signals distinct from those of butyronitrile 

samples of [MnII(N4py)(OTf)](OTf) and MnII(OTf)2 (ESI; Figure S4).§

In contrast, when 2 is formed using 1 equiv. KO2, it decays to yield a new chromophore (3) 

with electronic absorption maxima at 15 000 and 17 700 cm−1 (667 and 565 nm; see Figure 

2, left). This spectral pattern is similar to those of bis(μ-oxo)dimanganese(III,IV) 

complexes.46–48 Indeed, independent preparation of 3 from 1 and H2O2 (vide infra) 

establishes its identity as [MnIIIMnIV(μ-O2)(κ4-N4py)2]3+. The rate of formation of 3 
increases linearly as the initial concentration of 1 increases, with a rate constant (k) of 2.12 × 

10−3 M−1 min−1 at −40 °C (ESI; Figure S5). On the basis of the extinction coefficients of 

authentic samples of 3, the decay of 2 affords only a 33% conversion to 3 (based on total Mn 

concentration). With ~30% formation of 2 under these conditions, the conversion of 2 to 3 is 

nearly quantitative. Two lines of evidence suggest the balance of Mn is present in the MnII 

oxidation state. First, the perpendicular-mode EPR spectrum of the solution following the 

decay of 2 shows a sixteen-line signal typical of bis(μ-oxo)dimanganese(III,IV) 

complexes,22,48,49 but also present are broader features from MnII species (Figure 2, right). 

Second, we determined the average oxidation state of the manganese species in the decay 

solution through an iodometric analysis.50 In this procedure, the decay solution, which has a 

known manganese concentration, was treated with excess tetrabutylammonium iodide and 

‡An alternative explanation for the maximum chemical formation of 2 with two equiv. KO2 is that 2 is actually formed by the reaction 
of 1 with peroxide generated by O2− disproportionation. According to this model, the use of 2 equiv. KO2 would result in 66% 
formation of 2, consistent with the experimental results. However, under this scenario, the formation of 2 would be maximized at 3 
equiv. KO2, which is not observed. It is possible that an excess of KO2 is required to maximize the formation of 2 because 1 has 
modest O2− scavenging activity.
§The electronic absorption spectrum of the decayed solution shows two weak bands at 15 000 and 17 700 cm−1, indicating that 2 
decayed to 3 in no greater than 10% yield, based on the total Mn concentration (vide infra). However, the perpendicular-mode EPR 
spectrum of this solution reveals that the yield of 3 is likely much lower than 10%, as only a weak, broad multi-line signal is observed 
at 345 mT, where the 16-line signal of 3 would be expected (ESI; Figure S3).
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glacial acetic acid. The triiodide produced upon reaction with the manganese species was 

quantified using the electronic absorbance bands of triiodide at 295 and 365 nm; this gave an 

average oxidation state of manganese in solution of 2.48 ± 0.02. This average oxidation state 

can be well accounted for considering 33% MnIIIMnIV from 3 and 67% MnII, which gives 

an average oxidation state of 2.49.

When the peroxomanganese(III) complex 2 is formed using 2 equiv. KO2, it can be 

converted to 3 by treatment with the MnII starting material 1. In this reaction, 2 was initially 

formed in ~60% yield (0.006 mmol) by adding 2 equiv. KO2 to a 5 mM solution (0.010 

mmol) of 1. When 0.010 mmol 1 were added to the solution containing 2, 0.0027(3) mmol 

(1.2 ± 0.1 mM) of 3 were rapidly produced (ESI; Figure S6). Thus, approximately 90% of 

the Mn in the form of 2 is converted to the dimeric complex 3. The same quantity of 3 is 

formed when 0.5 equiv. 1 was added to 2, indicating that the formation of 3 is dependent on 

the amount of complex 2 formed by the chemical oxidation of 1. No spectral changes were 

observed when five equiv. 1 were added to an acetonitrile solution of 3 at 25 °C.

Formation of 3 using H2O2

The oxo-bridged dimanganese(III,IV) complex 3 can be independently prepared in high 

yield by treatment of 1 with H2O2. Specifically, when 5 equiv. 30% H2O2 and 0.5 equiv. 

Et3N are added to an aqueous solution of 1 at 5 °C, complex 3 is formed quantitatively. 

Under these conditions, 3 is stable in solution at 25° C for at least 15 hours (we have not 

monitored the solution stability of 3 past 15 hours). The molar extinction coefficients, 

determined by dissolving isolated 3 in MeCN, are 830 M−1 cm−1 and 680 M−1 cm−1 for the 

electronic absorption bands at 17 700 and 15 000 cm−1, respectively. The perpendicular-

mode EPR spectrum of isolated 3 in butyronitrile reveals the same 16-line signal as the EPR 

spectrum of 3 from the conversion of 2; however, no broad signals from MnII species are 

observed for the isolated sample of 3 (Figure 2A and 2B). Complex 3 can also be formed in 

an analogous reaction in MeCN, albeit with ~50% yield. Without the addition of Et3N, 3 is 

formed in ~30% yield in MeCN over the course of 12 hours, although a large excess of 

H2O2 (250 equiv.) and lower temperatures (−25 °C) are required. The average oxidation 

state of the manganese centres in a CH2Cl2 solution of recrystallized 3 was determined to be 

3.4 ± 0.3 using an iodometric technique.50

Because urea-H2O2, which serves as an anhydrous source of H2O2, was previously used to 

generated a peroxomanganese(III) adduct using the closely related, pentadentate mL5
2 

ligand, 28 we investigated the reactivity of 1 with this oxidant. Treatment of a 7.5 mM 

acetonitrile solution of 1 at −18 °C with 50 equiv. urea-H2O2 changed the originally 

colorless solution to green. After the solution was filtered into a pre-cooled UV-Vis cuvette 

at −20 °C, electronic absorption spectroscopy was used to monitor the course of the reaction. 

