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Abstract

We propose small-variance asymptotic approximations for inference on tumor heterogeneity (TH) 

using next-generation sequencing data. Understanding TH is an important and open research 

problem in biology. The lack of appropriate statistical inference is a critical gap in existing 

methods that the proposed approach aims to fill. We build on a hierarchical model with an 

exponential family likelihood and a feature allocation prior. The proposed implementation of 

posterior inference generalizes similar small-variance approximations proposed by Kulis and 

Jordan (2012) and Broderick et.al (2012b) for inference with Dirichlet process mixture and Indian 

buffet process prior models under normal sampling. We show that the new algorithm can 

successfully recover latent structures of different haplotypes and subclones and is magnitudes 

faster than available Markov chain Monte Carlo samplers. The latter are practically infeasible for 

high-dimensional genomics data. The proposed approach is scalable, easy to implement and 

benefits from the exibility of Bayesian nonparametric models. More importantly, it provides a 

useful tool for applied scientists to estimate cell subtypes in tumor samples. R code is available on 

http://www.ma.utexas.edu/users/yxu/.
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1 Introduction

1.1 MAD-Bayes

We propose a generalization of the MAD (maximum a posteriori based asymptotic 

derivations) Bayes approach of Broderick et al. (2012b) to latent feature models beyond the 

conjugate normal-normal setup. The model is developed for inference on tumor 

heterogeneity (TH), when the sampling model is a binomial distribution for observed short 

reads counts for single nucleotide variants (SNVs) in next-generation sequencing (NGS) 

experiments.

The proposed model includes a Bayesian non-parametric (BNP) prior. BNP models are 

characterized by parameters that live on an infinite-dimensional parameter space, such as 

unknown mean functions or unknown probability measures. Related methods are widely 

used in a variety of machine learning and biomedical research problems, including 

clustering, regression and feature allocation. While BNP methods are flexible from a 

modeling perspective, a major limitation is the computational challenge that arises in 

posterior inference with large-scale problems and big data. Posterior inference in highly 

structured models is often implemented by Markov chain Monte Carlo (MCMC) simulation 

(Liu, 2008, for example) or variational inference such as expectation-maximization (EM) 

algorithm (Dempster et al., 1977). However, neither approach scales effectively to high-

dimensional data. As a result, simple ad-hoc methods, such as K-means (Hartigan and 

Wong, 1979), are still preferred in many large-scale applications. K-means clustering is 

often preferred over full posterior inference in model-based clustering, such as Dirichlet 

process (DP) mixture models. DP mixture models are some of the most widely used BNP 

models. See, for example, Ghoshal (2010), for a review.

Despite the simplicity and scalability, K-means has some known shortcomings. First, the K-

means algorithm is a rule-based method. The output is an ad-hoc point estimate of the 

unknown partition. There is no notion of characterizing uncertainty, and it is difficult to 

coherently embed it in a larger model. Second, the K-means algorithm requires a fixed 

number of clusters, which is not available in many applications. An ideal algorithm should 

combine the scalability of K-means with the exibility of Bayesian nonparametric models. 

Such links between non-probabilistic (i.e., rule-based methods like K-means) and 

probabilistic approaches (e.g., posterior MCMC or the EM algorithm) can sometimes be 

found by using small-variance asymptotics. For example, the EM algorithm for a mixture of 

Gaussian model becomes the K-means algorithm as the variances of the Gaussians tend to 

zero (Hastie et al., 2001). In general, small-variance asymptotics can offer useful alternative 

approximate implementations of inference for large-scale Bayesian nonparametric models, 

exploiting the fact that corresponding non-probabilistic models show advantageous scaling 

properties.

Using small-variance asymptotics, Kulis and Jordan (2011) showed how a K-means-like 

algorithm could approximate posterior inference for Dirichlet process (DP) mixtures. 

Broderick et al. (2012b) generalized the approach by developing small-variance asymptotics 

to MAP (maximum a posteriori) estimation in feature allocation models with Indian buffet 
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process (IBP) priors (Griffiths and Ghahramani, 2006; Teh et al., 2007). Similar to the K-

means algorithm, they proposed the BP (beta process)-means algorithm for feature learning. 

Both approaches are restricted to normal sampling and conjugate normal priors, which 

facilitates the asymptotic argument and greatly simplifies the computation. However, it is 

not immediately generalizable to other distributions, preventing their methodology from 

being applied to non-Gaussian data. The application that motivates the current paper is a 

typical example. We require posterior inference for a feature allocation model with a 

binomial sampling model.

1.2 Tumor Heterogeneity

The proposed methods are motivated by an application to inference for tumor heterogeneity 

(TH). This is a highly important and open research problem that is currently studied by 

many cancer researchers (Gerlinger et al., 2012; Landau et al., 2013; Larson and Fridley, 

2013; Andor et al., 2014; Roth et al., 2014). In the literature over the past five years a 

consensus has emerged that tumor cells are heterogenous, both within the same biological 

tissue sample and between different samples. A tumor sample typically comprises an 

admixture of subtypes of different cells, each possessing a unique genome. We will use the 

term “subclones” to refer to cell subtypes in a biological sample. Inference on genotypic 

differences (differences in DNA base pairs) between subclones and proportions of each 

subclone in a sample can provide critical new information for cancer diagnosis and 

prognosis. However, inference and statistical modeling are challenging and few solutions 

exist.

Genotypic differences between subclones do not occur frequently. They are often restricted 

to single nucleotide variations (SNVs). When a sample is heterogeneous, it contains multiple 

subclones with each subclone possessing a unique genome. Often the differences between 

subclonal genomes are marked by somatically acquired SNVs. For multiple samples from 

the same tumor, intra-tumor heterogeneity refers to the presence of multiple subclones that 

appear in different proportions across different samples. For samples from different patients, 

however, subclonal genomes are rarely shared due to polymorphism between patients. 

