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Abstract

The proliferation of models for networks raises challenging problems of model selection: the data 

are sparse and globally dependent, and models are typically high-dimensional and have large 

numbers of latent variables. Together, these issues mean that the usual model-selection criteria do 

not work properly for networks. We illustrate these challenges, and show one way to resolve them, 

by considering the key network-analysis problem of dividing a graph into communities or blocks 

of nodes with homogeneous patterns of links to the rest of the network. The standard tool for 

undertaking this is the stochastic block model, under which the probability of a link between two 

nodes is a function solely of the blocks to which they belong. This imposes a homogeneous degree 

distribution within each block; this can be unrealistic, so degree-corrected block models add a 

parameter for each node, modulating its overall degree. The choice between ordinary and degree-

corrected block models matters because they make very different inferences about communities. 

We present the first principled and tractable approach to model selection between standard and 

degree-corrected block models, based on new large-graph asymptotics for the distribution of log-

likelihood ratios under the stochastic block model, finding substantial departures from classical 

results for sparse graphs. We also develop linear-time approximations for log-likelihoods under 

both the stochastic block model and the degree-corrected model, using belief propagation. 

Applications to simulated and real networks show excellent agreement with our approximations. 

Our results thus both solve the practical problem of deciding on degree correction and point to a 

general approach to model selection in network analysis.
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1. Introduction

In many networks, nodes divide naturally into modules or communities, where nodes in the 

same group connect to the rest of the network in similar ways. Discovering such 

communities is an important part of modeling networks [31], as community structure offers 

clues to the processes which generated the graph, on scales ranging from face-to-face social 

interaction [39] through social-media communications [1] to the organization of food webs 

[3, 24].

The stochastic block model [2, 5, 15, 19, 35] has, deservedly, become one of the most 

popular generative models for community detection. It splits nodes into communities or 

blocks, within which all nodes are stochastically equivalent [36]. That is, the probability of 

an edge between any two nodes depends only on which blocks they belong to, and all edges 

are independent given the nodes’ block memberships. Block models are highly flexible, 

representing assortative, disassortative and satellite community structures, as well as 

combinations thereof, in a single generative framework [5, 28, 29]. Their asymptotic 

properties, including phase transitions in the detectability of communities, can be 

determined exactly using tools from statistical physics [10, 11] and random graph theory 

[26].

Despite this flexibility, stochastic block models impose real restrictions on networks; 

notably in large graphs, within each block, vertex degrees asymptotically follow identical 

Poisson distributions. This makes the stochastic block model implausible for many 

networks, where the degrees within each community are highly inhomogeneous. Fitting 

stochastic block models to such networks tends to split the high- and low- degree nodes in 

the same community into distinct blocks; for instance, dividing both liberal and conservative 

political blogs into high-degree ‘leaders’ and low-degree ‘followers’ [1, 23]. To avoid this 

pathology, and to allow degree inhomogeneity within blocks, there is a long history of 

generative models where the probability of an edge depends on node attributes as well as 

their group memberships (e.g., [25, 32]). Here we use a natural generalization of the 

stochastic block model due to [23], called the degree-corrected block model8.

We often lack the domain knowledge to choose between the ordinary and the degree-

corrected block model, and so face a model-selection problem. The standard methods of 

model selection are largely based on likelihood ratios (possibly penalized), and we follow 

that approach here. Since both the ordinary and the degree-corrected block models have 

many latent variables, calculating likelihood ratios is itself non-trivial; the likelihood must 

be summed over all partitions of nodes into blocks, so (in statistical physics terms) the log-

8From a different perspective, the famous p1 model of [20], and the [6] model, allow each node to have its own expected degree, but 
otherwise treat nodes as homogeneous [33]. The degree-corrected block model extends these models to allow for systematic variation 
in linking patterns, and is mathematically more convenient for statistical analysis.
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likelihood is a free energy. We extend the belief-propagation framework for estimating the 

free energy [10, 11] to the degree-corrected block model.