The electronic absorption data showed an initial broad feature at ~16 200 cm−1, with a small 

shoulder around ~17 700 cm−1. The intensity of the band at ~16 200 cm−1 is indicative of 

formation of 2 in ~3% yield relative to 1. This spectrum resembled a mixture of complexes 2 
and 3 (Figure 3, top). As time progressed, the visible feature at ~16 200 cm−1 lost intensity 

while the visible features at ~15 000 and ~17 700 cm−1 gained intensity (Figure 3, bottom). 

After four hours, the formation of 3 was completed, with a conversion of ~42%. To explore 
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the effect of a stronger base on this process, 1 was incubated with 0.5 equiv Et3N and then 

treated with an excess of urea-H2O2. In this reaction, the formation of 3 was completed in 10 

minutes, and 3 was formed in higher yield (~57%).

The effect of water on the formation of 2 and its conversion to 3 using H2O2-urea was 

investigated by treating the initial solution of 1 with 50 μL H2O (55 equiv.) before the 

addition of solid H2O2-urea. Initially a small amount of 2 formed in ~4% yield relative to 1 
with a final conversion to 3 of ~32%, relative to the total Mn concentration. The formation 

of a small amount of 2 with and without excess water in solution using H2O2-urea as the 

oxidant was surprising because the formation of 2 was not observed when aqueous H2O2 

(with Et3N) was used as the oxidant.

Characterization of 3 by MCD spectroscopy

Low-temperature MCD and variable-temperature, variable-field (VTVH) MCD data were 

collected on a 2.5 mM frozen solution of 3 in butyronitrile. Figure 4 shows both the 295 K 

electronic absorption and 7 T, VT MCD spectra of 3 (top and bottom, respectively). 

Whereas the electronic absorption spectrum consists of two maxima at 15 000 and 17 700 

cm−1, the 7 T MCD spectra display a series of five features from 11 000 – 28 000 cm−1. 

VTVH MCD data collected at 16 500 cm−1 (Figure 4, bottom inset) were best fit with an S = 

1/2 spin state, consistent with the EPR data. Moreover, the MCD spectrum is very similar to 

those reported for other bis(μ-oxo)dimanganese(III,IV) complexes.47 Specifically, the MCD 

spectrum of complex 3 exhibits a pseudo-A term centred at 16 000 cm−1, characteristic of 

bis(μ-oxo)dimanganese(III,IV) complexes. A Gaussian deconvolution of the MCD spectrum 

of 3 revealed 10 bands below 28 000 cm−1 (ESI; Figure S7 and Table S1). In an analysis of 

the MCD spectra of the bis(μ-oxo)dimanganese(III,IV) complexes [Mn2O2(cyclam)2]3+ 

(cyclam = 1,4,8,1 l-tetraazacyclotetradecane), [Mn2O2(bipy)4]3+ (bipy = 2,2′-bipyridine), 

and [Mn2O2(phen)4]3+ (phen = 1,10-phenanthroline), Gamelin et al. resolved 13 Gaussian 

bands.47 Compared to this previous work, two of the low-energy bands (<12 000 cm−1) and 

one high-energy band (>28 000 cm−1) are not resolved in the MCD spectrum of 3. 

Nonetheless, the energies of the resolved bands are very similar to those of 

[Mn2O2(cyclam)2]3+, further supporting the formulation of 3 as [MnIIIMnIV(μ-

O)2(N4py)2]3+.

Structural characterization of 3 by X-ray diffraction

The structure of 3 was established using X-ray crystallography (Figure 5). Crystals of 3 
suitable for such experiments were only obtainable through the addition of a saturated 

aqueous solution of NBu4PF6 to aqueous solutions of 3. Consequently, solid-state crystal 

structures were determined for two polymorphic salts of the mixed-oxidation state dimeric 

cation 3, obtained from separate batches of complex 3 that differ by the types of counter 

anions, [MnIIIMnIV(μ-O)2(κ4-N4py)2](OTf)2.8(PF6)0.2 (3a) and [MnIIIMnIV(μ-O)2(κ4-

N4py)2](PF6)3 (3b). Only one polymorph of complex 3 has a crystallographic inversion 

centre (3a).

Even though complex 3 is not symmetric, the metrical differences for the two halves of the 

dimer are expected to be small. The fact that there are small differences in the two similar 
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halves of a rather large molecule might preclude observing them in a crystal structure 

determination due to packing disorder.51–53 Both salts contain disordered anions with 

(heavier) P or S atoms and 3a also contains a disordered metal dimer. Nonetheless, it was 

possible to locate hydrogen atoms for the noncoordinating pyridine ligands of 3a, which 

permitted an unambiguous identification of carbon and nitrogen atoms. Even with the 

presence of severely disordered hexafluorophosphate anions and a water solvent molecule of 

crystallization, the structure of the second polymorphic form 3b clearly shows the 

anticipated effects of different metal oxidation states and allows one to distinguish the 

axially elongated Mn(III) centre Mn(2) from the Mn(IV) centre Mn(1) (Table 2). Since the 

dimer is disordered in 3a, the Mn(III)- and Mn(IV)-ligand bond distances and angles are 

essentially averaged in the crystal structure and agree well with the metrical parameters 

determined from the EXAFS data for 3 (vide infa), which likewise represent average Mn-

ligand interatomic distances. The metrical parameters determined for 3a are also in good 

agreement with the average metal-to-ligand bond lengths and angles for both metals in 3b 
(Table 1).