However, for a selected set of potentially disease related SNVs (e.g., from biomarker genes), 

one may still find locally shared haplotypes (a set of SNVs on the same chromosome) across 

patients consisting of the selected SNVs. Importantly, in the upcoming discussion we regard 

two subclonal genomes the same if they possess identical genotypes on the selected SNVs, 

regardless of the rest of genome. In other words, we do not insist that the whole genomes of 

any two cells must be identical in order to call them subclonal. Figure 1(a) illustrates how 

such different subclones can develop over the life history of a tumor, ending, in this 

illustration, with three subclones and five unique haplotypes (ACG, GGG, CGG, TGG, 

AGG).

We start with models for haplotypes. Having more than two haplotypes in a sample implies 

cellular heterogeneity. We use NGS data that record for each sample t the number Nst of 

short reads that are mapped to the genomic location of each of the selected SNVs s, s = 1, 

…, S. Some of these overlapping reads possess a variant sequence, while others include the 

reference sequence. Let nst denote the number of variant reads among the Nst overlapping 
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reads for each sample and SNV. In Figure 1(b), Nst = 5 reads are mapped to the indicated 

SNV. While the reference sequence is “A”, nst = 2 short reads bear a variant sequence “C”. 

We define variant allele fraction (VAF) as the proportion nst/Nst of short reads bearing a 

variant genotype among all the short reads that are mapped to an SNV. In Figure 1(b), the 

VAF is 2/5 for that SNV. In Section 2, we will model the observed variant read counts by a 

mixture of latent haplotypes, which in turn are defined by a pattern of present and absent 

SNVs. Assuming that each sample is composed of some proportions of these haplotypes, we 

can then fit the observed VAFs across SNVs in each sample. Formally, modeling involves 

binomial sampling models for the observed counts with mixture priors for the binomial 

success probabilities. The mixture is over an (unknown) number C of (latent) haplotypes, 

which in turn are represented as a binary matrix Z, with columns, c = 1, …, C, 

corresponding to haplotypes and rows, s = 1, …, S, corresponding to SNVs. The entries zsc 

∈ {0, 1} are indicators for variant allele s appearing in haplotype c. That is, each column of 

indicators defines a haplotype by specifying the genotypes (variant or not) of the 

corresponding SNVs.

1.3 Main Contributions

A key element of the proposed model is the prior on the binary matrix Z. We recognize the 

problem as a special case of a feature allocation problem and use an Indian buffet process 

(IBP) prior for Z. In the language of feature allocation models (and the traditional metaphor 

that is used to describe the IBP prior), the haplotypes are the features (or dishes) and the 

SNVs are experimental units (or customers) that select features. Each tumor sample consists 

of an unknown proportion of these haplotypes. Lee et al. (2013) used a finite feature 

allocation model to describe the latent structure of possible haplotypes. The model is 

restricted to a fixed number of haplotypes. In practice, the number of haplotypes is 

unknown. A possible way to generalize to an unknown number of latent features is to define 

a transdimensional MCMC scheme, such as a reversible jump (RJ) algorithm (Green, 1995). 

However, it is difficult to implement a practicable RJ algorithm.

An attractive alternative is to generalize the BP-means algorithm of Broderick et al. (2012b) 

beyond the Gaussian case. Inspired by the connection between Bregman divergences 

(Bregman, 1967) and exponential families, we propose a MAP-based small-variance 

asymptotic approximation for any exponential family likelihood with an IBP feature 

allocation prior. We call the proposed approach the FL-means algorithm, where FL stands 

for “feature learning”. The FL-means algorithm is scalable, easy to implement and benefits 

from the flexibility of Bayesian nonparametric models. Computation time is reduced beyond 

a factor 1,000.

This paper proceeds as follows. In Section 2, we introduce the Bayesian feature allocation 

model to describe tumor heterogeneity. Section 3 elaborates the FL-means algorithm and 

proves convergence. We examine the performance of FL-means through simulation studies 

in Section 4. In Section 5, we apply the FL-means algorithm to inference for TH. Finally, we 

conclude with a brief discussion in Section 6.
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2 A Model for Tumor Heterogeneity

2.1 Likelihood

We consider data sets from NGS experiments. The data sets record the observed read counts 

for S SNVs in T tumor samples. Let n and N denote S × T matrices with Nst denoting the 

total number of reads overlapping with SNV s in tissue sample t, and nst denoting the 

number of variant reads among those Nst reads. The ratio nst/Nst is the observed VAF. Figure 

1(b) provides an illustration. We assume a binomial sampling model

where pst is the expected VAF, pst = E(nst/Nst | Nst, pst). Conditional on Nst and pst, the 

observed counts nst are independent across s and t. The likelihood becomes

(1)

where n = [nst], N = [Nst] and p = [pst] are (S × T) matrices. The binomial success 

probabilities pst are modeled in terms of latent haplotypes which we introduce next.

2.2 Prior Model for Haplotypes

Recall that {zsc = 1} indicates that the genotype at SNV s is a variant (different from the 

reference genotype) for haplotype c. Figure 2 illustrates the binary latent matrix Z = [zsc] 

with C = 4 haplotypes (columns) and S = 8 SNVs (rows). A shaded cell indicates zsc = 1. For 

instance, SNV 2 occurs in two haplotypes c = 1 and 3, SNV 3 occurs only in haplotype c = 

3. Assuming that each sample is composed of proportions wtc of the haplotypes, c = 1, …, C, 

we represent pst as

(2)

where wtc ∈ [0, 1) and .