Our algorithm is particularly scalable when dealing with sparse networks, which come 

naturally in the real world from various preferences and limits in the underlying generating 

processes [13, 18, 22]. However, even with the likelihoods in hand, it turns out that the usual 

χ2 theory for likelihood ratios is invalid in our setting, because of a combination of the 

sparsity of the data and the high-dimensional nature of the degree-corrected model. To 

address these situations, which are so prevalent in practice, we derive the correct 

asymptotics, under regularity assumptions, recovering the classic results in the limit of large, 

dense graphs. We find that substantial corrections are needed for sparse graphs, corrections 

that grow with graph size. Simulations confirm the validity of our theory, and we apply our 

method to both real and synthetic networks.

2. Poisson stochastic block models

Let us set the problem on an observed, stochastic graph with n nodes and m edges; we 

assume edges are undirected, though the directed case is only notationally more 

cumbersome. The graph is represented by its symmetric adjacency matrix A. We want to 

split the nodes into k communities, taking k to be a fixed constant that is the same for both 

models. (Choosing k is a difficult model-selection problem of its own, and we shall address 

it elsewhere.)

Traditionally, stochastic block models are applied to simple graphs, where each entry Auv of 

the adjacency matrix follows a Bernoulli distribution. Following, e.g., [23], we use a 

multigraph version of the block model, where the Auv are independent and Poisson-

distributed. (For simplicity, we ignore self-loops.) In the sparse network regime we are most 

interested in, this Poisson model differs only negligibly from the original Bernoulli model 

[30], but the former is statistically easier to analyze, especially when compared with its 

degree-corrected generalization.

In this paper, we shall follow the notion of sparseness as it is defined in [10, 11], that is, 

when m = O(n), i.e. the number of edges scales (sub)linearly as the network grows; in denser 

graphs, the average degree diverges as n → ∞.

2.1. The ordinary stochastic block model

In all stochastic block models, each node u has a latent variable Gu ∈ {1, …, k} indicating 

which of the k blocks it belongs to. The block assignment is then G = {Gu}. The Gu are 

independent draws from a multinomial distribution parameterized by γ, so γr = P(Gu = r) is 

the prior probability that a node is in block r. Thus Gu ~ Multi(γ). After it assigns nodes to 

blocks, a block model generates the number of edges Auv between the nodes u and v by 

making an independent Poisson draw for each pair. In the ordinary stochastic block model, 

the means of these Poisson draws are specified by the k × k block affinity matrix ω, so

Yan et al. Page 3

J Stat Mech. Author manuscript; available in PMC 2015 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The complete-data likelihood (involving G as well as A) is

(1)

Here nr is the number of nodes in block r, and mrs the number of edges connecting block r 

to block s, or twice that number if r = s. The last product in (1) over u and v is constant in 

the parameters, and 1 for simple graphs. We shall refer to the following equation as the log-

likelihood for the rest of the paper:

(2)

Maximizing (2) over γ and ω gives

(3)

Of course, the block assignments G are not observed, but rather are what we want to infer. 

We could try to find G by maximizing (2) over γ, ω and g jointly; in terms borrowed from 

statistical physics, this amounts to finding the ground state ĝ that minimizes the energy −log 

P (a, g|γ, ω). When this ĝ can be found, it recovers the correct g exactly if the graph is dense 

enough (denser than) [5]. But if we wish to infer the parameters γ, ω, or to perform model 

selection, we are interested in the total likelihood of generating the graph a at hand. This is

summing over all kn possible block assignments. Again following the physics lexicon, this is 

the partition function of the Gibbs distribution of G, and its logarithm is (minus) the free 

energy.

As is usual with latent variable models, we can infer γ and ω using an EM algorithm [12], 

where the E step approximates the average likelihood over G with respect to the Gibbs 

distribution, and the M step estimates γ and ω in order to maximize that average [27]. One 

approach to the E step would use a Monte Carlo Markov chain algorithm to sample G from 

the Gibbs distribution. However, as we review below, in order to determine γ and ω it 

suffices to estimate the marginal distributions of Gu of each u, and joint distributions of (Gu, 

Gv) for each pair of nodes u, v [4]. As we show in section 3, belief propagation efficiently 

approximates both the log-likelihood −log P(A = a|γ, ω) and these marginals, and for typical 

networks it converges very rapidly. Other methods of approximating the E step are certainly 

possible, and could be used with our model-selection analysis.
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2.2. The degree-corrected block model

As discussed above, in the Poisson version of the stochastic block model, all nodes in the 

same block have the same degree distribution. Moreover, their degrees are sums of 

independent Poisson variables, so this distribution is Poisson. As a consequence, the 

stochastic block model resists putting nodes with very different degrees in the same block. 