The XRD structure of 3 clearly establish the κ4-N4py motif, which was previously proposed 

for 2.28 The dissociation of a pyridine arm in a bis(μ-oxo)dimanganese complex is not 

unprecedented. Anderlund and co-workers recently described two bis(μ-

oxo)dimanganese(IV,IV) complexes supported by the pentadentate N4O bpmg and mcbpen 

ligands (bpmg = 2-[[2-[bis(pyridin-2-ylmethyl)amino]ethyl](methyl)amino]acetic acid, and 

mcbpen = N-methyl-N′-carboxymethyl-N,N′-bis(2-pyridylmethyl)ethane-1,2-diamine) that 

likewise feature noncoordinating pyridine arms in the XRD structures.54

Structural characterization of 3 by Mn-K edge X-ray absorption spectroscopy

Further structural characterization of 3 was obtained by X-ray absorption studies at the Mn 

K-edge. The X-ray absorption near edge spectrum (XANES) of 3 exhibits a single pre-edge 

feature, presumably from a 1s – 3d transition, at 6541.4 eV (Figure 6). For comparison, the 

XANES spectra44 of [MnII(N4py)(OTf)]+ (1+) and [MnIV(O)(N4py)]2+ are included in 

Figure 6 and discussed below. The edge energy of 3, fit to the maximum of the first 

inflection point, was 6550.6 eV, which is in good agreement with the edge energies of other 

synthetic MnIIIMnIV complexes (~6549.7 eV; see Table 2), as well as the superoxidized 

(i.e., MnIIIMnIV) form of Mn-catalase (6549.2 eV).55 The Fourier transform (R′ space) of 

the extended X-ray absorption fine structure (EXAFS) data for 3 has two principal peaks 

centred at R′ = 1.3 and 2.4 Å (Figure 7, bottom). These features are well fit with six shells of 

scatterers (Table 3). The short shell of O scatterers at 1.79 Å corresponds to the bridging 

oxygen atoms observed with average Mn-O distances of 1.81 Å in the XRD structures. The 

EXAFS shells at 2.00 and 2.17 Å are in good agreement with the average distances of the 

equatorial and axial nitrogen atoms from the Mn ions in the XRD structures (Table 1). The 

most prominent peak in the Fourier transform at R′ = 2.4 Å is due to the strong Mn•••Mn 

scattering, which requires one Mn at 2.63 Å. The inclusion of two outer-sphere shells of 

carbon scatterers at 2.81 and 2.96 Å significantly improves the GOF; however, the number 

of carbon atoms in each shell does not have a large effect on the quality of the fit (ESI; 

Table S2).
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Discussion

The reactivity of a mononuclear MnII complex, supported by a pentadentate aminopyridyl 

ligand, with superoxide and hydrogen peroxide (with base) at low temperatures revealed a 

reaction landscape that, to the best of our knowledge, is unique amongst synthetic MnII 

complexes. A MnIII-O2 species was generated from the addition of superoxide to a solution 

of [MnII(N4py)(OTf)]+ and this species was subsequently shown to react with additional 

[MnII(N4py)(OTf)]+ to form a heterovalent bis(μ-oxo)dimanganese(III,IV) complex. This 

oxo-bridged dimer was also generated by treating [MnII(N4py)(OTf)]+ with excess 

hydrogen peroxide and was characterized structurally and spectroscopically. Notably, these 

chemical conversions require flexibility in the denticity of the N4py ligand, which changes 

from pentadentate in the MnII complex to tetradentate in the MnIII-O2 and oxo-bridged 

MnIIIMnIV species. Such change in ligand denticity has been termed flexidentate by Stratton 

and Busch.57 The tetradentate binding of the N4py ligand in the peroxomanganese(III) 

complex [MnIII(O2)(N4py)]+ is supported by previous spectroscopic and computational 

studies;28 however, those studies were unable to definitively establish which type of 

pyridine group (i.e., methylenepyridine or pyridinylmethane) is dissociated. Given that the 

XRD structure of 3 shows dissociation of one of the pyridinylmethane moieties, it appears 

most probable that the same type of pyridine arm is noncoordinating in the corresponding 

peroxomanganese(III) complex.

While the peroxomanganese(III) complex 2 can be readily generated chemically from 1 
using a molar excess of KO2, the reaction of 1 with either aqueous H2O2 in the presence of 

base or H2O2-urea generates 3 even at low temperatures. This is in contrast to a number of 

MnII complexes, also supported by aminopyridyl ligands, that react with either KO2 or 

H2O2 and base, to generate MnIII-O2 adducts at low temperatures (−20 to −40 

°C).26–29,31,37,38 Indeed, the closely related complexes [MnII(mL5
2)]2+ and 

[MnII(imL5
2)]2+, which also feature pentadentate N5 ligands (Figure 8), react with H2O2 at 

−20 to −40 °C to give peroxomanganese(III) adducts.28,37,38 On the basis of detailed 

spectroscopic and computational studies of the [MnIII(O2)(mL5
2)]+ and [MnIII(O2)(imL5

2)]+ 

complexes, the mL5
2 and imL5

2 ligands are bound in a tetradentate fashion.28 For 

[MnII(mL5
2)]2+, formation of the peroxomanganese(III) complex is most effective using 

H2O2-urea as the oxidant.38 Electronic absorption data provides evidence for the generation 

of a small amount of 2 within 60 seconds of reaction of 1 with H2O2-urea, but this species is 

quickly overcome by the formation of 3 (Figure 3). On the basis of these limited data, it is 

not clear whether or not the MnIII-O2 adduct is an intermediate en route to formation of 3 
when H2O2-urea is the oxidant.

While there are myriad reports on the formation of oxo-bidged dimanganese compounds by 

reaction of mononuclear MnII species with H2O2,1,2,11,47 the exact mechanism by which the 

dimeric species are formed is not well established.58–60 Given that the MnIII-O2 adducts of 

N4py, mL5
2, and imL5

2 all feature supporting ligands bound in a tetradentate fashion 

through dissociation of a pyridylmethyl or imidazolylmethyl arm, differences in the 

dissociation rates of these arms would be reasonably expected to impact the formation of the 

MnIII-O2 species and thus influence how these complexes react with different oxidants. The 

N4py ligand, which consists of four pyridyl arms from a central tertiary amine (Scheme 1), 
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has a fundamentally different structure than the mL5
2 and imL5

2 ligands that feature a 

central ethylenediamine moiety (Figure 8). The different structures of these ligands could 

impact the dissociation rates of the pyridylmethyl or imidazolylmethyl arms. Any discussion 

of the specific elementary steps impacted by dissociation of these arms would be overly 

speculative, however, as the mechanism (or mechanisms) for formation of MnIII-O2 adducts 

by reaction of MnII precursors with H2O2 and base is not established.