In (2), we introduce an additional background haplotype c = 0 that captures experimental 

and data processing noise, such as the fraction of variant reads that are mapped with low 

quality or error. In the decomposition, p0 is the relative frequency of an SNV in the 

background. Equation (2) is a key model assumption. It allows us to deduce the unknown 

haplotypes from a decomposition of the expected VAF pst as a weighted sum of latent 

genotype calls zsc with weights being the proportions of haplotypes. Importantly, we assume 

these weights to be the same across all SNVs, s = 1, …, S. In other words, the expected VAF 

is contributed by those haplotypes with variant genotypes, weighted by the haplotype 

prevalences. Haplotypes without variant genotype on SNV s do not contribute to the VAF 

for s since all the short reads generated from those haplotypes are normal reads. For 

example, in Figure 2 the variant reads mapped to SNV 2 should come from haplotypes 1 and 

3, but not from 2 or 4.
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The next step in the model construction is the prior model p(Z). We use the IBP prior. See, 

for example Griffiths and Ghahramani (2006), Thibaux and Jordan (2007) or Teh et al. 

(2007) for a discussion of the IBP and for a generative model. We briey review the 

construction in the context of the current application. We build the binary matrix Z one line 

(SNV) at a time, adding columns (haplotypes) when the first SNV appears with zsc = 1. Let 

Cs denote the number of columns that are constructed by the first s SNVs. For each SNV, s 

= 1, …, S, we introduce  new haplotypes, and assign zsc = 1 and zs′,c = 0, ∀s′ < 

s, for the new haplotypes . For the earlier haplotypes, c = 1, 

…, Cs−1, mutation s is included with probability  (note the s, rather than s−1 

in the denominator), where msc = ∑s′<s zs′c denote the column sums up to row s−1, that is, 

the number of SNVs, s′ < s, that defines haplotype c. Implicit in the construction is a 

convention of indexing columns by order of appearance, that is, as columns are added for 

SNVs, s = 1, …, S. While it is customary to restrict Z to this so called left-ordered form, we 

use a variation of the IBP without this constraint, discussed in Griffiths and Ghahramani 

(2006) or Broderick et al. (2012a). After removing the order constraint, that is, with uniform 

permutation of the column indices, we get the IBP prior for a binary matrix, without left 

order constraint,

(3)

with a random number of columns (haplotypes) C and a fixed number of rows (SNVs) S. 

Here mc denote the total column sum of haplotype c and . Finally, the model 

is completed with a prior on ws = (ws0, …, wsC), s = 1, …, S. We assume independent 

Dirichlet priors, independent across SNVs, ws ~ Dir(a0, …, aC), using a common value a1 = 

…= aC = a and distinct a0.

In summary, the hierarchical model factors as

(4)

Recall that pst is specified in (2) as a deterministic function of Z and w, that is pst = pst(w, Z). 

The joint posterior

(5)

and thus the desired inference on TH are well defined by (4). However, practically useful 

inference requires summaries, such as the MAP (maximum a posteriori) estimate or efficient 

posterior simulation from (4), which could be used to compute (most) posterior summaries. 

Unfortunately, both, MAP estimation and posterior simulation are difficult to implement 

here. We therefore extend the approach proposed in Broderick et al. (2012b), who define 

small-variance asymptotics for inference under an IBP prior using a standard mixture of 

Gaussian sampling model. Below, in Section 3, we develop a similar approach for the 

binomial model (1), and it applies to any other exponential family sampling models.
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2.3 Prior Model for Subclones

Model (4) characterizes TH by inference on latent haplotypes. More than C = 2 haplotypes 

in one tumor sample imply the existence of subclones since humans are diploids. The 

sequence matrix Z and sample proportions w for haplotypes precisely characterize the 

genetic contents in a potentially heterogeneous tumor sample. We will use it for most of the 

upcoming inference. However, haplotype inference does not yet characterize subclonal 

architecture. A subclone is uniquely defined by a pair of haplotypes. A simple model 

extension allows inference for subclones, if desired. As an alternative and to highlight the 

modeling strategies we briey discuss such an extension.

We introduce a latent trinary (S × C) matrix Z̃, with columns now characterizing subclones 

(rather than individual haplotypes). We use three values z̃sc ∈ {0, 1, 2} to represent the 

subclonal true VAFs at each locus, with zs̃c = 0 indicating homozygosity and no variant on 

both alleles, and z̃sc = 1 and 2 indicating a heterozygous variant and a homozygous variant, 

respectively. The true VAF at each SNV is equivalent to the subclonal genotype and also 

known as B-allele frequency. We use the unconventional term “true VAF” to be consistent 

of our previous discussion.

We define a prior model p(Z̃) as a variation of the IBP prior. Let mc1 = ∑s I (z̃sc = 1) and mc 

= ∑s I (z̃sc > 0), where I(·) is the indicator function and define

(6)

The construction can be easily explained. Starting with an IBP prior p(Z) for a latent binary 

matrix Z, we interpret zsc = 1 as an indicator for variant s appearing in subclone c (homo- or 

heterozygously), that is {zsc = 1} = {z̃sc ∈ {1, 2}}. For each zsc = 1 we flip a coin. With 

probability πc we record z̃sc = 1 and with probability (1 − πc) we record z̃sc = 2. And we 

copy zsc = 0 as z̃sc = 0.

Finally, we assume that each sample consists of proportions wtc of the subclones, c = 1, …, 

C, and represent pst as

Here, the decomposition of pst includes again an additional term for a background subclone. 

Lastly, we complete the model with a uniform prior on πc, c = 1, …, C and denote π = (π1, 

…, πC). The hierarchical model for estimating subclones factors as

(7)
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We will use model (7) for alternative inference on subclones, but will focus on inference for 

haplotypes under model (4). That is, we characterize TH by decomposing observed VAF's in 

terms of latent haplotypes.