This leads to problems with networks where the degree distributions within blocks are 

highly skewed.

The degree-corrected model allows for heterogeneity of degree within blocks. Nodes are 

assigned to blocks as before, but each node also gets an additional parameter θu, which 

scales the expected number of edges connecting it to other nodes. Thus

Varying the θu gives any desired expected degree sequence. Setting θu = 1 for all u recovers 

the stochastic block model, making the latter a special case of the former. In statistical 

terms, the two form a pair of nested models. This is crucial for our theoretical analysis.

The likelihood stays the same if we increase θu by some factor c for all nodes in block r, 

provided we also decrease ωrs for all s by the same factor, and decrease ωrr by c2. Thus 

identification demands a constraint, and here we use the one that forces θu to sum to the total 

number of nodes within each block,

(4)

This constraint allows us to write the complete-data likelihood of the degree-corrected 

model in a similar mathematical form to that of the ordinary stochastic block model,

(5)

where nr and mrs are as in (1). Again dropping constants, the log-likelihood is

(6)

Maximizing (6) yields

(7)
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where

is the average degree of the nodes in block r. Notice how (7) agrees with (3) under the same 

assignment g, with the only difference being the additional parameter θu.

However, as with the ordinary stochastic block model, we will estimate θ, γ and ω not just 

for a ground state ĝ, but using belief propagation to find the marginal distributions of Gu and 

(Gu, Gv).

3. Belief propagation

We referred above to the use of belief propagation for computing log-likelihoods and 

marginal distributions of block assignments; for our purposes, belief propagation is 

essentially a way of performing the expectation step of the expectation-maximization 

algorithm. Here we describe how belief propagation works for the degree-corrected block 

model, extending the treatment of the ordinary stochastic block model in [10, 11].

The key idea [37] is that each node u sends a ‘message’ to every other node v, indicating the 

marginal distribution of Gu if v were absent. We write  for the probability that u would 

be of type r in the absence of v. Then μu→v gets updated in light of the messages u gets from 

the other nodes as follows. Let

(8)

be the probability that auv takes its observed value if Gu = r and Gv = s. Then

(9)

where Zu→v ensures that . Here, as usual in belief propagation, we treat the 

block assignments Gw of the other nodes as independent, conditioned on Gu.

Each node sends messages to every other node, not just to its neighbors, since non-edges 

(where auv = 0) are also informative about Gu and Gv. Thus we have a Markov random field 

on a weighted complete graph, as opposed to just on the network a itself. However, keeping 

track of n2 messages is cumbersome. For sparse networks, we can restore scalability by 

noticing that, up to O(1/n) terms, each node u sends the same message to all of its non-

neighbors. That is, for any v such that auv = 0, we have  where
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This simplification reduces the number of messages to O(n + m) where m is the number of 

edges. We can then write

Since the second product depends only on θu, we can compute it once for each distinct 

degree in the network, and then update the messages for each u in O(k2du) time. Thus, for 

fixed k, the total time needed to update all the messages is O(m + ℓn), where ℓ is the number 

of distinct degrees. For many families of networks the number of updates necessary to reach 

a fixed point is only a constant or O(log n), making the entire algorithm quite scalable (see 

[10, 11] for details).

The belief-propagation estimate of the joint distribution of Gu, Gv is

normalized so that . The maximization step of the expectation-maximization 

algorithm sets θ, γ and ω

(10)

where n̄r is the average size of block r, and d̄
r is the average degree of block r, with respect 

to the belief-propagation estimates. These are very similar to the most likely estimates in (7), 

and they again share exactly the same formulation as those for the ordinary stochastic block 

model, with θu = 1.