XAS comparison of MnII, oxo-bridged MnIIIMnIV, and terminal MnIV=O species

For comparison of this series of complexes supported by the N4py ligand, the XANES 

spectra of a frozen aqueous sample of 1 and a frozen CF3CH2OH sample of [MnIV(O)

(N4py)]2+ (4) (Figure 6) and the EXAFS data and fits (ESI; Table S3 and Figure S8) are 

considered.44 Relative to 1, the Mn K-edge energies of 3 and 4 are blue-shifted by over 3 

eV, consistent with the higher oxidation state of Mn in the two latter compounds. The pre-

edge feature of 4 is at a higher energy and intensity than those of 3 and 1 (Table 2). 

However, the variation in pre-edge position and height among this series are fairly modest, 

especially between the 4 and 3, which is consitent with the XANES of 3 being reflective of 

an average of the MnIII and MnIV properties.

Formation of [MnIIIMnIV(μ-O)2(N4py)2]3+ from [MnII(N4py)(OTf)]+ and Superoxide

In the currently proposed mechanism for cofactor assembly in Mn-RNR, a dinuclear MnII 

centre reacts with O2
− to generate a bis(μ-oxo)dimanganese(III,IV) species.12,14,15 Our 

observation that 1 converts to 3 upon reaction with a limiting amount of O2
− mimics this 

chemistry. In this process, the MnIII-O2 complex serves as an intermediate. We propose that 

the nucleophilic peroxo ligand on 2 reacts with the MnII centre in 1 to form 3. This proposal 

is consistent with the following observations: i) 2 does not decay to 3 in significant 

quantities when the former is generated in higher yields, ii) the addition of 1 to 2 leads to the 

formation of 3 in ~90% yield relative to the amount of 2 generated, and iii) equal amounts of 

3 are produced when either 0.5 or 1 equiv. 1 is added to 2 (i.e., the formation of 3 is limited 

by the amount of 2).

The reactivity of 1 with superoxide is highly reminiscent of previous work done 

independently by Dismukes58 and Perrée- Fauvet60 using MnII(TPP) (TPP = 

tetraphenylporphyrin). In both cases, a [MnIIIMnIV(μ-O)2(TPP)]− species, formulated on the 

basis of EPR data, was proposed to form upon reaction of [MnII(TPP)] with O2
−. Notably, 

the formation of the MnIIIMnIV dimer was only observed when the ratio of O2
− to 

[MnII(TPP)(py)] was 0.5:1.60 When a 1:1 ratio was used, the [Mn(O2)(TPP)]− species was 

presumed to form in high yield and the MnIIIMnIV dimer was not observed. Our current 

work thus extends this prior base of knowledge to a non-porphyrinoid manganese system 

and provides further details on these transformations.

It is tempting to speculate that the reaction between 1 and 2 to produce 3 proceeds through a 

dinuclear peroxo-bridged intermediate [MnIIMnIII(μ-O2)(κ4-N4py)2]3+ (Scheme 2).58,60 

Two electrons are required to convert the peroxo ligand to the two oxo ligands in 

[MnIIIMnIV(μ-O)2(κ4-N4py)2]3+. The MnII and MnIII centres of the peroxo-bridged 

intermediate could each provide an electron to cleave the peroxo bond, resulting in the 
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formation of 3. Labelling experiments with K18O2 could, in principle, be used to establish 

the origin of the bridging oxo ligands in 3. However, in practice, these experiments were 

complicated due to the limited solubility of superoxide without excess 18-crown-6 ether 

present in solution. When 18-crown-6 ether was added to increase the solubility of K18O2, 

the ESI-MS data were dominated by the 18-crown-6 ether signal.

Groni et al. proposed the formation of a homovalent dinuclear peroxo-bridged intermediate, 

[MnIIIMnIII(μ-O2)(mL5
2)2]4+, en route to the formation of bis(μ-oxo)dimanganese(III,IV) 

product, [MnIIIMnIV(μ-O2)(mL5
2)2]3+.38 They suggested that this peroxo-bridged 

dimanganese(III,III) intermediate is formed by the reaction of [MnIII(O2)(mL5
2)]+ with 

[MnIII(OH2)(mL5
2)]3+ in a basic aqueous medium.38 Unsupported peroxo-bridged 

dimanganese complexes are rather rare. To the best of our knowledge, the only well-

characterized example of an unsupported peroxo-bridged dimanganese complex was 

reported earlier this year by Coggins et al.40 The {[MnIII(SMe2N4(6-Me-DPEN)]2(trans-

μ-1,2-O2)}2+ (6-Me-DPEN = N,N-Bis(6-methyl-2-pyridilmethyl)ethane-1,2-diamine) 

complex features a peroxo ligand bridged between two MnIII ions in an end-on trans-μ-1,2-

fashion.40 A peroxo-bridged Mn cluster, the trinuclear Mn2
III μ-peroxo complex 

[Mn3(dien)2(OAc)2(μ-O2)Cl](ClO4)2 (dien = diethylenetriamine),61 and a bis(μ-

oxo)dimanganese(IV,IV) complex with a cis-μ-1,2-peroxo bridge, [L2Mn2(μ-O)2(μ-O2)]

(ClO4)2 (L = 1,4,7-trimethyl-1,4,7-triazacyclononane), 62 have also been described.

Conclusion

The reactivity of [MnII(N4py)(OTf)]+ with superoxide and hydrogen peroxide is unique 

among synthetic mononuclear MnII complexes as a peroxomanganese(III) intermediate was 

formed from the reaction of 1 with superoxide, whereas a heterovalent bis(μ-

oxo)dimanganese(III,IV) complex was formed in high yields from the reaction of 1 with 

hydrogen peroxide and base. The MnIII-O2 intermediate was converted to the heterovalent 

oxo-bridged manganese(III,IV) dimer by a subsequent reaction with [MnII(N4py)(OTf)]+. 

