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Abstract

The growing availability of network data and of scientific interest in distributed systems has led to 

the rapid development of statistical models of network structure. Typically, however, these are 

models for the entire network, while the data consists only of a sampled sub-network. Parameters 

for the whole network, which is what is of interest, are estimated by applying the model to the 

sub-network. This assumes that the model is consistent under sampling, or, in terms of the theory 

of stochastic processes, that it defines a projective family. Focusing on the popular class of 

exponential random graph models (ERGMs), we show that this apparently trivial condition is in 

fact violated by many popular and scientifically appealing models, and that satisfying it drastically 

limits ERGM’s expressive power. These results are actually special cases of more general results 

about exponential families of dependent random variables, which we also prove. Using such 

results, we offer easily checked conditions for the consistency of maximum likelihood estimation 

in ERGMs, and discuss some possible constructive responses.

Key words and phrases

Exponential family; projective family; network models; exponential random graph model; 
sufficient statistics; independent increments; network sampling

1. Introduction

In recent years, the rapid increase in both the availability of data on networks (of all kinds, 

but especially social ones) and the demand, from many scientific areas, for analyzing such 

data has resulted in a surge of generative and descriptive models for network data [20, 47]. 

Within statistics, this trend has led to a renewed interest in developing, analyzing and 

validating statistical models for networks [23, 35]. Yet as networks are a nonstandard type 

of data, many basic properties of statistical models for networks are still unknown or have 

not been properly explored.

In this article we investigate the conditions under which statistical inferences drawn over a 

sub-network will generalize to the entire network. It is quite rare for the data to ever actually 

be the whole network of relations among a given set of nodes or units;2 typically, only a 

1Supported by grants from the National Institutes of Health (# 2 R01 NS047493) and the Institute for New Economic Thinking.
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sub-network is available. Guided by experience of more conventional problems like 

regression, analysts have generally fit models to the available sub-network, and then 

extrapolated them to the larger true network which is of actual scientific interest, presuming 

that the models are, as it were, consistent under sampling. What we show is that this is only 

valid for very special model specifications, and the specifications where it is not valid 

include some of which are currently among the most popular and scientifically appealing.

In particular, we restrict ourselves to exponential random graph models (ERGMs), 

undoubtedly one of the most important and popular classes of statistical models of network 

structure. In addition to the general works already cited, the reader is referred to [4, 22, 29, 

50, 54, 59, 64, 65] for detailed accounts of these models. There are many reasons ERGMs 

are so prominent. On the one hand, ERGMs, as the name suggests, are exponential families, 

and so they inherit all the familiar virtues of exponential families in general: they are 

analytically and inferentially convenient [11]; they naturally arise from considerations of 

maximum entropy [44] and minimum description length [27], and from physically-

motivated large deviations principles [61]; and if a generative model obeys reasonable-

seeming regularity conditions while still having a finite-dimensional sufficient statistic, it 

must be an exponential family [40].3 On the other hand, ERGMs have particular virtues as 

models of networks. The sufficient statistics in these models typically count the number or 

density of certain “motifs” or small sub-graphs, such as edges themselves, triangles, k-

cliques, stars, etc. These in turn are plausibly related to different network-growth 

mechanisms, giving them a substantive interpretation; see, for example, [26] as an 

exemplary application of this idea, or, more briefly, Section 5 below. Moreover, the 

important task of edge prediction is easily handled in this framework, reducing to a 

conditional logistic regression [29]. Since the development of (comparatively) 

computationally-efficient maximum-likelihood estimators (based on Monte Carlo sampling), 

ERGMs have emerged as flexible and persuasive tools for modeling network data [29].

Despite all these strengths, however, ERGMs are tools with a serious weakness. As we 

mentioned, it is very rare to ever observe the whole network of interest. The usual 

procedure, then, is to fit ERGMs (by maximum likelihood or pseudo-likelihood) to the 

observed sub-network, and then extrapolate the same model, with the same parameters, to 

the whole network; often this takes the form of interpreting the parameters as “provid[ing] 

information about the presence of structural effects observed in the network” [54], page 194, 

or the strength of different network-formation mechanisms; [2, 16, 17, 24, 25, 55, 62] are 

just a few of the more recent papers doing this. This obviously raises the question of the 

statistical (i.e., large sample) consistency of maximum likelihood estimation in this context. 

Unnoticed, however, is the logically prior question of whether it is probabilistically 

consistent to apply the same ERGM, with the same parameters, both to the whole network 

and its sub-networks. That is, whether the marginal distribution of a sub-network will be 

consistent with the distribution of the whole network, for all possible values of the model 

2This sense of the “whole network” should not be confused with the technical term “complete graph,” where every vertex has a direct 
edge to every other vertex.
3[44] is still one of the best discussions of the interplay between the formal, statistical and substantive motivations for using 
exponential families.
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parameters. The same question arises when parameters are compared across networks of 

different sizes (as in, e.g., [21, 26, 43]). When this form of consistency fails, then the 

parameter estimates obtained from a sub-network may not provide reliable estimates of, or 

may not even be relatable to, the parameters of the whole network, rendering the task of 

statistical inference based on a sub-network ill-posed. We formalize this question using the 

notion of “projective families” from the theory of stochastic processes. We say that a model 

is projective when the same parameters can be used for both the whole network and any of 

its sub-networks. In this article, we fully characterize projectibility of discrete exponential 

families and, as corollary, show that ERGMs are projective only for very special choices of 

the sufficient statistic.

Outline

Our results are not specific just to networks, but pertain more generally with exponential 

families of stochastic processes. In Section 2, therefore, we lay out the necessary 

background about projective families of distributions, projective parameters and exponential 

families in a somewhat more abstract setting than that of networks. In Section 3 we show 

that a necessary and sufficient condition for an exponential family to be projective is that the 

sufficient statistics obey a kind of additive decomposition. This in turn implies strong 

independence properties. We also prove results about the consistency of maximum 

likelihood parameter estimation under these conditions (Section 4). In Section 5, we apply 

these results to ERGMs, showing that most popular specifications for social networks and 

other stochastic graphs cannot be projective. We then conclude with some discussion on 

possible constructive responses. The proofs are contained in the Appendix.

Related work

An early recognition of the fact that sub-networks may have statistical properties which 

differ radically from those of the whole network came in the context of studying networks 

with power-law (“scale-free”) degree distributions. On the one hand, Stumpf, Wiuf and May 

[60] showed that “subnets of scale-free networks are not scale-free;” on the other, 

Achlioptas et al. [1] demonstrated that a particular, highly popular sampling scheme creates 

the appearance of a power-law degree distribution on nearly any network. While the 

importance of network sampling schemes has been recognized since then [35], Chapter 5, 

and valuable contributions have come from, for example, [3, 28, 36, 37], we are not aware 

of any work which has addressed the specific issue of consistency under projection which 

we tackle here. Perhaps the closest approaches to our perspective are [48] and [66]. The 

former considers conditions under which infinite-dimensional families of distributions on 

abstract spaces have projective limits. The latter, more concretely, addresses the consistency 

of maximum likelihood estimators for exponential families of dependent variables, but 

under assumptions (regarding Markov properties, the “shape” of neighborhoods, and decay 

of correlations in potential functions) which are basically incomparable in strength to ours.