Finally, belief propagation also lets us approximate the total log-likelihood, summed over G 

but holding the observed graph a fixed. The Bethe free energy is the following 

approximation to the log-likelihood [38]:

(11)

An alternative to belief propagation would be the use of Markov chain Monte Carlo 

maximum likelihood, which is often advocated for network modeling [21]. However, the 

computational complexity of Monte Carlo maximum likelihood is typically much worse 
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than that of belief propagation; it does not seem to be practical for graphs beyond a few 

hundred nodes. We reiterate that while we use belief propagation in our numerical work, our 

results on model selection in the next section are quite indifferent as to how the likelihood is 

computed.

4. Model selection

When the degree distribution is relatively homogeneous within each block (e.g., [15, 19]), 

the ordinary stochastic block model is better than the degree-corrected model, since the extra 

parameters θu simply lead to over-fitting. On the other hand, when degree distributions 

within blocks are highly heterogeneous, the degree-corrected model is better. However, 

without prior knowledge about the communities, and thus the block degree distributions, we 

need to use the data to pick a model, i.e., to do model selection.

It is natural to approach the problem as one of hypothesis testing9. Since the ordinary 

stochastic block model is nested within the degree-corrected model given an assignment g, 

any given graph a is at least as likely under the latter as under the former. Moreover, if the 

ordinary block model really is the ground truth, the degree-corrected model should converge 

to the same ground state, at least in the limit of large networks10. However, we have 

averaged our models over the latent variables g, thus using the free energy instead of the 

most likely ground state energy. Extra precautions are required when applying classical 

statistical techniques.

Our null model H0 is the stochastic block model, and the larger, nesting alternative H1 is the 

degree-corrected model. The test statistic we are interested in is the total log- likelihood 

ratio,

(12)

with the P functions defined in (1) and (5).

As usual, we reject the null model in favor of the more elaborate alternative when Λ exceeds 

some threshold. This threshold, in turn, is fixed by our desired error rate, and by the 

distribution of Λ when A is generated from the null model. When n is small, the null-model 

distribution of Λ can be found through parametric bootstrapping [9, section 4.2.3]: fitting 

H0, generating new graphs Ã from it, and evaluating Λ(Ã). When n is large, however, it is 

helpful to replace bootstrapping with analytical calculations.

Classically [34, Theorem 7.125, p 459], the large-n null distribution of such log-likelihood 

ratios approaches , where ℓ is the number of constraints that must be imposed on H1 to 

recover H0. In this case we have ℓ = n − k, as we must set all n of the θu to 1, while our 

identifiability convention (4) already imposed k constraints.

9We discuss other approaches to model selection in the conclusion.
10The stochastic block model recovers the ground state exactly in such a regime [5].
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However, the χ2 distribution rests on the assumption that the log-likelihood of both models 

is well-approximated by a quadratic function in the vicinity of its maximum, so that the 

parameter estimates have Gaussian distributions around the true model [16]. The most 

common grounds for this assumption are central limit theorems for the data, together with a 

smooth functional dependence of each parameter estimate on a growing number of samples, 

i.e., being in a ‘large data limit’. This assumption fails in the present case. The degree-

corrected model has n node-specific θu parameters. Dense graphs have an effective sample 

size of O(n2), so even with a growing parameter space the degree-corrected model can pass 

to the large data limit. But in sparse networks, the effective sample size is only O(n), and so 

we never get the usual asymptotics no matter how large n grows.

Nevertheless, with some work we are able to compute the mean and variance of Λs null 

distribution. While we recover the classical χ2 distribution in the limit of dense graphs, there 

are important corrections when the graph is sparse, even as n → ∞. As we will show, this 

has drastic consequences for the appropriate threshold in likelihood ratio tests.

4.1. Analysis of the log-likelihood ratio

To characterize and simplify the null distribution of Λ, we assume that the two models based 

on the free energy also form a nested pair. That is, if the underlying data is generated by the 

null model, both models converge to the same joint distributions of Gu. Under this 

assumption, Λ gives the form of a Kullback–Leibler divergence,

(13)

where we substitute in (10). Notice that under this assumption, most likely estimates of the 

parameters under H0 and H1 agree, and each term in the sums in the numerator and 

denominator cancels to the exact same ratio . Keep in mind that d̄
r is the empirical 

mean degree of block r, not the expected degree μr =Σs γsωrs of the stochastic block model. 