3 A MAD Bayes Algorithm for TH

3.1 Bregman Divergence and the Scaled Binomial Distribution

We define small-variance asymptotics for any exponential family sampling model, including 

in particular the binomial sampling model (1). The idea is to first rewrite the exponential 

family model in the canonical form as a function of a generalized distance between the 

random variable and the mean vector. We use Bregman divergence to do this. In the 

canonical form it is then possible to define a natural scale parameter which becomes the 

target of the desired asymptotic limit. Finally, we will recognize the log posterior as 

approximately equal to a K-means type criterion. The latter will allow fast and efficient 

evaluation of the MAP. Repeat computations with different starting values finds a set of 

local modes, which are used to summarize the posterior distribution. The range of local 

modes gives some information about the effective support of the posterior distribution. We 

start with a definition of Bregman divergence.

Definition—Let ϕ :  → ℝ be a differentiable, strictly convex function defined on a 

convex set  ⊆ ℝn. The Bregman divergence (Bregman, 1967) for any points x, y ∈ ℝn is 

defined as

where 〈·, ·〉 represents the inner product and ∇ϕ (y) is the gradient vector of ϕ.

In words, dϕ is defined as the increment {ϕ(x) − ϕ(y)} beyond a linear approximation with 

the tangent in y. The Bregman divergence leads to a large number of useful divergences as 

special cases, such as squared loss distance, KL-divergence, logistic loss, etc. For instance, 

if ϕ(x) = 〈x, x〉, dϕ(x, y) = ‖x − y‖2 is the squared Euclidean distance.

Banerjee et al. (2005) show that there exists a unique Bregman divergence corresponding to 

every regular exponential family including binomial distribution. Specifically, defining the 

natural parameter , we rewrite the probability mass function of n ~ Bin(N, p) 

in the canonical form, given by

(8)

where ψ(η) = N log(1 + eη) and . Under (8) the mean and variance of n 

can be written as a function of η, given by

(9)
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We introduce a rescaled version of the likelihood by a power transformation of the kernel of 

(8), that is by scaling the first two terms in the exponent, replacing η by η̃ = βη and ψ(η) by 

ψ̃(η̃) = βψ(η̃/β). Let p̃(n | η̃, ψ̃) denote the power transformed model. A quick check of (9) 

shows that the mean remains unchanged, μ̃ = ∇ψ̃(η̃) = ∇ψ(η) = μ, and the variance gets 

scaled, σ̃2 = ∇2ψ̃(η̃) = β∇2ψ(η̃/β) = σ2/β. That is, p̃(·) is a rescaled, tightened version of p(·). 

The important feature of this scaled binomial model is that σ2̃ → 0 as β → 1, while μ̃ 

remains unchanged.

The rescaled model can be elegantly interpreted when we rewrite (8) as a function of 

Bregman divergence for suitably chosen ϕ(n, μ). The rescaled version arises when replacing 

dϕ by βdϕ(n, μ). Let

The Bregman divergence is dϕ(n, μ) = ϕ(n)−ϕ(μ)−(n−μ)∇ϕ(μ), with which the binomial 

distribution can be expressed as

(10)

where fϕ(n) = exp{ϕ(n) − h1(n)}. The derivation of (10) is shown in the Supplementary 

Material A. Denoting ϕ̃ = βϕ, we can write the Bregman divergence representation for the 

scaled binomial as

For any exponential family model we can write its canonical form and construct the 

corresponding Bregman divergence representations. Thus the same rescaled version can be 

defined for any exponential family model.

3.2 MAP Asymptotics for Feature Allocations

We use the scaled binomial distribution to develop small-variance asymptotics to the 

hierarchical model (4). A similar derivation of small-variance asymptotic to (7) is shown in 

the Supplementary Material E. Let p̃β(·) generically denote distributions under the scaled 

model. The joint posterior is

based on (8), the scaled binomial likelihood is given by
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where , as before. Finding the joint MAP of Z and w is equivalent 

to finding the values of Z and w that minimize −log L(Z, w). We avoid overfitting Z with an 

inflated number of features by moving the prior towards a smaller numbers of features as we 

increase β. This is achieved by varying γ = exp(−βλ2) with increasing β, that is γ → 0 as β → 

∞. Here λ2 > 0 is a constant tuning parameter. We show that

(11)

where C is the random number of columns of Z, and u(β) ~ υ(β) indicates asymptotic 

equivalence, i.e., u(β)/υ(β) → 1 as β → ∞. The double sum originates from the scaled 

binomial likelihood and the penalty term arises as the limit of the log IBP prior. The 

derivation is shown in the Supplementary Material B. We denote the right hand side of (11) 

as Q(p). We refer to Q(p) as the FL (feature leaning)-means objective function, keeping in 

mind that  is a function of Z and w. The first term in the objective 

functions is a K-means style criterion for the binary matrix Z and w when the number of 

features is fixed. The second term acts a penalty for the number of selected features. The 

tuning parameter λ2 calibrates the penalty. We propose a specific calibration scheme for the 

application to inference on tumor heterogeneity. See Section 4.3 for details. A local MAP 

that maximizes the joint posterior L(Z, w) is asymptotically equivalent to

(12)

Keep in mind that pst(Z, w) is a function of Z and w. Objective function Q(p) is similar to a 

penalized likelihood function, with λ2 mimicking the tuning parameter for sparsity. The 

similarity between Q(p) and a penalized likelihood objective function is encouraging, 

highlighting the connection between an approximated Bayesian computational approach 

based on coherent models and regularized frequentist inference.
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3.3 FL-means Algorithm

We develop the FL-means algorithm to solve the optimization problem in (12) and prove 

convergence. Since all entries of Z are binary and wtc ∈ ℝ+ subject to , (12) is a 

mixed integer optimization problem. Mixed integer linear programming (MILP) is NP-hard 

to solve (Karlof, 2005). The objective function is a non-linear function of Z and w, 

indicating that even sophisticated MILP solvers unlikely benefit this case. Rather than 

solving the optimization problem (12) as a generic MILP, we construct a coordinate 

transformation, allowing us to solve this problem as a constrained optimization problem.