This conversion of two MnII species to an oxo-bridged MnIIIMnIV compound using O2
− as 

oxidant mimics the formation of the MnIIIMnIV form of Mn-RNR. The oxo-bridged dimer 

was characterized structurally and spectroscopically, which revealed a change in denticity of 

the N4py ligand from pentadentate in the MnII complex to tetradentate in the oxo-bridged 

dimer.

Experimental

Materials and methods

All chemicals and solvents were obtained from commercial vendors and were ACS reagent-

grade or better and used as received. Electronic absorption spectra were obtained on either a 

Varian Cary 50 Bio or an Agilent 8453 spectrophotometer, both of which were interfaced 

with a Unisoku cryostat (USP-203-A) capable of maintaining temperatures between 150 and 

373 K. Mass spectrometry experiments were performed using an LCT Primers MicroMass 

electrospray time-of-flight instrument.
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Synthesis

The synthesis of N4py ligand was performed according to a previously described 

procedure.63,64 1 was synthesized by reacting N4py ligand with MnII(OTf)2 in an 

acetonitrile (MeCN) solution in a 1:1 molar ratio as previously reported.28

3 was synthesized as follows. Five equiv. H2O2 (30% aqueous) and 0.5 equiv. triethylamine 

(Et3N) were slowly added to a 36 mM aqueous solution of [MnII(N4py)(OTf)](OTf) (1) at 5 

°C while stirring. The solution instantly changed from colorless to dark forest green and gas 

evolution was observed. After stirring for one hour, the water was removed in vacuo. The 

solid was redissolved in cold MeCN and a precipitate was formed from the solution by 

layering with cold ether. The solvent was decanted and the precipitate was washed with cold 

ether and dried (yield 95%). ESI-MS data were as follows: {[MnIIIMnIV(μ-O)2(N4py)2]

(OTf)2}+ m/z = 1174.1285 (calc 1174.1305). To grow X-ray diffraction quality crystals, an 

aqueous solution of 3 (25 mM) was treated with a saturated aqueous solution of 

tetrabutylammonium hexafluorophosphate (NBu4PF6) dropwise at 5 °C and was stirred for 

30 minutes. The green precipitate that formed was isolated by filtration, rinsed with ether, 

and dried in vacuo. Recrystallization of the crude solid from butyronitrile (PrCN)-diethyl 

ether afforded dark green crystals of [MnIIIMnIV(μ-O)2(N4py)2](PF6)3. Elemental analysis 

[MnIIIMnIV(μ-O)2(N4py)2](PF6)3•C4H7N•C4H10O: C54H59F18Mn2N11O3P3 calc (%): C 

44.58, H 4.09, N 10.59; found (%): C 44.46, H 4.07, N 10.49.

The average oxidation state of the Mn in 3 was determined using an iodometric technique.50 

A 2.5 mM solution of recrystallized 3 was prepared in CH2Cl2 and a 0.25 mL aliquot of this 

solution was transferred to a 10 mL volumetric flask containing 0.25 mL glacial acetic acid 

and 4.8 mg tetrabutylammonium iodide. The volume was then adjusted to 10 mL with 

CH2Cl2. The bright yellow solution was mixed and the absorbance was measured in a 0.5 

cm cuvette at 25 °C immediately after mixing. The triiodide produced was quantified by 

measuring the absorbance of the solution at 295 and 365 nm and the final oxidation state of 

the manganese was determined by the ratio of the triiodide liberated and the Mn 

consumed.50 The average oxidation state of the Mn in recrystallized 3 was 3.4 ± 0.3 

(average of four separate experiments).

A similar method was followed to determine the average oxidation state of the Mn in 

solution following the reaction of 1 with one equiv. KO2 at −40 °C. For this reaction, a 5 

mM MeCN solution of 1 was treated with one equiv. KO2 at −40 °C. The reaction was 

monitored by electronic absorption and after six hours, the formation of 3 was complete. A 

0.25 mL aliquot was quickly transferred to a 10 mL volumetric flask containing 0.25 mL 

glacial acetic acid and 4.8 mg tetrabutylammonium iodide. The volume was then adjusted to 

10 mL with CH2Cl2. The bright yellow solution was mixed and the absorbance was 

measured in a 0.5 cm cuvette at 25 °C immediately after mixing. The average oxidation state 

of the Mn in the reaction mixture was 2.48 ± 0.02 (average of two separate experiments).

X-Ray Diffraction Experiments for [Mn(O)(C23H21N5)]2•2.8 CF3SO3•0.2 PF6•2 CH3CN (3a)

Green single crystals of the CH3CN solvated mixed salt, [Mn(O)(C23H21N5)]2 • 2.8 CF3SO3 

• 0.2 PF6 (3a), obtained from slow diffusion of diethyl ether into an acetonitrile solution of 3 
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at −20 °C, are at 100(2) K, triclinic, space group P 1̄ – Ci
1 (No. 2) with a = 11.0548(5) Å, b 

= 11.7210(4) Å, c = 12.1500(4) Å, α = 96.673(2)°, β = 105.695(3)°, γ = 91.203(3)°, V = 

1503.1(1) Å3 and Z = 1 formula units {dcalcd = 1.552 g/cm3; μa(CuKα) = 5.235 mm−1}. A 

full set of unique diffracted intensities (5685 frames with counting times of 5 to 12 seconds 

and an ω- or ϕ-scan width of 0.50°) was measured65 for a single-domain specimen using 

monochromated CuKα radiation (λ= 1.54178 Å) on a Bruker Proteum Single Crystal 

Diffraction System equipped with Helios multilayer optics, an APEX II CCD detector and a 

Bruker MicroSTAR microfocus rotating anode x-ray source operating at 45kV and 60mA. 