2. Projective statistical models and exponential families

Our results about exponential random graph models are actually special cases of more 

general results about exponential families of dependent random variables, and are just as 
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easy to state and prove in the general context as for graphs. Setting this up, however, 

requires some preliminary definitions and notation, which make precise the idea of “seeing 

more data from the same source.” In order to dispense with any measurability issues, we will 

implicitly assume the existence of an underlying probability measure for which the random 

variables under study are all measurable. Furthermore, for the sake of readability we will not 

rely on the measure theoretic notion of filtration: though technically appropriate, it will add 

nothing to our results.

Let  be a collection of finite subsets of a denumerable set  partially ordered with respect 

to subset inclusion. For technical reasons, we will further assume that  has the property of 

being an ideal: that is, if  belongs to , then all subsets of  are also in  and if A, and B 

belongs to , then so does their union. We may think of passing from A to B ⊃ A as taking 

increasingly large samples from a population, or recording increasingly long time series, or 

mapping data from increasing large spatial regions, or over an increasingly dense spatial 

grid, or looking at larger and larger sub-graphs from a single network. Accordingly, we 

consider the associated collection of parametric statistical models  indexed by , 

where, for each A ∈ ,  ≡  is a family of probability distributions indexed by 

points θ in a fixed open set Θ ⊆ ℝd. The probability distributions in  are also assumed to 

be supported over the same , which are countable4 sets for each A. We assume that the 

partial order of  is isomorphic to the partial order over , in the sense that A ⊂ B if and 

only if  =  × .

For given θ and A, we denote with XA the random variable distributed as . In particular, 

for a given θ ∈ Θ, we can regard the  as finite-dimensional (i.e., marginal) 

distributions.

For each pair A, B in  with A ⊂ B, we let πB ↦ A:  →  be the natural index projection 

given by πB ↦ A(xA, xB\A) = xA. In the context of networks, we may think of  as the set of 

nodes of a possibly infinite random graph, which without loss of generality can be taken to 

be {1, 2, . . .} and of  as the collection of all finite subsets of . Then, for some positive 

integers n and m, we may, for instance, take A = {1, . . ., n} and B = {1, . . ., n, . . ., n+ m}, 

so that XA will be the induced sub-graph on the first n nodes and XB the induced sub-graph 

on the first n + m nodes. The projection πB ↦ A then just picks out the appropriate sub-graph 

from the larger graph; see Figure 1 for a schematic example. We will be concerned with a 

natural form of probabilistic consistency of the collection  which we call 

projectibility, defined below.

Definition 1—The family  is projective if, for any A and B in  with A ⊂ B,

(1)

See [33], page 115, for more general treatment of projectibility. In words,  is a 

projective family when A ⊂ B implies that  can be recovered by marginalization over , 

4Our results extend to continuous observations straightforwardly, but with annoying notational overhead.
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for all θ. Within a projective family,  denotes the infinite-dimensional distribution, which 

thus exists by the Kolmogorov extension theorem [33], Theorem 6.16, page 115.

Projectibility is automatic when the generative model calls for independent and identically 

distributed (IID) observations. It is also generally unproblematic when the model is specified 

in terms of conditional distributions: one then just uses the Ionescu Tulcea extension 

theorem in place of that of Kolmogorov [33], Theorem 6.17, page 116. However, many 

models are specified in terms of joint distributions for various index sets, and this, as we 

show in Theorem 1, can rule out projectibility.

We restrict ourselves to exponential family models by assuming that, for each choice of θ ∈ 

Θ and A ∈ ,  has density with respect to the counting measure over  given by

(2)

where tA:  → ℝd is the measurable function of minimal sufficient statistics, and zA: Θ → 

ℝ is the partition function given by

(3)

If XA ~ , we will write TA ≡ tA(XA) for the random variable corresponding to the 

sufficient statistic. Equation (2) implies that TA itself has an exponential family distribution, 

with the same parameter θ and partition function zA(θ) [11], Proposition 1.5. Specifically, 

the distribution function is

(4)

where the term vA(t) ≡ |{x ∈ :tA(x) = t}|, which we will call the volume factor, counts the 

number of points in  with the same sufficient statistics t. The moment generating function 

of TA is

(5)

If the sufficient statistic is completely additive, that is, if tA(xA) = Σi∈A t{i}(xi), then this is a 

model of independent (if not necessarily IID) data. In general, however, the choice of 

sufficient statistics may impose, or capture, dependence between observations.

Because we are considering exponential families defined on increasingly large sets of 

observations, it is convenient to introduce some notation related to multiple statistics. Fix A, 

B ∈  such that A ⊂ B. Then tB :  ↦ ℝd, and we will sometimes write this function t(x, y), 

where the first argument is in  and the second in . We will have frequent recourse to 
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the increment to the sufficient statistic, tB\A(x, y) ≡ tB(x, y) − tA(x). The volume factor 

vB(tB(xB)) is defined as before, but we shall also consider, for each observable value t of the 

sufficient statistics for A and increment δ of the sufficient statistics from A to B, the joint 

volume factor,

(6)

and the conditional volume factor,

(7)

As we will see, these volume factors play a key role in characterizing projectibility.

3. Projective structure in exponential families

In this section we characterize projectibility in terms of the increments of the vector of 

sufficient statistics. In particular we show that exponential families are projective if, and 

only if, their sufficient statistics decompose into separate additive contributions from 

disjoint observations in a particularly nice way which we formalize in the following 

definition.

Definition 2—The sufficient statistics of the family  have separable increments 

when, for each A ⊂ B, x ∈ , the range of possible increments δ is the same for all x, and 

the conditional volume factor is constant in x, that is, vB\A|A(δ, x) = vB\A(δ).

It is worth noting that the property of having separable increments is an intrinsic property of 

the family  that depends only on the functional forms of the sufficient statistics 

and not on the model parameters θ ∈ Θ. This follows from the fact that, for any A, the 

probability distributions  have identical support . Thus, this property holds for all of 

θ or none of them.

The main result of this paper is then as follows.

Theorem 1—The exponential family  is projective if and only if the sufficient 

statistics  have separable increments.

3.1. Independence properties

Because projectibility implies separable increments, it also carries statistical-independence 

implications. Specifically, it implies that the increments to the sufficient statistics are 

statistically independent, and that XB\A and XA are conditionally independent given 

increments to the sufficient statistic. Interestingly, independent increments for the statistic 

are necessary but not quite sufficient for projectibility. These claims are all made more 

specific in the propositions which follow.
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We first show that projectibility implies that the sufficient statistics have independent 

increments. In fact, a stronger results holds, namely that the increments of the sufficient 

statistics are independent of the actual sequence. Below we will write TB\A to signify TB – 

TA.

Proposition 1—If the exponential family  is projective, then sufficient statistics 

 have independent increments, that is, A ⊂ B implies that TB – TA ⫫ TA under all θ.

Proposition 2—In a projective exponential family, TB\A ⫫ XA.