Denote . Suppose Z is 

fixed. Let wt,−0 = (wt1, …, wtC) and let H(Z) = {p0wt0 + Zwt,−0 | wt ∈ ΔCt, t = 1, …, T} 

denote the set of convex combinations of the column vectors in Z (adding the term for the 

background in (2)). Then (12) reduces to finding

It can be shown that the objective function Q(p) is separable convex (see Supplementary 

Material C), and this problem can be solved using standard convex optimization methods. 

However, the next optimization with respect to Z given fixed w is no longer convex. We use 

a brute-force approach to solve this problem by enumerating all possible Z. We propose the 

following algorithm for haplotype modeling. It can be easily adapted to subclone modeling.

FL-means Algorithm

• Set C = 1. Initialize Z as an S × C matrix by setting zs1 = 1 with probability 0.5 for s 

= 1, …, S. Initialize w as a T × (C + 1) matrix with wt = (wt0, wt1, …, wtC) ~ Dir(1, 

1, …, 1) for t = 1, …, T.

• Iterate over the following steps until no changes are made.

1. For s = 1, …, S, minimize Q with respect to zs = (zs0, zs1, …, zsC), fixing wt 

and C at the currently imputed values.

2. For t = 1, …, T, minimize Q with respect to wt = (wt0, wt1, …, wtC) with 

constraint , fixing Z and C at the currently imputed values.

3. Let Z′ equal Z but with one new feature (labeled C + 1) containing only one 

randomly selected SNV index s. Set w′ that minimizes the objective given Z
′. If the triplet (C + 1, Z′, w′) lowers the objective Q from the triplet (C, Z, 

w), replace the latter with the former.

Theorem 3.1—The FL-means algorithm converges in a finite number of iterations to a 

local minimum of the FL-means objective function Q.

See Supplementary Material D for a proof. Theorem 3.1 guarantees convergence, but does 

not guarantee convergence to the global optimum. From a data analysis perspective the 
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presence of local optima is a feature. It can be exploited to learn about the sensitivity to 

initial conditions and degree of multi-modality by using multiple random initializations. We 

will demonstrate this use in Sections 4 and 5.

3.4 Evaluating Posterior Uncertainty

The FL-means algorithm implements computationally efficient evaluation of an MAP 

estimate (Ĉ, Ẑ, ŵ) for the unknown model parameters. However, a major limitation of any 

MAP estimate is the lack of uncertainty assessment. We therefore supplement the MAP 

report with a summary of posterior uncertainty based on the conditional posterior 

distribution p(Z | Ĉ, n, N). In particular, we report

(13)

Evaluation of p̄sc is easily implemented by posterior MCMC simulation. Conditional on a 

fixed number of columns, Ĉ, we can implement posterior simulation under (5) (for fixed Ĉ) 

using Gibbs sampling transition probabilities to update zsc and Metropolis-Hastings 

transition probabilities to update wtc. We initialize the MCMC chain with the MAP 

estimates Z = Ẑ and w = ŵ. See Supplementary Material F for the details of the MCMC. 

The MCMC algorithm is implemented with 1,000 iterations and used to evaluate p̄sc. In the 

following examples we report p̄sc to characterize uncertainty of the reported inference for 

TH.

4 Simulation Studies

4.1 Haplotype-Based Simulation

We carried out simulation studies to evaluate the proposed FL-means algorithm for 

haplotype inference, i.e., using model (4). We generated a data matrix with S = 80 SNVs and 

T = 25 samples. The simulation truth included Co = 4 latent haplotypes, plus a background 

haplotype that included all SNVs. The latent binary matrix Zo was generated as follows: 

haplotype 1 was characterized by the presence of the first 10 SNVs, haplotype 2 by the first 

25, haplotype 3 by the first 40 and haplotype 4 by the first 60. In other words, SNVs 1–10 

occurred in all four haplotypes, SNVs 10–25 in haplotypes 2–4, SNVs 25–40 in haplotypes 

3–4, SNVs 41–60 in haplotype 4 only, and SNVs 61–80 in none of the haplotypes. Figure 

3(a) shows the simulation truth Zo. Let π = (1, 5, 6, 10) and πp be a random permutation of 

π, we generated true , t = 1, …, T. Let  and Nst = 50 for all s 

and t; we generated nst ~ Bin(Nst, pst), where . We then ran the FL-

means algorithm repeatedly with 1,000 random initializations to obtain a set of local minima 

of Q as an approximate representation of posterior uncertainty. Each run of the FL-means 

algorithm only took 1 minute.

For different λ2 values, we report point estimates (Figure 3 (b) and (c) for Z that were 

obtained by minimizing the objective function Q. The point estimate is the estimate (Ĉ, Ẑ, 

ŵ) that minimizes Q(p) in 1,000 random initializations. Figure 4 shows the frequencies of 

the estimated number Ĉ of features under different λ2 values (the modes are highlighted by 
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extra large plotting symbols). The plot shows the distribution of local minima over repeated 

runs of the algorithm with different initializations, all with the same simulated data.