Using our belief-propagation algorithm, we can verify the above assumption based on the 

marginal distributions of Gu and (Gu, Gv) (figure 1, left column).

For further confirmation, we can justify (13) with an alternative assumption. If the posterior 

distributions P(G = g | A = a, γ, ω) and P(G = g | A = a, γ, ω, θ) concentrate on the same 

block assignment g, the maximum-likelihood estimates for H0 and H1 are then (3) and (7) 

respectively. Substituting these into (12), most terms cancel and we recover (13)
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Either justification is a major approximation. Fortunately for us, while the free energy 

differs from the ground state energy, the free energy difference between the two models 

follows a very similar distribution to the ground state energy difference. According to our 

simulations (figures 1 and 2(c)), both assumptions tend to hold on synthetic networks with 

prescribed blocks as well as on bootstrapped networks with real world assignments and 

parameters. For small average degree, which is the focus of our work, we will see that the 

obtained analytical formulas agree well with the actual log-likelihood ratio evaluated from 

simulations.

Given (13), the distribution of Λ follows from the distributions of the nodes’ degrees; under 

the null model, all the Du in block r are independent ~Poi(μr). (This assumption is sound in 

the limit n → ∞, since the correlations between node degrees are O(1/n).) Using this, we 

can compute the expectation and variance of Λ analytically (see appendix), showing that Λ 

departs from classical χ2 asymptotics, as well as revealing the limits where those results 

apply. Specifically,

(14)

where, if D ~ Poi(μ),

(15)

For dense graphs, where μ → ∞, both f(μ) and f(nμ) approach 1/2, and (14) gives E(Λ) = (n 

− k)/2 just as in the standard χ2 analysis. However, when μ is small, f(μ) differs noticeably 

from 1/2.

The variance of Λ is somewhat more complicated. The limiting variance per node is

(16)

where, again taking D ~ Poi(μ),

(17)

Since the variance of  is 2ℓ, χ2 asymptotics would predict (1/n)var(Λ) = 1/2. Indeed v(μ) 

approaches 1/2 as μ → ∞, but like f(μ) it differs substantially from 1/2 for small μ. Figure 2 

plots f(μ) and v(μ) for 1 ≤ μ ≤ 10.

Yan et al. Page 10

J Stat Mech. Author manuscript; available in PMC 2015 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2 shows that, for networks simulated from the stochastic block model, the mean and 

variance of Λ are very well fitted by our formulas. We have not attempted to compute higher 

moments of Λ. However, if we assume that Du are independent, then the simplest form of 

the central limit theorem applies, and n−1Λ will approach a Gaussian distribution as n → ∞. 

Quantile plots from the same simulations (figure 2(c)) show that a Gaussian with mean and 

variance from (14) and (16) is indeed a good fit. Moreover, the free energy difference and 

the ground state energy difference have similar distributions, as implied by either of our 

assumptions when deriving equation (13). Interestingly, in figure 2(c), the degree is low 

enough that this concentration must be imperfect, but our theory still holds remarkably well. 

For ease of illustration, we assume that γr = 1/k and μr are the same for all r.

Fundamentally, Λ does not follow the usual χ2 distribution because the θ parameters are in a 

high-dimensional regime. For each θu, we really have only one relevant observation, the 

node degree Du. If θu is large, then the Poisson distribution of Du is well-approximated by a 

Gaussian, as is the sampling distribution of the most likely estimate of θu, so that the usual 

χ2 analysis applies. In a sparse graph, however, all the Poisson distributions have small 

expected values and are highly non-Gaussian, as are the maximum-likelihood estimates [40]. 

Stated differently, the degree-corrected model has O(n) more parameters than the null 

model. In the dense-graph case, there are O(n2) observations, at least O(n) of which are 

informative about each of these extra parameters. For sparse graphs, however, there are 

really only O(n) observations, and only O(1) of them are informative about each θu, so the 

ordinary large-n asymptotics cannot apply to them. As we have seen, the expected increase 

in likelihood from adding the θ parameters is larger than χ2 theory predicts, as are the 

fluctuations in this increase in likelihood.