We note that independent increments for the sufficient statistics TA in no way implies 

independence of the actual observations XA. As a simple illustration, take the one-

dimensional Ising model,5 where  = , each  = ±1,  consists of all intervals from 1 to n, 

and the single sufficient statistic . Clearly, T1:(n+1) – T1:n = +1 when Xn 

= Xn+1, otherwise T1:(n+1) – T1:n = −1. Since v1:(n+1)|1:n(+1, x) = v1:(n+1)|1:n(−1, x) = 1, by 

Theorem 1, the model is projective. By Proposition 1, then, increments of T should be 

independent, and direct calculation shows the probability of increasing the sufficient statistic 

by 1 is eθ/(1 + eθ), no matter what X1, . . ., Xn are. While the sufficient statistic has 

independent increments, the random variables Xi are all dependent on one another.6

The previous results provide a way, and often a simple one, for checking whether 

projectibility fails: if the sufficient statistics do not have independent increments, then the 

family is not projective. As we will see, this test covers many statistical models for 

networks.

It is natural to inquire into the converse to these propositions. It is fairly straightforward (if 

somewhat lengthy) to show that independent increments for the sufficient statistics implies 

that the joint volume factor separates.

Proposition 3—If an exponential family has independent increments, TB\A ⫫ TA, then its 

joint volume factor separates, vA,B\A(t, δ) = vA(t)vB\A(δ), and the distribution of T is 

projective.

However, independent increments for the sufficient statistics do not imply that separable 

increments (hence projectibility), as shown by the next counter-example. Hence independent 

increments are a necessary but not sufficient condition for projectibility.

Suppose that  = {a, b, c, d}, and  = {i, ii, iii, iv, v}. (Thus there are 20 possible values 

for XB.) Let

5Technically, with “free” boundary conditions; see [38].
6Note that while this is a graphical model, it is not a model of a random graph. (The graph is rather the one-dimensional lattice.) 
Rather, it is used here merely to exemplify the general result about exponential families. We turn to exponential random graph models 
in Section 5.
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so that vA(+1) = vA(−1) = 2. Further, let

It is not hard to verify that TB\A is always either +1 or −1. It is also straightforward to check 

that vA,B\A(t, δ) = 5 for all combinations of t and δ, implying that vB\A(+1) = vB\A(−1) = 2.5, 

and that the joint volume factor separates. On the other hand, the conditional volume factors 

are not constant in x, as vB\A|A(+1, a) = 2 while vB\A|A(+1, b) = 3. Thus, the sufficient statistic 

has independent increments, but does not have separable increments. Since projective 

families have separable increments (Proposition 4), this cannot be a projective family. (This 

can also be checked by a direct and straightforward, if even more tedious, calculation.)

We conclude this section with a final observation. Butler, in [12], showed that when 

observations follow from an IID model with a minimal sufficient statistic, the predictive 

distribution for the next observation can be written entirely in terms of how different 

hypothetical values would change the sufficient statistic; cf. [8, 39]. This predictive 

sufficiency property carries over to our setting.

Theorem 2 (Predictive sufficiency)—In a projective exponential family, the 

distribution of XB\A conditional on XA depends on the data only through TB\A.

The main implications among our results are summarized in Figure 2.

3.2. Remarks, applications and extensions

Exponential families of time series—As the example of the Ising model in Section 3.1 

(page 514) makes clear, our theorem applies whenever we need an exponential family to be 

projective, not just when the data are networks. In particular, they apply to exponential 

families of time series, where  is the natural or real number line (or perhaps just its positive 

part), and the elements of  are intervals. An exponential family of stochastic processes on 

such a space has projective parameters if, and only if, its sufficient statistics have separable 

increments, and so only if they have independent increments.

Transformation of parameters—Allowing the dimension of θ to be fixed, but for its 

components to change along with A, does not really get out of these results. Specifically, if θ 

is to be re-scaled in a way that is a function of A alone, we can recover the case of a fixed θ 

by “moving the scaling across the inner product,” that is, by re-defining TA to incorporate 
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the scaling. With a sample-invariant θ, it is this transformed T which must have separable 

increments. Other transformations can either be dealt with similarly, or amount to using a 

nonuniform base measure; see below.

Statistical-mechanical interpretation—It is interesting to consider the interpretation of 

our theorem, and of its proof, in terms of statistical mechanics. As is well known, the 

“canonical” distributions in statistical mechanics are exponential families (Boltzmann–

Gibbs distributions), where the sufficient statistics are “extensive” physical observables, 

such as energy, volume, the number of molecules of various species, etc., and the natural 

parameters are the corresponding conjugate “intensive” variables, such as, respectively, 

(inverse) temperature, pressure, chemical potential, etc. [38, 44]. Equilibrium between two 

systems, which interact by exchanging the variables tracked by the extensive variables, is 

obtained if and only if they have the same values of the intensive parameters [38]. In our 

terms, of course, this is simply projectibility, the requirement that the same parameters hold 

for all sub-systems. What we have shown is that for this to be true, the increments to the 

extensive variables must be completely unpredictable from their values on the sub-system.

Furthermore, notice the important role played in both halves of the proof by the separation 

of the joint volume factor, vA,B\A(t, δ) = vA(t)vB\A(δ). In terms of statistical mechanics, a 

macroscopic state is a collection of microscopic configurations with the same value of one 

or more macroscopic observables. The Boltzmann entropy of a macroscopic state is 

(proportional to) the logarithm of the volume of those microscopic states [38]. If we define 

our macroscopic states through the sufficient statistics, then their Boltzmann entropy is just 

log v. Thus, the separation of the volume factor is the same as the additivity of the entropy 

across different parts of the system, that is, the entropy is “extensive.” Our results may thus 

be relevant to debates in statistical mechanics about the appropriateness of alternative, 

nonextensive entropies; cf. [46].

Beyond exponential families—It is not clear just how important it is that we have an 

exponential family, as opposed to a family admitting a finite-dimensional sufficient statistic. 

As is well known, the two concepts coincide under some regularity conditions [6], but not 

quite strictly, and it would be interesting to know whether or not the exponential form of 

equation (2) is strictly required. We have attempted to write the proofs in a way which 

minimizes the use of this form (in favor of the Neyman factorization, which only uses 

sufficiency), but have not succeeded in eliminating it completely. We return to this matter in 

the conclusion.

Prediction—We have focused on the implications of projectibility for parametric 

inference. Exponential families are, however, often used in statistics and machine learning 

as generative models in applications where the only goal is prediction [63], and so (to quote 

Butler [12]) “all parameters are nuisance parameters.” But even in then, it must be possible 

to consistently extend the generative model’s distribution for the training data to a joint 

distribution for training and testing data, with a single set of parameters shared by both old 

and new data. While this requirement may seem too trivial to mention, it is, precisely, 

projectibility.
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Growing number of parameters—In the proof of Theorem 1, we used the fact that TA, 

and hence θ, has the same dimension for all A ∈ . There are, however, important classes of 

models where the number of parameters is allowed to grow with the size of the sample. 

Particularly important, for networks, are models where each node is allowed a parameter (or 

two) of its own, such as its expected degree; see, for instance, the classic π1 model of [31], 

or the “degree-corrected block models” of [34]. We can formally extend Theorem 1 to cover 

some of these cases—including those two particular specifications—as follows.