An important consideration in the implementation of the FL-means algorithm is the choice 

of the penalty parameter λ2. As a sensitivity analysis we ran the FL-means algorithm with 

different λ2 values: λ2 = 2, 4, 6, 8, 10, 20, 200 and 500. Figure S1 (see Supplementary 

Material G) shows the estimated number Ĉ of features and the realized minimum value of 

the objective function Q versus λ2. We observe that the Ĉ decreases and the objective value 

increases as λ2 increases. Summarizing Figures 3 and S1, we find that under λ2 = 8, 10, both 

the estimated Ĉ and the estimated Ẑ perfectly reconstruct the simulation truth Zo. Under λ2 = 

6, we find Ĉ = 5 and the estimated Ẑ includes true haplotypes (columns 1–4) as well as an 

additional spurious haplotype that includes some of the SNVs. We add a report of posterior 

uncertainties p̄sc, as defined in (13). In this particular case we find p̄sc = 1 for all s, c. The 

estimate Ẑ recovers the simulation truth, and there is little posterior uncertainty about it. As 

expected, a smaller λ2 leads to a larger Ĉ value. In summary, the inference summaries are 

sensitive with respect to the choice of λ2. A good choice is critical. Below we suggest one 

reasonable ad-hoc algorithm for the choice of λ2.

For comparisons, we applied a recently published method PyClone (Roth et al., 2014) to the 

same simulated data. PyClone identifies candidate subclones as individual clusters by 

partitioning the SNVs into sets of similar VAFs. However, PyClone does not allow 

overlapping sets, that is, SNVs can not be shared across subclones, and is thus not fully in 

line with clonal evolution theory. Inference is still meaningful as a characterization of 

heterogeneity, but should be interpreted with care. To implement PyClone, we assumed that 

the copy number at SNVs was known. PyClone identified four clusters: cluster 1 consists of 

SNVs 1–25, cluster 2 SNVs 26–40, cluster 3 SNVs 41–60, and cluster 4 SNVs 61–80. The 

estimated cluster 1 includes the SNVs that appear in all the true haplotypes under the 

simulation truth; cluster 2 includes the SNVs from true haplotypes 3 and 4; cluster 3 

includes the SNVs from true haplotypes 4 and cluster 4 includes the SNVs from none of the 

true haplotypes. Figure S2 plots the estimated mean cellular prevalence of each cluster 

across all the 25 samples. To summarize, in our simulation study PyClone did not recover 

the true haplotypes, which can not possibly be captured with non-overlapping clustering.

4.2 Subclone-Based Simulation

We carried out one more simulation study to evaluate the proposed FL-algorithm under 

model (7) for subclonal inference. We generated a data matrix with S = 80 SNVs and T = 25 

samples. The simulation truth included Co = 4 latent subclones, plus a background subclone 

that included all SNVs. We generated the latent trinary matrix Z̃o as follows. We first 

generated a binary matrix Z̃o as before, in Section 4.1. Next, if  then set  with 

probabilities 0.7 (for j = 1) and 0.3 (for j = 2). If  then . Figure S3(a) 

(Supplementary Material G) shows the simulation truth Z̃o.

Next we fixed  and Nst = 50 and generated a simulation truth  as before, in 

Section 4.1. Finally, we generated nst ~ Bin(Nst, pst), where . We 
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then ran the FL-means algorithm repeatedly with 1,000 random initializations to obtain a set 

of local minima of Q. The set of local minima provides the desired summary of the posterior 

distribution on the decomposition into subclones. We fix λ2 using the algorithm from 

Section 4.3. As a result we estimated Ĉ = 4, that is, we estimated the presence of four 

subclones. Figure S3(b) shows the estimated Z̃ under λ2 = 50. In fact, posterior inference in 

this case perfectly recovered the simulation truth.

4.3 Calibration of λ2

Recall that wtc denotes the relative fraction of haplotype c in sample t. Under λ2 = 8, the 

posterior estimate perfectly recovered the simulation truth. The estimates for wtc ranged 

from 0.01 to 0.53 for c = 1, from 0.007 to 0.57 for c = 2, from 1.8 × 10−8 to 0.52 for c = 3 

and from 0.008 to 0.59 for c = 4 for t = 1, …, T. Posterior inference (correctly) reports that 

each true haplotype c constitutes a substantial part of the composition for some subset of 

samples. Under λ2 = 6, the first four estimated features perfectly recover the simulation 

truth. However, for c = 5, the estimated wtc ranged from 1.1 × 10−9 to 0.06. These very 

small fractions are biologically meaningless. We find similar patterns under λ2 = 2 and 4. 

Based on these observations, we propose a heuristic to fix the tuning parameter λ2. We start 

with a large value of λ2, say, λ2 = 50. While every imputed haplotype c constitutes a 

substantial fraction in some subset of samples, say wtc > 1/Ĉ for some t, we decrease λ2 until 

newly imputed haplotypes only take small fraction in all samples, say, wtc < 1/Ĉ. The 

constant specified here is not arbitrary, instead, it can be chosen based on the biological 

questions that the researchers aim to address. For example, the haplotype prevalence below 

certain threshold is likely to be noise.

5 Results

5.1 Intra-Tumor Heterogeneity

We use deep DNA-sequencing data from an in-house experiment to study intra-TH that is 

characterizing heterogeneity of multiple samples in a single tumor. Data include four 

surgically dissected tumor samples from the same lung cancer patient. We performed whole-

exome sequencing and processed the data using a bioinformatics pipeline consisting of 

standard procedures, such as base calling, read alignment, and variant calling. SNVs with 

VAFs close to 0 or 1 do not contribute to the heterogeneity analysis since these VAF values 

are expected when samples are homogeneous. We therefore remove these SNVs from the 

analysis. Details are given in the Supplementary Material H. The final number of SNVs for 

the four intra-tumor samples is 17, 160. With such a large data size, in practice it is 

infeasible to run the MCMC sampler proposed in Lee et al. (2013). PyClone is not designed 

to handle large-scale data sets. It took more than three days without returning any result, 

which makes it practically infeasible for high-throughput data analysis.