All entities appear to be disordered. The Mn(III)/Mn(IV) mixed-valence {[Mn(O)

(C23H21N5)]2}3+ cationic dimer utilizes a crystallographic inversion center at (0, ½, ½) in 

the unit cell. The first triflate anion has two (61%/39%) different orientations in the 

asymmetric unit. The second triflate is disordered about a crystallographic inversion center 

at (0, 1,0) in the unit cell and shares this volume with a [PF6]− anion 20% of the time. The 

final structural model incorporated anisotropic thermal parameters for all nonhydrogen 

atoms of the metal dimer, CH3CN solvent molecule, both partial-occupancy orientations for 

the first [O3SCF3]− anion, the S and three F atoms of the second [O3SCF3]− anion and the P 

atom of the [PF6]− anion. Isotropic thermal parameters were utilized for the oxygen and 

carbon atoms of the second [O3SCF3]− anion, the F atoms of the [PF6]− anion and all 

hydrogen atoms of the metal dimer and CH3CN solvent molecule of crystallization.

Surprisingly, even with all of this disorder, a difference Fourier clearly revealed all of the 

hydrogen atoms bonded to carbon atoms in the dimer. This permitted identification of the 

non-coordinated nitrogen atom N(5) since it had no significant residual electron density near 

it but carbon atom C(20) did. The hydrogen atoms were initially included in the structural 

model as individual isotropic atoms whose parameters were allowed to vary in least-squares 

refinement cycles. They were later placed at fixed idealized positions (sp2- or sp3-hybridized 

geometry and C-H bond lengths of 0.95 – 1.00 Å) with variable isotropic thermal 

parameters. The acetonitrile methyl group was incorporated in the structural model as a rigid 

group (using idealized sp3-hybridized geometry and C-H bond lengths of 0.98 Å) with 

idealized “staggered” geometry. The methyl hydrogen atoms were assigned fixed isotropic 

thermal parameters with values 1.50 times the equivalent isotropic thermal parameter of the 

methyl carbon atom. The bond lengths and angles for the second triflate and the minor-

occupancy (39%) orientation for the first triflate were restrained to have values similar to 

those for the major-occupancy (61%) orientation of the first triflate anion. Octahedral 

geometry was imposed on the [PF6]− anion by restraining the nonbonded F---F distances to 

be appropriate multiples of a free-variable P-F bond length that refined to a final value of 

1.36(1) Å. The anisotropic thermal parameters of the second triflate sulfur atom, S(2), and 

the [PF6]− phosphorus atom, P, were also restrained to have identical values.

X-Ray Diffraction Experiments for [Mn(O)(C23H21N5)]2 • 3 PF6 • 0.5 H2O (3b)

Green single crystals of the hydrated salt, [Mn(O)(C23H21N5)]2 • 3 PF6 • 0.5 H2O (3b), 

obtained from slow diffusion of diethyl ether into butyronitrile solution of 3 at −20 °C, are at 

100(2) K, monoclinic, space group P21/c – C2h
5 (No. 2) with a = 25.7399(6) Å, b = 

12.5771(3) Å, c = 17.9093(4) Å, β = 105.427(1)°, V = 5588.9(2) Å3 and Z = 4 formula units 

{dcalcd = 1.568 g/cm3; μa(CuKα) = 5.472 mm−1}. A full set of unique diffracted intensities 
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(5575 frames with counting times of 5 to 12 seconds and an ω- or ϕ-scan width of 0.50°) 

was measured65 for a single-domain specimen using monochromated CuKα radiation (λ= 

1.54178 Å) on a Bruker Proteum Single Crystal Diffraction System equipped with Helios 

multilayer optics, an APEX II CCD detector and a Bruker MicroSTAR microfocus rotating 

anode x-ray source operating at 45kV and 60mA. Since the second PF6
− anion (containing 

phosphorus atom P2) in this structure is bonded to itself across a crystallographic inversion 

center it must be disordered. A common occupancy factor for the seven nonhydrogen atoms 

of this anion refined to 0.51. The occupancy factors were therefore fixed at 0.50 in 

subsequent refinement cycles. The P1 phosphorus atom of the first PF6
− anion occupies 

another crystallographic inversion center. There are therefore a total of three (two half 

occupancy and two full occupancy) PF6
− anions per Mn dimer and this is critical to the 

proper identification of the dinuclear cation with Mn(III) and Mn(IV) metals bridged 

unsymmetrically by two O2− ligands. The asymmetric unit also contains two partial-

occupancy water molecules of crystallization in the vicinity of the half-occupancy PF6
− 

anion. These water solvent molecules of crystallization are disordered equally between two 

closely spaced (1.87 Å) sites in the unit cell and presumably represent a half-occupancy 

water that occupies the same space as the disordered half-occupancy PF6
− anion; each water 

oxygen site is occupied a fourth of the time. Whereas the various metric parameters for the 

anions could have been restrained to have more uniform values, this was not done because it 

was felt that this might bias the structural results since one must correctly identify the 

number and nature of the anions in this structure to properly identify the cationic dimer. 

Nitrogen atoms in the non-coordinated pyridine rings were identified based on the values of 

equivalent isotropic thermal parameters with all ring atoms modeled as carbon; these also 

corresponded to the ring orientations observed for compound 3a where ring hydrogens were 

observed in a difference Fourier.

The final structural model incorporated anisotropic thermal parameters for all nonhydrogen 

atoms and isotropic thermal parameters for all hydrogen atoms of the metal dimer. 

Hydrogen atoms were included in the structural model for the dimer at fixed idealized 

positions (sp2- or sp3-hybridized geometry and C-H bond lengths of 0.95 – 1.00 Å) with 

isotropic thermal parameters fixed at values 1.2 times the equivalent isotropic thermal 

parameter of the carbon atom to which they are covalently bonded. The pyridine ring 

containing carbon atoms C(2B)-C(6B) appears to be disordered between two closely-

separated sites. The anisotropic thermal parameters for five carbon atoms [C(3B), C(4B), 

C(5B), C(6B) and C(22B)] were mildly restrained to have more isotropic values. Hydrogen 

atoms were not located or included for the disordered partial-occupancy water molecules of 

crystallization.