Assume that TA has a dimension which is strictly nondecreasing as A grows, that is, dA ≤ dB 

whenever A ⊂ B. Furthermore, assume that the set of parameters θA only grows, and that the 

meaning of the old parameters is not disturbed. That is, under projectibility we should have

(8)

For any fixed pair A ⊂ B, we can accommodate this within the proof of Theorem 1 by re-

defining TA to be a mapping from  to ℝdB, where the extra dB –dA components of the 

vector are always zero. The extra parameters in θB then have no influence on the distribution 

of XA and are unidentified on A, but we have, formally, restored the fixed-parameter case. 

The “increments” of the extra components of TB are then simply their values on XB, and, by 

the theorem, the range of values for these statistics, and the number of configurations on 

leading to each value, must be equal for all x ∈ .

Adapting our conditions for the asymptotic convergence of maximum likelihood estimators 

(Section 4) to the growing-parameter setting is beyond our scope here.

Nonuniform base measures—If the exponential densities in (2) are defined with 

respect to nonuniform base measures different from the counting measures, the sufficient 

statistics need not have separable increments. In the supplementary material [57] we address 

this issue and describe the modifications and additional assumptions required for our 

analysis to remain valid. We thank an anonymous referee and Pavel Krivitsky for 

independently brining up this subtle point to our attention.

4. Consistency of maximum likelihood estimators

Statistical inference in an exponential family naturally centers on the parameter θ. As is well 

known, the maximum likelihood estimator θ̂ takes a particularly simple form, obtainable 

using the fact [which follows from equation (5)] that ∇θzA(θ) = zA(θ)Eθ [TA],

(9)

In words, the most likely value of the parameter is the one where the expected value of the 

sufficient statistic equals the observed value.
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Assume the conditions of Theorem 1 hold, so that the parameters are projective and the 

sufficient statistics have (by Lemma 2) independent increments. Define the logarithm of the 

partition function aA(θ) ≡ log zA(θ).7 Suppose that

(10)

where |A| is some positive-valued measure of the size of A, r|A| a positive monotone-

increasing function of it and a: Θ ↦ ℝ is differentiable (at least at θ). Then, by equation (5) 

for the moment generating function, the cumulant generating function of TA is

(11)

From the basic properties of cumulant generating functions, we have

(12)

Substituting into equation (9),

(13)

Thus to control the convergence of θ̂, we must control the convergence of TA/r|A|.

Consider a growing sequence of sets A such that r|A| → ∞. Since TA has independent 

increments, and the cumulant generating functions for different A are all proportional to 

each other, we may regard TA as a time-transformation of a Lévy process Yr [33]. That is, 

there is a continuous-time stochastic process Y with IID increments, such that Y1 has 

cumulant generating function a(θ + ϕ) – a(θ), and TA = Yr|A. Note that TA itself does not 

have to have IID increments, but rather the distribution of the increment TB – TA must only 

depend on r|B| – r|A|. Specifically, from Lemma 4 and equation (10), the cumulant generating 

function of the increment must be (r|B| – r|A|)[a(θ+ ϕ) – a(θ)]. The scaling factor 

homogenizes (so to speak) the increments of T.

Writing the sufficient statistic as a transformed Lévy process yields a simple proof that θ̂ is 

strongly (i.e., almost-surely) consistent. Since a Lévy process has IID increments, by the 

strong law of large numbers Yr|A|/r|A| converges almost surely ( ) to Eθ [Y1] [33]. Since TA 

= Yr|A|, it follows that TA/r|A| → Eθ[Y1] a.s. ( ) as well; but this limit is ∇a(θ). Thus the 

MLE converges on θ almost surely. We have thus proved

Theorem 3—Suppose that the model  is projective, and that the log partition function 

obeys equation (10) for each A ∈ . Then the maximum likelihood estimator exists and is 

strongly consistent.

7In statistical mechanics, −aA would be the Helmholtz free energy.
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We may extend this in a number of ways. First, if the scaling relation equation (10) holds for 

a particular θ (or set of θ), then TA/r|A| will converge almost surely for that θ. Thus, strong 

consistency of the MLE may in fact hold over certain parameter regions but not others. 

Second, when d > 1, all components of TA must be scaled by the same factor r|A|. Making the 

expectation value of one component of T be O(|A|) while another was O(|A|3) (e.g.) would 

violate equation (12) and so equation (10) as well.

Finally, while the exact scaling of equation (10), together with the independence of the 

increments, leads to strong consistency of the MLE, ordinary consistency (convergence in 

probability) holds under weaker conditions. Specifically, suppose that log partition function 

or free energy scales in the limit as the size of the assemblage grows,

(14)

we give examples toward the end of Section 5 below. We may then use the following 

theorem:

Theorem 4—Suppose that an exponential family shows approximate scaling, that is, 

equation (14) holds, for some θ. Then, for any measurable set K ⊆ ℝd,

(15)

(16)

where

(17)

and intK and clK are, respectively, the interior and the closure of K.

When the limits in equations (15) and (16) coincide, which they will for most nice sets K, 

we may say that

(18)
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Since J(t) is minimized at 0 when t = ∇a(θ),8 equation (18) holds in particular for any 

neighborhood of ∇a(θ), and for the complement of such neighborhoods, where the infimum 

of J is strictly positive. Thus TA/r|A| converges in probability to ∇a(θ), and , for all θ 

where equaiton (14) holds.

Heuristically, when equation (14) holds but equation (10) fails, we may imagine 

approximating the actual collection of dependent and heterogeneous random variables with 

an average of IID, homogenized effective variables, altering the behavior of the global 

sufficient statistic T by no more than oP(r|A|). In statistical-mechanical terms, this means 

using renormalization [67]. Probabilistically, the existence of a limiting (scaled) cumulant 

generating function is a weak dependence condition [18], Section V.3.2. While under 

equation (10) we identified the TA process with a time-transformed Lévy process, now we 

can only use a central limit theorem to say they are close [18], Section V.3.1, reducing 

almost-sure to stochastic convergence; see [32] on the relation between central limit 

theorems and renormalization. In any event, asymptotic scaling of the log partition function 

implies θ̂ is consistent.

5. Application: Nonprojectibility of exponential random graph models

As mentioned in the Introduction, our general results about projective structure in 

exponential families arose from questions about exponential random graph models of 

networks. To make the application clear, we must fill in some details regarding ERGMs.

Given a group of n nodes, the network among them is represented by the binary n × n 

adjacency matrix X, where Xij = 1 if there is a tie from i to j and is 0 otherwise. (Undirected 

graphs impose Xij = Xji.) We may also have covariates for each node, say Yi. Our projective 

structure will in fact be that of looking at the sub-graphs among larger and larger groups of 

nodes. That is, A is the sub-network among the first n nodes, and B ⊃ A is the sub-network 

among the first n + m nodes. The graph or adjacency matrix itself is the stochastic process 

which is to have an exponential family distribution, conditional on the covariates

(19)

(We are only interested in the exponential-family distribution of the graph holding the 

covariates fixed.) As mentioned above, the components of T typically count the number of 

occurrences of various sub-graphs or motifs—as edges, triangles, larger cliques, “k-stars” (k 

nodes connected through a central node), etc.—perhaps interacted with values of the nodal 

covariates. The definition of T may include normalizing the counts of these “motifs” by 

data-independent combinatorial factors to yield densities.