This reasoning elaborates on a point made long ago by [14] regarding hypothesis testing in 

the p1 model, where each node has two node-specific parameters (for in- and out-degree); 

our calculations of f(μ) and v(μ) above, and in particular of how and why they differ from 

1/2, go some way towards meeting Fienberg and Wasserman’s call for appropriate 

asymptotics for large-but-sparse graphs.

Ignoring these phenomena and using a χ2 test inflates the type I error rate (α), eventually 

rejecting the stochastic block model for almost all graphs which it generates. Indeed, since 

the χ2 distribution is tightly peaked around 0.5n, this inflation of α gets worse as n gets 

bigger. For instance, if we use the standard rejecting criteria of p-value < 0.05, when μ = 5, a 

χ2 test commits a type I error with 95% confidence at roughly n = 3000, while for μ = 3, this 

happens once n ≈ 700 (figure 3). In essence, the χ2 test underestimates the amount of degree 

inhomogeneity we would get simply from noise, incorrectly concluding that the 

inhomogeneity must come from underlying properties of the nodes.

5. Results on real networks

We have derived the theoretical null distribution of Λ, and backed up our calculations with 

simulations. We now apply our theory to two examples, considering networks studied in 

[23].
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The first is a social network consisting of 34 members of a karate club, where undirected 

edges represent friendships [39]. The network is made up of two assortative blocks, each 

with one high-degree hub (respectively the instructor and the club president) and many low-

degree peripheral nodes. Karrer and Newman [23] compared the performance of the 

ordinary and the degree-corrected block models on this network, and heavily favored degree 

correction, because the latter leads to division into communities agreeing with ethnographic 

observations.

While a classic data set for network modeling, the karate club has both low degree and very 

small n. If we nonetheless use parametric bootstrapping to find the null distribution of Λ, we 

see that it fits a Gaussian with our predicted mean and variance reasonably well (figure 

4(a)). The observed Λ = 20.7 has a p-value of 0.187 according to the bootstrap, and 0.186 

according to our Gaussian asymptotics. Thus a prudent analyst would think twice before 

embracing the n additional degree-correction parameters. Indeed, using active learning, [24] 

found that the stochastic block model labels most of the nodes correctly if the instructor and 

the president are forced into different blocks (red nodes in 4(b)). This implies that the degree 

inhomogeneity is mild, and that only a handful of nodes are responsible for the better 

performance of the degree-corrected model.

Note that if we apply standard χ2 testing to the karate club, we obtain a lower p-value of 

0.125. As in figure 3, χ2 testing underestimates the extent to which an inhomogeneous 

degree distribution can result simply from noise, causing it to reject the null model more 

confidently than it should. This is further confirmed by the bootstrapping results under the 

alternative model (Orange shade in figure 4(a)). With an even lower p-value of 0.02, the 

karate club network is very unlikely to be generated by the degree-corrected block model.

The second example is a network of political blogs in the US assembled by [1]. As in [23], 

we focus on the giant component, which contains 1222 blogs with 19 087 links between 

them. The blogs have known political leanings, and were labeled as either liberal or 

conservative. The network is politically assortative, with a heavy-tailed degree distribution 

(see figure 5(b)) within each block, so degree correction greatly assists in recovering 

political divisions, as observed by [23]. This time around, our hypothesis testing procedure 

completely agrees with their choice of model. As shown in figure 5(a), the bootstrap 

distribution of Λ is very well fit by a Gaussian with our theoretical prediction of the mean 

and variance. The observed log-likelihood ratio Λ = 8883 is 330 standard deviations above 

the mean. It is essentially impossible to produce such extreme results through mere 

fluctuations under the null model. Thus, for this network, introducing n extra parameters to 

capture the degree heterogeneity is fully justified. This is again confirmed by the 

bootstrapping results under the alternative model (Orange shade in figure 5(a)). With a 

respectable p-value of 0.876, the political blog network is very likely to be generated by the 

degree-corrected block model.