CCDC-936496 contains the supplementary crystallographic data for [Mn(O)(C23H21N5)]2 - 

2.8 CF3SO3 - 0.2 PF6 (3a) and CCDC-936497 contains the supplementary crystallographic 

data for [Mn(O)(C23H21N5)]2 - 3 PF6 (3b). This data can be obtained free of charge from 

the Cambridge Crystallographic Data Centre via www.cccdc.cam.ac/data_request/cif.
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EPR spectroscopy

Samples of 2 were prepared as follows. Two equiv. KO2, in the form of a solution prepared 

from 14.2 mg KO2 and 200 mg 18-crown-6 dissolved in 2 mL butyronitrile, were added to a 

5 mM solution of [MnII(N4py)(OTf)2] (1) in butyronitrile at −40 °C. Once formation of 

[MnIII(O2)(N4py)]+ (2) was judged complete by electronic absorption spectroscopy, the 

sample was further cooled to −80 °C, and ~250 μL were transferred to a pre-cooled 4 mm 

quartz EPR tube maintained at −80 °C using a cold ethanol bath. The sample was then flash-

frozen in liquid N2. An EPR sample of 3 was prepared by transferring 250 μL of a 0.5 mM 

solution of 3 in butyronitrile to a 4 mm quartz EPR tube, and flash-frozen in liquid N2. All 

EPR spectra were collected on an X-band (9 GHz) Bruker EMXPlus spectrometer equipped 

with an Oxford ESR900 continuous-flow liquid helium cryostat and an Oxford ITC503 

temperature system to monitor and regulate the temperature. A dual mode cavity (Bruker 

ER4116DM) was used for perpendicular and parallel mode detection. Spectra were recorded 

under non-saturating conditions using 100 kHz field modulation. Other parameters 

(microwave frequency, modulation amplitude, microwave power, time constant, conversion 

time, sweep rate, and field resolution) are given in the captions of the appropriate figures. 

The baseline contribution was insignificant and so, a blank spectrum was not subtracted 

from the spectra.

Mn K-edge X-ray absorption spectroscopy

An XAS sample of 3 was prepared from a 30 mM aqueous solution of the complex. 

Approximately 150 μL of this solution were transferred to a sample holder covered with 

Kapton tape and the sample was flash-frozen in liquid N2.

XAS data collection

XAS spectra were recorded on beamline X3B at the National Synchrotron Light Source 

(NSLS), Brookhaven National Lab (storage ring conditions, 2.8 GeV, 100 – 300 mA). Mn 

K-edge X-ray absorption spectra were recorded on frozen solutions maintained at 25 K with 

a helium Displex closed-cycle cryostat over the energy range 6.4 – 7.4 keV (Si(111) 

monochromater). Data were obtained as fluorescence excitation spectra using either a solid-

state 13-element germanium detector (Canberra). Contamination of higher harmonics 

radiation was minimized by using a harmonic rejection mirror. Background fluorescence 

signal was reduced by use of a 6 μm chromium filter. A manganese foil spectrum was 

recorded concomitantly for internal energy calibration and the first inflection point of the K-

edge energy was assigned to 6539.0 eV. Spectra were measured with 5 eV steps below the 

edge, 0.3 eV steps in the edge region, and steps equivalent to 0.05 Å−1 increments above the 

edge (region borders were 6354, 6529, and 6554 eV). The XAS spectrum of complex 3 (30 

mM in H2O) represents the average of 9 scans.

XAS data analysis

XAS data reduction and averaging were treated entirely using the program EXAFSPAK.66 

Pre-edge background intensity was removed by fitting a Gaussian function to the pre-edge 

background and subtracting this function from the whole spectrum. The spectrum was then 

fit with a three-segment spline with fourth-order polynomial components to remove low-
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frequency background. EXAFS refinement was carried out on k3χ(k) data, using phase and 

amplitude functions obtained from FEFF, version 6.67 The k-space used for data analysis of 

3 was k = 2 – 14.3 Å−1 (resolution 0.128 Å). For each fit, the parameters r (average distance 

between Mn and scattering atom) and σ2 (Debye-Waller factor) were optimized, while n, the 

number of atoms in the shell, was kept fixed. n was varied by integer steps systematically. 

The goodness-of-fit (GOF) was evaluated by the parameter F, where F = Σ(χcalcd − 

χexpt)2/N, and N is the number of data points. The threshold energy, E0, in electronvolts (k = 

0 point) was kept at a common, variable value for every shell of a given fit.

Magnetic circular dichroism spectroscopy

The MCD sample of 3 was 2.5 mM in butyronitrile. MCD spectra were collected on a Jasco 

circular dichroism spectrometer (J-815) interfaced with an Oxford Instruments 

magnetocryostat (SM-4000-8) capable of a horizontal field up to 8 T and a temperature 

range of 1.5 to 300 K. Low-temperature absorption samples were prepared in acetonitrile 

and MCD samples were prepared in the glassy solvent butyronitrile (PrCN). VTVH MCD 

data were fit using software developed by Neese and Solomon.68

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Left: Electronic absorption spectrum of 1 (black trace) and 2 (green trace), the latter of 

which was formed by adding 1 equiv. KO2 to 7.5 mM 1 in MeCN at −40 °C. Inset: 

Maximum intensity at 16 200 cm−1 as a function of KO2 equiv. added to 5 mM 1 in MeCN 

at −40 °C. Right: Parallel-mode X-band EPR spectrum of 2 in butyronitrile, formed using 2 

equiv. KO2. Recording conditions: 5 K, 9.3918 GHz microwave frequency, 2.0 mW 

microwave power, 0.4 mT modulation amplitude, 100 kHz modulation frequency, 81.92 ms 

time constant, and 15 000 point resolution.
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Figure 2. 
Left: Electronic absorption spectra of a 7.5 mM acetonitrile solution of 1 (solid black line) 

treated with 1 equiv. KO2 at −40 °C in MeCN. The black dashed traces shows the 

conversion of 2 (green dashed trace) to 3 (solid green trace). Right: A) Perpendicular-mode 

X-band EPR spectrum of a 5 mM butyronitrile solution of 1 six hours after treatment with 1 

equiv. KO2 at −40 °C (complex 3). Recording conditions: 5 K, 9.6374 GHz microwave 

frequency, 5.02 mW microwave power, 0.4 mT modulation amplitude, 100 kHz modulation 

frequency, 81.92 ms time constant, and 15 000 point resolution. B) Perpendicular-mode X-

band EPR spectrum of a 0.54 mM frozen solution of recrystallized 3 in butyronitrile. 