8For small ε ∈ ℝd, by a second order Taylor expansion,  , where I(θ) acts as the Fisher information 
rate; cf. [5].
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A dyad consists of an unordered pair of individuals. In a dyadic independence model, each 

dyad’s configuration is independent of every other dyad’s (conditional on Y). In an ERGM, 

dyadic independence is equivalent to the (vector-valued) statistic T adding up over dyads,

(20)

That is, the statistic can be written as a sum of terms over the information available for each 

dyad. In particular, in block models [10], Yi is categorical, giving the type of node i, and the 

vector of sufficient statistics counts dyad configurations among pairs of nodes of given pairs 

of types. Dyadic independence implies projectibility: since all dyads have independent 

configurations, each dyad makes a separate additive contribution to T. Going from n − 1 to n 

nodes thus adds n terms, unconstrained by the configuration among the n − 1 nodes. T thus 

has separable increments, implying projectibility by Theorem 1. (Adding a new node adds 

only edges between the old nodes and the new, without disturbing the old counts.)9 As the 

distribution factorizes into a product of n(n−1) terms, each of exactly the same form, the log 

partition function scales exactly with n(n −1), and the conclusions of Section 4 imply the 

strong consistency of the maximum likelihood estimator.10 This result thus applies to the 

well-studied β-model [7, 15, 53].

Typically, however, ERGMs are not dyadic independence models. In many networks, if 

nodes i and j are both linked to k, then i and j are unusually likely to be directly linked. This 

will of course happen if nodes of the same type are especially likely to be friends 

(“homophily” [45]), since then the posterior probability of i and j being of the same type is 

elevated. However, it can also be modeled directly. The direct way to do so is to introduce 

the number (or density) of triangles as a sufficient statistic, but this leads to pathological 

degeneracy [52], and modern specifications involve a large set of triangle-like motifs [29, 

59, 65]. Empirically, when using such specifications, one often finds a nontrivial coefficient 

for such “transitivity” or “clustering,” over and above homophily [26]. It is because of such 

findings that we ask whether the parameters in these models are projective.

Sadly, no statistic which counts triangles, or larger motifs, can have the nice additive form 

of dyad counts, no matter how we decompose the network. Take, for instance, triangles. Any 

given edge among the first n nodes could be part of a triangle, depending on ties to the next 

node. Thus to determine the number of triangles among the first n + 1 nodes, we need much 

more information about the sub-graph of the first n nodes than just the number of triangles 

among them. Indeed, we can go further. The range of possible increments to the number of 

triangles changes with the number of existing triangles. This is quite incompatible with 

separable increments, so, by (1), the parameters cannot be projective. We remark that the 

9We have assumed the type of each node is available as a covariate. In the stochastic block model, types are latent, and the marginal 
distribution of graphs sums over type-conditional distributions. Proposition 1 in the supplementary material [57] shows that such 
summing-over-latents preserves projectibility. For stochastic block models, projectibility also follows from [42], Theorem 2.7(ii).
10An important variant of such models are the “degree-corrected block models” of [34], where each node has a unique parameter, 
which is its expected degree. It is easily seen that the range of possible degrees for each new node is the same, no matter what the 
configuration of smaller sub-graphs (in which the node does not appear), as is the number of configurations giving rise to each degree. 
The conditions of Section 3.2 thus hold, and these models are projective.
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nonprojectibility of Markov graphs [22], a special instance of ERGMs where the sufficient 

statistics count edges, k-stars and triangles, was noted in [41].

Parallel arguments apply to the count of any motif of k nodes, k > 2. Any given edge (or 

absence of an edge) among the first n nodes could be part of such a motif, depending on the 

edges involving the next k – 2 nodes. Such counts are thus not nicely additive. For the same 

reasons as with triangles, the range of increments for such statistics is not constant, and 

nonseparable increments imply nonprojective family.

While these ERGMs are not projective, some of them may, as a sort of consolation prize, 

still satisfy equation (14). For instance, in models where T has two elements, the number of 

edges and the (normalized) number of triangles or of 2-stars, the log partition function is 

known to scale like n(n − 1) as the number of nodes n → ∞, at least in the parameter 

regimes where the models behave basically like either very full or very empty Erdős–Rényi 

networks [9, 13, 14, 49–51]. (We suspect, from [14, 50, 66], that similar results apply to 

many other ERGMs.) Thus, by equation (18), if we fix a large number n of nodes and 

generate a graph X from , the probability that the MLE θ̂(X) will be more than ε away 

from θ will be exponentially small in n(n − 1) and ε2. Since these models are not projective, 

however, it is impossible to improve parameter estimates by getting more data, since 

parameters for smaller sub-graphs just cannot be extrapolated to larger graphs (or vice 

versa).

We thus have a near-dichotomy for ERGMs. Dyadic independence models have separable 

and independent increments to the statistics, and the resulting family is projective. However, 

specifications where the sufficient statistics count larger motifs cannot have separable 

increments, and projectibility does not hold. Such an ERGM may provide a good description 

of a given social network on a certain set of nodes, but it cannot be projected to give 

predictions on any larger or more global graph from which that one was drawn. If an ERGM 

is postulated for the whole network, then inference for its parameters must explicitly treat 

the unobserved portions of the network as missing data (perhaps through an expectation-

maximization algorithm), though of course there may be considerable uncertainty about just 

how much data is missing.

6. Conclusion

Specifications for exponential families of dependent variables in terms of joint distributions 

are surprisingly delicate; the statistics must be chosen extremely carefully, in order to 

achieve separable increments. (Conditional specifications do not have this problem.) This 

has, perhaps, been obscured in the past by the emphasis on using exponential families to 

model multivariate but independent cases, as IID models are always projective.

Network models, one of the outstanding applications of exponential families, suffer from 

this problem in an acute form. Dyadic independence models are projective models, but are 

sociologically extremely implausible, and certainly do not manage to reproduce the data 

well. More interesting specifications, involving clustering terms, never have separable 

increments. We thus have an impasse which it seems can only be resolved by going to a 

different family of specifications. One possibility—which, however, requires more and 
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different data—is to model the evolution of networks over time [58]. In particular, Hanneke, 

Fu and Xing [30] consider situations where the distribution of the network at time t + 1 

conditional on the network at time t follows an exponential family. Even when the statistics 

in the conditional specification include (say) changes in the number of triangles, the issues 

raised above do not apply.

Roughly speaking, the issue with the nonprojective ERGM specifications, and with other 

nonprojective exponential families, is that the dependency structure corresponding to the 

statistics allows interactions between arbitrary collections of random variables. It is not 

possible, with those statistics, to “screen off” one part of the assemblage from another by 

conditioning on boundary terms. Suppose our larger information set B consists of two 

nonoverlapping and strictly smaller information sets, A ⊂ B and C ⊂ B, plus the new 

observation obtained by looking at both A and C. (For instance, the latter might be the edges 

between two disjoint sets of nodes.) Then the models which work properly are ones where 

the sufficient statistic for B partitions into marginal terms from A and C, plus the interactions 

strictly between them: tB (XB) = tA(XA) + TC (XC) + TB\(A∪C)(XB\(A∪C)). In physical language 

[38], the energy for the whole assemblage needs to be a sum of two “volume” terms for its 

sub-assemblages, plus a “surface” term for their interface. The network models with 

nonprojective parameters do not admit such a decomposition; every variable, potentially, 

interacts with every other variable.