The blog network shows the advantage of theoretical approaches over bootstrapping. As 

with many other real networks, n is too large for efficient bootstrapping. However, since this 

is a relatively dense network, the naive χ2 test does just as well as our theoretical 

approximation for Λ.
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6. Conclusion

Deciding between ordinary and degree-corrected stochastic block models for sparse graphs 

presents a difficult hypothesis testing problem. The distribution of the log-likelihood ratio Λ 

does not follow the classic χ2 theory, because the nuisance parameter θ, only present in the 

alternative, is in a high-dimensional regime. We have nonetheless derived unbiased 

estimations of Λ’s mean and variance in the limit of large, sparse graphs, where node 

degrees become independent and Poisson. Simulations confirm the accuracy of our theory 

for moderate n, and we applied it to two real networks.

Beyond hypothesis testing, two standard approaches to model selection are information 

criteria and cross-validation. While we have not directly dealt with the former, the 

derivations of such popular criteria as the Akaike information criterion or deviance 

information criterion use exactly the same asymptotics as the χ2 test [7, chapter 2]; these 

tools will break down for the same reasons χ2 theory fails. As for cross-validation, standard 

practice in machine learning suggests using multi-fold cross-validation, but the global 

dependence of network data means there is (as yet) no good way to split a graph into 

training and testing sets. Predicting missing links or tagging false positives are popular 

forms of leave-k-out cross-validation in the network literature [8, 17], but leave-k-out does 

not converge on the true model even for independent and identically-distributed data [7, 

section 2.9]. Thus, while our results apply directly only to the specific problem of testing the 

need for degree correction, they open the way to more general approaches to model selection 

and hypothesis testing in a wide range of network problems.
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Appendix. Behavior of Λ under the null hypothesis

For simplicity we focus on one block with expected degree μ. Independence between blocks 

will then recover the expressions (14) and (16) where the mean and variance of Λ is a 

weighted sum over blocks. We have
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(A.1)

where D̄ = (1/n) Σi Di is the empirical mean degree. We wish to compute the mean and 

expectation of Λ if the data are generated by the null model.

If D ~ Poi(μ), let f(μ) denote the difference between the expectation of D log D and its most 

probable value μ log μ,

(A.2)

Assume that the Di are independent and ~Poi(μ); this is reasonable in a large sparse graph, 

since the correlation between degrees of different nodes is O(1/n). Then nD̄ ~ Poi(nμ), and 

(A.1) gives

(A.3)

To grasp what this implies, begin by observing that f(μ) converges to 1/2 when μ → ∞. 

Thus in the limit of large n, . When μ is large, this gives E(Λ) = (n − 1)/2, 

just as χ2 theory suggests. However, as figure A.1 shows, f(μ) deviates noticeably from 1/2 

for finite μ. We can obtain the leading corrections as a power series in 1/μ by approximating 

(A.2) with the Taylor series of d log d around d = μ, giving

Figure A.1. 
(a) Asymptotic limit of n−1E(Λ), the f(μ) of (A.2). (b) Asymptotic limit of n−1var(Λ), from 

(A.8). Here μ is the average degree, and Λ is the log-likelihood ratio. Figure 2 compares 

these to simulations.
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Computing the variance is harder. It will be convenient to define several functions. If D ~ 

Poi(μ), let ϕ(μ) denote the variance of D log D,

(A.4)

We will also use

(A.5)

Finally, let ψ ≥ μ, and let D and U be independent and Poisson with mean μ and ψ − μ 

respectively. Then let

(A.6)

where we use the fact that D + U ~ Poi(ψ).

Again assuming that the Di are independent, we have the following terms and cross-terms 

for the variance of (A.1):

Putting this all together, we have

(A.7)

For large μ, Taylor-expanding the summands of (A.4) and (A.5) yields

Also, when ψ ≫ μ and μ = O(1), using log (D + U) ≈ log U + D/U lets us simplify (A.6), 

giving
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In particular, setting ψ = nμ gives

Finally, keeping O(n) terms in (A.7) and defining v(μ) as in (16) gives

(A.8)

Using the definitions of ϕ and c, we can write this more explicitly as

(A.9)

where D ~ Poi(μ). We plot this function in figure A.1(b). It converges to 1/2 in the limit of 

large μ, but it is significantly larger for finite μ.