Recording conditions: 20 K, 9.6386 GHz microwave frequency, 5.02 mW microwave 

power, 0.4 mT modulation amplitude, 100 kHz modulation frequency, 81.92 ms time 

constant, and 15 000 point resolution.
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Figure 3. 
Electronic absorption spectra showing the reaction of a 7.5 mM acetonitrile solution of 1 
with 50 equiv. anhydrous H2O2-urea at −18 °C. The solution was filtered into a pre-cooled 

cuvette (−20 °C) prior to collecting the first absorption spectrum (top). After four hours at 

−20 °C, the final absorption spectrum was obtained (bottom; solid line).
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Figure 4. 
Top: 295 K electronic absorption spectrum of a 1.66 mM MeCN solution of recrystallized 3. 

Bottom: 7 T MCD spectra of a 2.5 mM frozen butyronitrile solution of 3 at 2, 4, 8, and 15 K 

(bottom). Inset: 16 500 cm−1 VTVH MCD data (dots) and fits (solid lines).

Leto et al. Page 21

Dalton Trans. Author manuscript; available in PMC 2015 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
ORTEP diagrams (50% probability ellipsoids) of A) [MnIIIMnIV(μ-O)2(κ4-N4py)2]

(OTf)2.8(PF6)0.2 (3a) and B) [MnIIIMnIV(μ-O)2(κ4-N4py)2](PF6)3 (3b) Hydrogen atoms, 

counter ions, and solvents of crystallization have been omitted for clarity.
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Figure 6. 
Mn K-edge XANES of [MnIIIMnIV(μ-O)2(N4py)2]3+ (blue solid trace), [MnII(N4py)(OTf)]+ 

(black dotted trace),44 and [MnIV(O)(N4py)]2+ (red dashed trace)44 at 20 K.
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Figure 7. 
Fourier transforms of Mn K-edge EXAFS data [k3χ(k)] and raw EXAFS spectra (insets), 

experimental data (···) and fits (−) for [MnIIIMnIV(μ-O)2(N4py)2]3+. Details regarding the 

EXAFS fits are given in Tables 1 and S3.
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Figure 8. 
Pentadentate ligands mL5

2 and imL5
2.
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Scheme 1. 
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Scheme 2. 
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Table 1

Selected bond distances (Å) and angles (°) for [MnIIIMnIV(μ-O)2(N4py)2](OTf)2.8(PF6)0.2 (3a), 

[MnIIIMnIV(μ-O)2(N4py)2](PF6)3 (3b), averaged bond distances and angles for 3b, and from EXAFS data 

analysis of 3.

3a a 3b b EXAFS

Mn(1)···Mn(2) 2.6483(8) 2.648(2) 2.63

Mn(1)–O(1) 1.815(3) 1.787(5)

Mn(1)–O(2) 1.812(3) 1.767(6)
1.79

Mn(2)–O(1) 1.815(3) 1.835(6)

Mn(2)–O(2) 1.812(3) 1.834(5)

Mn(1)–N(1) 2.116(4) 2.012(6)

Mn(1)–N(2) 2.096(4) 2.094(7)

Mn(1)–N(3) 2.055(4) 2.055(5)

Mn(1)–N(4) 2.143(4) 2.045(7) 2.00

Mn(2)–N(6) 2.143(4) 2.274(8) 2.17

Mn(2)–N(7) 2.055(4) 2.091(5)

Mn(2)–N(8) 2.096(4) 2.129(6)

Mn(2)–N(9) 2.116(4) 2.236(8)

O(1)–Mn(1)–O(2) 86.2(1) 87.4(2)

O(1)–Mn(2)–O(2) 86.2(1) 84.0(2)

Mn(1)–O(1)–Mn(2) 93.8(1) 93.9(2)

Mn(1)–O(2)–Mn(2) 93.8(1) 94.6(2)

N(1)–Mn(1)–N(4) 155.7(2) 159.3(2)

N(6)–Mn(2)–N(9) 155.7(2) 149.6(2)

a
Average Mn-ligand distances for 3a are as follows: Mn-O = 1.813 Å; Mn-N = 2.102 Å.

b
Average Mn-ligand distances for 3a are as follows: Mn-O = 1.806 Å; Mn-N = 2.117 Å.
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Table 2

Mn K-edge XAS Near-Edge Properties of [MnIIIMnIV(μ-O)2(N4py)2]3+(3), [MnII(N4py)(OTf)]+, [MnIV(O)

(N4py)]2+ and other bis(μ-oxo)dimanganese(III,IV) complexes.

complex edge energy (eV) pre-edge energy (eV) pre-edge peak heighta reference

[MnIIIMnIV(μ-O)2(N4py)2]3+ 6550.6 6541.4 0.074 b

Mn-catalase (MnIIIMnIV) 6549.2 ~6540 NRc 55

[MnIIIMnIV(μ-O)2(phen)4]3+ 6549.6 6539.6 NRc 56

[MnIIIMnIV(μ-O)2(pda)2]− d 6549.8 6540.4 NRc 21

[MnIV(O)(N4py)]2+ 6550.8 6541.9 0.077 44

[MnII(N4py)(OTf)]+ 6547.3 6540.6 0.042 44

a
To permit comparison of pre-edge peak heights, each XAS spectrum was normalized with respect to the most intense fluorescence peak.

b
This work.

c
Not reported.

d
pda2− = picolyldiacetic acid.21
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