One might try to give up the exponential family form, while keeping finite-dimensional 

sufficient statistics. We suspect that this will not work, however, since Lauritzen [40] 

showed that whenever the sufficient statistics form a semi-group, the models must be either 

ordinary exponential families, or certain generalizations thereof with much the same 

properties. We believe that there exists a purely algebraic characterization of the sufficient 

statistics compatible with projectibility, but must leave this for the future.

One reason for the trouble with ERGMs is that every infinite exchangeable graph 

distribution is actually a mixture over projective dyadic-independence distributions [10, 19], 

though not necessarily ones with a finite-dimensional sufficient statistic. Along any one 

sequence of sub-graphs from such an infinite graph, in fact, the densities of all motifs 

approach limiting values which pick out a unique projective dyadic-independence 

distribution [19]; cf. also [40, 41]. This suggests that an alternative to parametric inference 

would be nonparametric estimation of the limiting dyadic-independence model, by 

smoothing the adjacency matrix; this, too, we pursue elsewhere.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank Luis Carvalho, Aaron Clauset, Mark Handcock, Steve Hanneke, Brain Karrer, Sergey Kirshner, Steffen 
Lauritzen, David Lazer, John Miller, Martina Morris, Jennifer Neville, Mark Newman, Peter Orbanz, Andrew 
Thomas and Chris Wiggins, for valuable conversations; an anonymous referee of an earlier version for pointing out 
a gap in a proof; and audiences at the Boston University probability and statistics seminar, and Columbia 
University’s applied math seminar.

Shalizi and Rinaldo Page 16

Ann Stat. Author manuscript; available in PMC 2015 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. Achlioptas, D.; Clauset, A.; Kempe, D.; Moore, C. On the bias of traceroute sampling (or: Why 
almost every network looks like it has a power law). Proceedings of the 37th ACM Symposium on 
Theory of Computing; 2005. 

2. Ackland R, O’Neil M. Online collective identity: The case of the environmental movement. Social 
Networks. 2011; 33:177–190.

3. Ahmed, NK.; Neville, J.; Kompella, R. In: Aral, S.; Provost, F.; Sundararajan, A., editors. 
Reconsidering the foundations of network sampling; Proceedings of the 2nd Workshop on 
Information in Networks [WIN 2010]; 2010. 

4. Anderson CJ, Wasserman S, Crouch B. A p* primer: Logit models for social networks. Social 
Networks. 1999; 21:37–66.

5. Bahadur, RR. Some Limit Theorems in Statistics. SIAM; Philadelphia: 1971. 

6. Barndorff-Nielsen, O. Information and Exponential Families in Statistical Theory. Wiley; 
Chichester: 1978. MR0489333

7. Barvinok, A.; Hartigan, JA. The number of graphs and a random graph with a given degree 
sequence. 2010. Available at arXiv:1003.0356

8. Besag J. A candidate’s formula: A curious result in Bayesian prediction. Biometrika. 1989; 76:183. 
MR0991437. 

9. Bhamidi S, Bresler G, Sly A. Mixing time of exponential random graphs. Ann Appl Probab. 2011; 
21:2146–2170. MR2895412. 

10. Bickel PJ, Chen A. A nonparametric view of network models and Newman–Girvan and other 
modularities. Proc Natl Acad Sci USA. 2009; 106:21068–21073. [PubMed: 19934050] 

11. Brown, LD. Institute of Mathematical Statistics Lecture Notes—Monograph Series. Vol. 9. IMS; 
Hayward, CA: 1986. Fundamentals of Statistical Exponential Families with Applications in 
Statistical Decision Theory. MR0882001

12. Butler RW. Predictive likelihood inference with applications. J Roy Statist Soc Ser B. 1986; 48:1–
38. MR0848048. 

13. Chatterjee S, Dey PS. Applications of Stein’s method for concentration inequalities. Ann Probab. 
2010; 38:2443–2485. MR2683635. 

14. Chatterjee, S.; Diaconis, P. Estimating and understanding exponential random graph models. 2011. 
Available at arXiv:1102.2650

15. Chatterjee S, Diaconis P, Sly A. Random graphs with a given degree sequence. Ann Appl Probab. 
2011; 21:1400–1435. MR2857452. 

16. Daraganova G, Pattison P, Koskinen J, Mitchell B, Bill A, Watts M, Baum S. Networks and 
geography: Modelling community network structure as the outcome of both spatial and network 
processes. Social Networks. 2012; 34:6–17.

17. de la Haye K, Robins G, Mohr P, Wilson C. Obesity-related behaviors in adolescent friendship 
networks. Social Networks. 2010; 32:161–167.

18. den Hollander, F. Fields Institute Monographs. Vol. 14. Amer. Math. Soc; Providence, RI: 2000. 
Large Deviations. MR1739680

19. Diaconis P, Janson S. Graph limits and exchangeable random graphs. Rend Mat Appl. 2008; 28(7):
33–61. MR2463439. 

20. Easley, D.; Kleinberg, J. Networks, Crowds, and Markets: Reasoning About a Highly Connected 
World. Cambridge Univ. Press; Cambridge: 2010. MR2677125

21. Faust K, Skvoretz J. Comparing networks across space and time, size and species. Sociological 
Methodology. 2002; 32:267–299.

22. Frank O, Strauss D. Markov graphs. J Amer Statist Assoc. 1986; 81:832–842. MR0860518. 

23. Goldenberg A, Zheng AX, Fienberg SE, Airoldi EM. A survey of statistical network models. 
Foundations and Trends in Machine Learning. 2009; 2:1–117.

24. Gondal N. The local and global structure of knowledge production in an emergent research field: 
An exponential random graph analysis. Social Networks. 2011; 33:20–30.

Shalizi and Rinaldo Page 17

Ann Stat. Author manuscript; available in PMC 2015 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



25. Gonzalez-Bailon S. Opening the black box of link formation: Social factors underlying the 
structure of the web. Social Networks. 2009; 31:271–280.

26. Goodreau SM, Kitts JA, Morris M. Birds of a feather, or friend of a friend?: Using exponential 
random graph models to investigate adolescent social networks. Demography. 2009; 46:103–125. 
[PubMed: 19348111] 

27. Grünwald, PD. The Minimum Description Length Principle. MIT Press; Cambridge, MA: 2007. 

28. Handcock MS, Gile KJ. Modeling social networks from sampled data. Ann Appl Stat. 2010; 4:5–
25. MR2758082. 

29. Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M. statnet: Software tools for the 
representation, visualization, analysis and simulation of network data. Journal of Statistical 
Software. 2008; 24:1–11. Special issue on statnet. [PubMed: 18612375] 

30. Hanneke S, Fu W, Xing EP. Discrete temporal models of social networks. Electron J Stat. 2010; 
4:585–605. MR2660534. 

31. Holland PW, Leinhardt S. An exponential family of probability distributions for directed graphs. J 
Amer Statist Assoc. 1981; 76:33–65. MR0608176. 