Yan et al. Page 17

J Stat Mech. Author manuscript; available in PMC 2015 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Left column: 3D heat maps with top-view scatter plots of posterior probabilities over block 

assignments, according to our belief-propagation algorithm on one of the sample networks. 

It shows that the ordinary and the degree-corrected block models converge to the same 

marginal distributions of Gu (first assumption). Furthermore, the concentration of the 

marginals suggests the strong dominance of the ground state (second assumption). The x- 

and y-axes in both parts are the marginal probabilities of being in block 1 according to 

ordinary and degree-corrected models, respectively. The Z-axes are logarithmic. Right 

column: QQ plots (100 samples) for comparing the distributions of the ground state energy 

difference to those of free energy difference under the null model. A point in a QQ plot 

corresponds to one of the quantiles of the first distribution (x-coordinate) plotted against the 

same quantile of the second distribution (y-coordinate). Observe that here the points 

approximately lie on the line y = x, which means that the two distributions are very similar. 

Top row: synthetic network with n = 103, k = 2 equally-sized blocks (γ1 = γ2 = 1/2), average 

degree μr = 11, and associative structure with ω12/ω11 = ω21/ω22 = 1/11. Bottom row: 

bootstrapped networks with the assignments and parameters of the political blog network.
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Figure 2. 
Comparison of asymptotic theory to finite-n simulations. We generated networks from the 

stochastic block model with varying average degree μ (n = 104, k = 2, γ1 = γ2 = 1/2, ω11 = 

ω22, and ω12/ω11 = ω21/ω22 = 0.15) and computed Λ (the log-likelihood ratio) for each 

graph. Parts (a) and (b) show n−1E(Λ) and n−1var(Λ), comparing 95% bootstrap confidence 

intervals (over 103 replicates) to the asymptotic formulas (respectively f(μ) from (15) and 

v(μ) from (17)). Part (c) compares the distribution of Λ from 104 replicates, all with μ = 3, to 

a Gaussian with the theoretical mean and variance.
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Figure 3. 
The size n, as a function of the average degree μ, above which a naive χ2 test commits a type 

I error with 95% confidence. Type I error means incorrectly rejecting the ordinary stochastic 

block model for graphs that are actually generated by it. Here we assume the asymptotic 

analysis of (14)–(17) for the mean and variance of the likelihood ratio.
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Figure 4. 
(a) Complementary cumulative distribution function of the log-likelihood ratio Λ for testing 

for degree correction. The distribution found by parametric bootstrapping (blue shaded) fits 

reasonably well to a Gaussian (curve) with our theoretical mean and variance. The observed 

Λ = 20.7 (marked with the red line) has p-values of 0.186 and 0.187 according to the 

bootstrap and theoretical distributions respectively, whereas the χ2 test (dashed) has a p-

value of 0.125. If we bootstrap the karate club using the degree-corrected block model 

(orange shaded, CDF), the observed Λ = 20.7 has an even smaller p-value (0.02) for being at 

most that much. (b) Query order chosen by the active learning algorithm by [24]. Red nodes 

are the top priorities, followed by orange nodes. Blue nodes are the last to query. Once the 

red nodes are placed into separate blocks, the ordinary stochastic block model can find the 

correct block (indicated by shape) for most of the nodes.
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Figure 5. 
(a) Complementary cumulative distribution function of the log-likelihood ratio Λ for testing 

for degree correction. The bootstrap distribution (shaded) is very well fitted by our 

theoretical Gaussian (curve) as well as the χ2 test (blue dashed). The actual log-likelihood 

ratio is so far in the tail (marked with the red line) that its p-value is effectively zero (notice 

the break and indices of the x-axis). If we bootstrap the political blogs using the degree-

corrected block model (orange shaded, CDF), the observed Λ = 8883 has a p-value of 0.876 

for being at most that much. (b) Degree distribution of political blogs. Both the x-axis and 

the y-axis are logarithmic. This empirical distribution has a heavy tail and is very different 

from the Poisson distribution predicted by the ordinary stochastic block model.
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