We first report inference based on haplotypes. Figure 5 summarizes the results. We fix λ2 

using the algorithm from Section 4.3, and find Ĉ = 3 haplotypes. In Figure 5(a), we observe 

that haplotypes 1 and 2 have exactly complementary genotypes. Next we compare 

haplotypes 1 and 3. The second heatmap (still in panel a) plots only the 1,464 SNVs that 

differ between c = 1 and c = 3, highlighting the differences that are difficult to see in the 
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earlier plot over all 17,160 SNVs. Three reported haplotypes imply that there are at least two 

subclones of tumor cells, one potentially with heterozygous mutations on the 17,160 SNVs, 

and another with an additional 1,464 somatic mutations. We annotated the 1,464 mutations 

and found that a large proportion of the mutations occur in known lung cancer biomarker 

genes. Some of them are de novo findings that will be further investigated.

Next we summarize posterior uncertainty by plotting p̄sc, as proposed in (13). This is shown 

in Figure 5(b). Green (light grey, ps̄c = 1) means no posterior uncertainty. The plot in panel 

(b) is arranged exactly as in panel (a), with rows corresponding to SNVs and columns 

corresponding to haplotypes. The left plot shows all SNVs for all three haplotypes. The right 

plot zooms in on the subset of 1,464 SNVs that differ across c = 1 and 3 only, similar to 

panel (a). There is little posterior uncertainty about the 1,464 SNVs that differentiate 

haplotype 1 and haplotype 3. Figure 5(c) shows the circos plot (Krzywinski et al., 2009) 

including the estimated proportion ŵtc with Ĉ = 3 haplotypes in each sample. Interestingly, 

four tumor samples possess similar proportions, indicating lack of spatial heterogeneity 

across four samples. This is not surprising as the four samples are taken from tumor regions 

that are geographically close.

Next we consider a separate analysis using model (7) for inference on subclones. Posterior 

inference estimates Ĉ = 3 subclones, and all four samples have similar proportions of the 

three subclones, with two subclones taking about 40% and 45% of the tumor content, and 

the third subclone taking about 15% of the tumor content in all four samples. This agrees 

with the reported haplotype proportions in Figure 5. However, the genotypes of subclones 

are expressed at 0, 1 or 2’s, representing homozygous reference, heterozygous and 

homozygous variant, respectively. Inference on subclones does not include inference on the 

constituent haplotypes, making it impossible to directly compare with the earlier analysis. 

However, we note that both analyses show that the four tumor samples are subclonal, and 

the subclone proportions are similar in all four samples. As a final model checking, Figure 

S4 shows the differences of (pst − p̂st), where p̂st is computed by plugging in the posterior 

estimates of w and Z. As the figure shows, both analyses fit the data well.

5.2 Inter-Patients Tumor Heterogeneity

We analyzed exome-sequencing data for five tumor samples from patients with pancreatic 

ductal adenocarcinoma (PDAC) at NorthShore University HealthSystem (Lee et al., 2013). 

Since samples were from different patients, we aimed to infer inter-patient TH. We applied 

models (4) and (7) for haplotype- and subclone-based inference, respectively. In both 

applications, we focused on a set of SNVs, and assumed that the collection of the genotypes 

at the SNVs could be shared between haplotypes in different tumor samples, regardless of 

the rest of the genome.

The mean sequencing depth for the samples was between 60X and 70X. A total of 

approximately 115,000 somatic SNVs were identified across the five whole exomes using 

GATK (McKenna et al., 2010). First we focus on a small number of 118 SNVs selected with 

the following three criteria: (1) exhibit significant coverage in all samples; (2) occur within 

genes that are annotated to be related to PDAC in the KEGG pathways database (Kanehisa 
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et al., 2010); (3) are nonsynonymous, i.e., the mutation changes the amino acid sequence 

that is coded by the gene.

In summary, the PDAC data recorded the total read counts (Nst) and variant read counts (nst) 

of S = 118 SNVs from T = 5 tumor samples. Figure S5 (see Supplementary Material G) 

shows the histogram of the observed VAFs, nst/Nst. We ran the proposed FL-means 

algorithm with 1,000 random initializations. Each run of the FL-means algorithm took 50 

seconds, while an MCMC sampler for finite feature allocation model proposed by Lee et al. 

(2013) took over one hour for each fixed number of haplotypes. Unlike MCMC, iterations of 

the FL-means algorithm are independent of each other. This facilitates parallel computing. 

For example, running all 1000 FL-means repetitions simultaneously the entire computation 

finished within one minute (instead of >10 hours if running sequentially). This is a 

significant speed advantage over MCMC simulation. After searching for reasonable values 

of λ2 using the algorithm from Section 4.3, we estimated Ĉ to be 5, i.e., five haplotypes.

Figure 6 summarizes the haplotype analysis results. In (a) we present an estimate of Z, as the 

point estimate minimizing the objective function Q in our runs. Each of the five columns 

represents a haplotype and each row represent an SNV, with green and red blocks indicating 

mutant and wildtype genotypes. In (b) we use a circos plot (Krzywinski et al., 2009) to 

present the proportions of the five estimated haplotypes for each sample. Samples 1 and 5 

possess the same three haplotypes (2, 4, and 5) while samples 2–4 all possess haplotype 1 

and another distinct haplotype. The results show that most tumor samples consist of only 

two haplotypes, except samples 1 & 5, which have three haplotypes. No two samples share a 

complete set of haplotypes, reflecting the polymorphism between individuals. Lastly, 

haplotypes 1, 4, and 5 are more prevalent than the other haplotypes, both appearing in three 

out of five samples. Haplotype 3 is the least prevalent appearing only in one sample. The 

corresponding uncertainties, as summarized by ps̄c, are shown in Figure S6 (a) (see 

Supplementary Material G).

For comparisons, we also applied PyClone to infer TH for the same pancreatic cancer data. 

PyClone identified 27 SNV clusters out of 118 samples, practically rendering the results 

hard to interpret and biologically less meaningful.