32. Jona-Lasinio G. Renormalization group and probability theory. Phys Rep. 2001; 352:439–458. 
MR1862625. 

33. Kallenberg, O. Foundations of Modern Probability. 2. Springer; New York: 2002. MR1876169

34. Karrer B, Newman MEJ. Stochastic blockmodels and community structure in networks. Phys Rev 
E. 2011; 83(3):016107, 10. MR2788206. 

35. Kolaczyk, ED. Statistical Analysis of Network Data: Methods and Models. Springer; New York: 
2009. MR2724362

36. Kossinets G. Effects of missing data in social networks. Social Networks. 2006; 28:247–268.

37. Krivitsky PN, Handcock MS, Morris M. Adjusting for network size and composition effects in 
exponential-family random graph models. Stat Methodol. 2011; 8:319–339. MR2800354. 
[PubMed: 21691424] 

38. Landau, LD.; Lifshitz, EM. Statistical Physics. Pergamon Press; Oxford: 1980. 

39. Lauritzen SL. Sufficiency, prediction and extreme models. Scand J Stat. 1974; 1:128–134. 
MR0378162. 

40. Lauritzen, SL. Lecture Notes in Statistics. Vol. 49. Springer; New York: 1988. Extremal Families 
and Systems of Sufficient Statistics. MR0971253

41. Lauritzen SL. Exchangeable Rasch matrices. Rend Mat Appl. 2008; 28(7):83–95. MR2463441. 

42. Lovász L, Szegedy B. Limits of dense graph sequences. J Combin Theory Ser B. 2006; 96:933–
957. MR2274085. 

43. Lubbers MJ, Snijders TAB. A comparison of various approaches to the exponential random graph 
model: A reanalysis of 102 student networks in school classes. Social Networks. 2007; 29:489–
507.

44. Mandelbrot B. The role of sufficiency and of estimation in thermodynamics. Ann Math Statist. 
1962; 33:1021–1038. MR0143592. 

45. McPherson M, Smith-Lovin L, Cook JM. Birds of a feather: Homophily in social networks. 
Annual Review of Sociology. 2001; 27:415–444.

46. Nauenberg M. Critique of q-entropy for thermal statistics. Phys Rev E. 2003; 67:036114.

47. Newman, MEJ. Networks: An Introduction. Oxford Univ. Press; Oxford: 2010. MR2676073

48. Orbanz, P. Projective limit techniques in Bayesian nonparametrics. 2011. Unpublished manuscript

49. Park J, Newman MEJ. Solution of the 2-star model of a network. Phys Rev E. 2004; 70(3):066146.

50. Park J, Newman MEJ. Statistical mechanics of networks. Phys Rev E. 2004; 70(3):066117, 13. 
MR2133807. 

51. Park J, Newman MEJ. Solution for the properties of a clustered network. Phys Rev E. 2006; 72(3):
026136.

52. Rinaldo A, Fienberg SE, Zhou Y. On the geometry of discrete exponential families with 
application to exponential random graph models. Electron J Stat. 2009; 3:446–484. MR2507456. 

Shalizi and Rinaldo Page 18

Ann Stat. Author manuscript; available in PMC 2015 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



53. Rinaldo, A.; Petrović, S.; Fienberg, SE. Maximum likelihood estimation in network models. 2011. 
Available at arXiv:1105.6145

54. Robins G, Snijders T, Wang P, Handcock M, Pattison P. Recent developments in exponential 
random graph (p*) models for social networks. Social Networks. 2007; 29:192–215.

55. Schaefer DR. Youth co-offending networks: An investigation of social and spatial effects. Social 
Networks. 2012; 34:141–149.

56. Schervish, MJ. Theory of Statistics. Springer; New York: 1995. MR1354146

57. Shalizi CR, Rinaldo A. Supplement to “Consistency under sampling of exponential random graph 
models”. 201310.1214/12-AOS1044SUPP

58. Snijders, TAB. Models for longitudinal network data. In: Carrington, PJ.; Scott, J.; Wasserman, S., 
editors. Models and Methods in Social Network Analysis. Cambridge Univ. Press; Cambridge: 
2005. p. 215-247.

59. Snijders TAB, Pattison PE, Robins GL, Handcock MS. New specifications for exponential random 
graph models. Sociological Methodology. 2006; 36:99–153.

60. Stumpf MPH, Wiuf C, May RM. Subnets of scale-free networks are not scale-free: Sampling 
properties of networks. Proc Natl Acad Sci USA. 2005; 102:4221–4224. [PubMed: 15767579] 

61. Touchette H. The large deviation approach to statistical mechanics. Phys Rep. 2009; 478:1–69. 
MR2560411. 

62. Vermeij L, van Duijin MAJ, Baerveldt C. Ethnic segregation in context: Social discrimination 
among native Dutch pupils and their ethnic minority classmates. Social Networks. 2009; 31:230–
239.

63. Wainwright MJ, Jordan MI. Graphical models, exponential families, and variational inference. 
Foundations and Trends in Machine Learning. 2008; 1:1–305.

64. Wasserman S, Pattison P. Logit models and logistic regressions for social networks. I. An 
introduction to Markov graphs and p. Psychometrika. 1996; 61:401–425. MR1424909. 

65. Wasserman, S.; Robins, G. An introduction to random graphs, dependence graphs, and p*. In: 
Carrington, PJ.; Scott, J.; Wasserman, S., editors. Models and Methods in Social Network 
Analysis. Cambridge Univ. Press; Cambridge, England: 2005. p. 148-161.

66. Xiang, R.; Neville, J. Relational learning with one network: An asymptotic analysis. In: Gordon, 
G.; Dunson, D.; Dudík, M., editors. Journal of Machine Learning Research: Workshops and 
Conference Proceedings; Proceedings of the 14th International Conference on Artificial 
Intelligence and Statistics [AISTATS 2011]; Oxford: Clarendon Press; 2011. p. 779-788.

67. Yeomans, JM. Statistical Mechanics of Phase Transitions. Clarendon Press; Oxford: 1992. 

APPENDIX: PROOFS

For notation in this section, without loss of generality, fix a generic pair of subsets A ⊂ B 

and a value of θ. We will write a representative point xB ∈  as xB = (x, y), with x ∈  and 

y ∈ . Also, we abbreviate tB (x, y) − tA(x), for x ∈  and y ∈  by tB\A(x, y).

A.1. Proof of Theorem 1

For clarity, we prove the two directions separately. First we show that projectability implies 

separable increments.

Proposition 4

If the exponential family  is projective, then the sufficient statistics  have 

separable increments, that is, A ⊂ B implies that vB\A|A(δ, x) = vB\A(δ).

Proof—By projectibility, for each θ,
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(21)

(22)

(23)

(24)

which implies that, for all x ∈ ,

(25)

Re-writing the left-hand side of equation (25) as a sum over the set Δ(x) of values which the 

increment tB\A(x, y) to the sufficient statistic might take yields

(26)

where the joint volume factor is defined in (6). Since the right-hand side of equation (26) is 

the same for all x, so must the left-hand side.