To examine the computational limits of the proposed approach we re-analyzed the PDAC 

data, but now keeping all SNVs that exhibit significant coverage in all samples and occur in 

at least two samples – not limited to those in KEGG pathways. This filtering left us with S = 

6, 599 SNVs.

We applied the proposed FL-means algorithm with 1,000 random initializations. Each run of 

the FL-means algorithm took less than 2 minutes. After searching for λ2 using the suggested 

heuristic, we estimated Ĉ = 7. The full inference results are summarized in Figure 7. 

Interestingly, we found patterns that were similar to the previous analysis, such as that each 

sample possesses mostly two haplotypes. However, with more SNVs, there are now three 

(as opposed to one) distinct haplotypes, each only appearing in one out of five samples. This 

is not surprising since with more somatic SNVs, by definition the chance of having common 

haplotypes between different tumor samples will reduce. The heatmap in Figure S6 (b) (see 
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Supplementary Material G) shows the estimated uncertainties of the estimated seven 

haplotypes.

Lastly, we applied model (7) for subclonal inference across samples. Examining Figures 

6(b) and 7(b), we see that most samples (except sample 1 in Figure 6(b)) possess two major 

haplotypes, which can be explained by having a single clone, i.e., no subclones. We 

observed the same results in subclonal inference: the five samples are clonal, each 

possessing a different local genome on the selected SNVs. While the results are less 

interesting, they suggest that the proposed models do not falsely infer subclonal structure 

where there is none.

6 Conclusion

We introduce small-variance asymptotics for the MAP in a feature allocation model under a 

binomial likelihood as it arises in inference for tumor heterogeneity. The proposed FL-

algorithm uses a scaled version of the binomial likelihood that can be introduced as a special 

case of scaled exponential family models that are based on writing the sampling models in 

terms of Bregman divergences. The algorithm provides simple and scalable inference to 

feature allocation problems.

Inference in the three datasets shows that the proposed inference approaches correctly report 

subclonal or clonal inference for intra-TH and inter-patient TH. More importantly, haplotype 

inference reveals shared genotypes on selected SNVs recurring across samples. Such sharing 

would provide valuable information for future disease prognosis, taking advantage of the 

innovation proposed in this paper. For example, Ding et al. (2012) demonstrated that the 

relapse of acute myeloid leukemia was associated with new mutations acquired by a 

subpopulation of cancer cells derived from the original population.

In this paper we assumed diploidy or two copies of DNA for all genes. However, the copy 

number may vary in cancer cells, known as copy number variants (CNVs). SNVs and CNVs 

coexist throughout the genome. CNVs can alter the total read count mapped to a locus and 

eventually the observed VAFs. Integrating inference on both, CNVs and SNVs, to infer 

tumor heterogeneity could be a useful extension of the proposed model. Finally, in the 

proposed approach we implicitly treat normal tissue like any another subclone. If matching 

normal samples were available the model could be extended to borrow strength across tumor 

and normal samples by identifying a subpopulation of normal cells as part of the 

deconvolution.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) Somatic mutations (in red) that are acquired during tumor growth lead to the emergence 

of new subclones and haplotypes. (b) An illustration of an SNV and read mapping. The 

figure shows five short reads that are mapped to the indicated SNV location. The reference 

genotype is A. Among the five reads, two reads have a variant genotype C. So Nst = 5, nst = 

2 and the observed VAF is 2=5.
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Figure 2. 
A binary matrix Z with haplotypes (latent features) c = 1, …, C(= 4), in the columns and S = 

8 SNVs in the rows. A shaded cell indicates that an SNV occurs in a haplotype (zsc = 1).
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Figure 3. 
A simulation example. The plots show the feature allocation matrix Z, with shaded area 

indicating zsc = 1, i.e., variant genotype. Rows are the SNVs and columns are the inferred 

haplotypes. Panel (a) shows the simulation truth Zo. Panel (b) displays the estimated feature 

allocation matrix Ẑ for λ2 = 8 and 10. The estimate perfectly recovers the simulation truth. 

Panel (c) shows b Ẑ for λ2 = 6. The first four haplotypes match the simulation truth.
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Figure 4. 
The frequencies of estimated Ĉ in 1000 simulations with different initializations. The mode 

is highlighted with extra large plotting symbols.
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Figure 5. 
Summary of intra-TH analysis for four samples from a lung tumor with 17,160 SNVs. (a): 

The first heatmap shows posterior estimated haplotype genotypes (columns) of the selected 

SNVs. Three haplotypes are identified. A green/red block indicates a mutant/wildtype allele 

at the SNV in the haplotype. The second heatmap shows the differences between haplotypes 

1 and 3 in the first heatmap. (b): The first heatmap shows the estimated uncertainties of three 

estimated haplotypes for 17,160 SNVs. The second heatmap shows the estimated 

uncertainties of 1,464 SNVs that differentiate haplotypes 1 and 3 in the first heatmap. (c): A 

circos plot showing the estimated proportion ŵtc with Ĉ = 3 haplotypes in each sample. The 

four samples possess similar proportions.
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Figure 6. 
Summary of TH analysis using the PDAC data with 118 SNVs. (a): Posterior estimated 

haplotype genotypes (columns) of the selected SNVs. Five haplotypes are identified. A 

green/red block indicates a mutant/wildtype allele at the SNV in the haplotype. (b): A circos 

plot showing the estimated proportion ŵtc with Ĉ = 5 haplotypes.
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Figure 7. 
Summary of TH analysis using the PDAC data with 6,599 SNVs. (a): Posterior estimated 

haplotype genotypes (columns) of the selected SNVs. Seven haplotypes are identified. A 

green/red block indicates a mutant/wildtype allele at the SNV in the haplotype. (b): A circos 

plot showing the estimated proportion ŵtc with Ĉ = 7 haplotypes.
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