Observe that this left-hand side is the Laplace transform of the function vB\A|A(·, x). The 

latter is a nonnegative function which defines a measure on ℝd, whose support is Δ(x). 

Hence,

(27)

is the Laplace transform of a discrete probability measure in ℝd . But the denominator in the 

inner sum is just | |, no matter what x might be.11 So we have that for any x, x′ ∈ , and 

all θ ∈ Θ,

11This can be seen either from recalling that exponential families have full support, or from defining TB as a total and not a partial 
function on .
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(28)

Since both sides of equation (28) are Laplace transforms of probability measures on a 

common space, and the equality holds on all of Θ, which contains an open set, we may 

conclude that the two measures are equal [6], Theorem 7.3. This means that they have the 

same support, Δ(x) = Δ(x′) = Δ, and that they have the same density with respect to counting 

measure on Δ. As they also have the same normalizing factor (viz., | ), we get that 

vB\A|A(δ, x) = vB\A|A(δ, x′) = vB\A(δ). Since the points x and x′ are arbitrary, this last property 

is precisely having separable increments.

Next, we prove the reverse direction, namely that separable increments imply projectibility. 

This is clearer with some preliminary lemmas.

Lemma 1

If the sufficient statistics have separable increments, then the joint volume factors factorize, 

that is,

(29)

for all A ⊂ B, t and δ.

Proof—By definition,

(30)

When the statistic has separable increments, vB\A|A(δ, x) = vB\A(δ), so

(31)

proving the claim.

Lemma 2

If the joint volume factor factorizes, then the sufficient statistics has independent 

increments, and the distribution of the sufficient static is projective.

Proof—Without loss of generality, fix a value t for TA and δ for TB\A. By the law of total 

probability and the definition of the volume factor,

Shalizi and Rinaldo Page 21

Ann Stat. Author manuscript; available in PMC 2015 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(32)

If the volume factor factorizes, so that vA,B\A(t, δ) = vA(t)vB\A(δ), then we obtain

(33)

It then follows that

(34)

and thus that T has independent increments. To establish the projectibility of the distribution 

of T, sum over δ

Since (TA = t) = vA(t)e〈θ,t〉/zA(θ), and both distributions must sum to 1 over t, we can 

conclude that zA(θ) = zB (θ)/zB\A(δ), and hence that the distribution of the sufficient statistic 

is projective.

Lemma 3

If the sufficient statistics of an exponential family have separable increments, then

(35)

Proof—Abbreviate tA(x) by t. By the law of total probability,

(36)

Since TB is sufficient, and tB (x, y) = t + δ for all (x, y) in the sum,

(37)

By parallel reasoning,
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(38)

Therefore,

(39)

If the statistic has separable increments, then vA,B\A(t, δ) = vA(t)vB\A(δ) = vA(t)vB\A|A(δ, x), 

and the conclusion follows.

Remark

The lemma does not follow merely from the joint volume factor separating, vA,B\A(t, δ) = 

vA(t)vB\A(δ). The conditional volume factor must also be constant in x.

Proposition 5

If the sufficient statistic of an exponential family has separable increments, then the family 

is projective.

Proof—We calculate the marginal probability of XA in , by integrating out the increment 

to the sufficient statistic. (The set of possible increments, Δ, is the same for all x, by 

separability.) Once again, we abbreviate tA(x) by t:

These steps use, in succession: Lemma 3; the fact that conditional probabilities sum to 1; the 

projectibility of the sufficient statistics (via Lemmas 1 and 2); and the definition of vA(t).

A.2. Other proofs

Proof of Proposition 1

By Proposition 4, a projective family has separable increments, and by Lemma 2, separable 

increments implies independent increments.

Proof of Proposition 2

By Proposition 4, every projective exponential family has separable increments. By Lemma 

3, in an exponential family with separable increments,
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(40)

Therefore, using projectibility,

(41)

By the definition of vA(·), pA, θ(x) = (TA = tA(x))/vA(tA(x)), so

(42)

But, by Lemma 2, the sufficient statistics have a projective distribution with independent 

increments, implying

(43)

Therefore,

(44)

and so TB\A ⫫ XA.

Proof of Proposition 3

Below we prove that if the suffiicient statistics of an exponential family have independent 

increments, then the volume factor separates, and the distribution of the statistic is 

projective.

Since TB is a sufficient statistic, by the Neyman factorization theorem ([56], Theorem 2.21, 

page 89),

(45)

In light of equation (2), we may take h(x, y) = 1. Abbreviating tA(x) by t and tB\A(x, y) by δ, it 

follows that

(46)

By independent increments, however,
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(47)

whence it follows that, for some functions gB\A, kA, kB\A,

(48)

and

(49)

and

(50)

To proceed, we must identify the new g and k functions. To this end, recalling that vA(t) is 

the number of xA configurations such that tA(xA) = t, we have

(51)

and, at the same time,

(52)

Clearly, then, kA(t) = c1vA(t) while Σδ kB\A(δ) = c2| |. Since

(53)

and Σt vA(t) = | |, we need c1c2 = 1, and may take c1 = c2 = 1 for simplicity. This allows us 

to write

(54)

which is exactly the assertion that the volume factor separates.

Turning to the g functions, we sum over δ again to obtain the marginal distribution of TA,
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Now, we finally we use the exponential-family form. Specifically, we know that

(55)

so that gA(θ, t) ∝ e〈θ,t〉, gB\A(θ, δ) ∝ e〈θ,δ〉. Therefore,

(56)

and normalization now forces

(57)

as desired.

Proof of Theorem 2

The conditional density of XB\A given XA is just the ratio of joint to marginal densities (both 

with the same θ, by projectibility),

(58)

(59)

which is an exponential family with parameter θ, sufficient statistic TB\A, and partition 

function zB\A|A(θ) ≡ zB (θ)/zA(θ).

Proof of Theorem 4

Under equation (14), the cumulant generating function also scales asymptotically, κA,θ 

(ϕ)/r|A| → a(θ + ϕ) − a(θ). Since a is differentiable, the Gärtner–Ellis theorem of large 

deviations theory [18], Chapter V, implies that TA/r|A| obeys a large deviations principle with 

rate r|A|, and rate function given by equation (17), which is to say, equations (15) and (16).

Lemma 4

The moment generating function of TB\A is
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(60)

Proof—From the proof of Theorem 2, XB\A|XA has an exponential family distribution with 

sufficient statistic TB\A. Thus we may use equation (5) to find the moment generating 

function of TB\A conditional on XA,

(61)

(62)

(63)

Since, however, TB\A ⫫ XA (Proposition 2), equation (60) must also give the unconditional 

moment generating function.
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Fig. 1. 
Projective structure for networks: when the set of observables A is contained in the larger set 

of observables B, XA (on the right) can be recovered from XB (on the left) through the 

projection πB ↦ A, which simply drops the extra data.
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Fig. 2. 
Relations among the main properties of models considered in Section 3. Probabilistic 

properties of the models are on the right, and algebraic/combinatorial properties of the 

sufficient statistic are on the left.
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