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Abstract
Staphylococcus aureus is an important clinical pathogen worldwide and understanding this

organism's phylogeny and, in particular, the role of recombination, is important both to

understand the overall spread of virulent lineages and to characterize outbreaks. To further

elucidate the phylogeny of S. aureus, 35 diverse strains were sequenced using whole

genome sequencing. In addition, 29 publicly available whole genome sequences were

included to create a single nucleotide polymorphism (SNP)-based phylogenetic tree encom-

passing 11 distinct lineages. All strains of a particular sequence type fell into the same

clade with clear groupings of the major clonal complexes of CC8, CC5, CC30, CC45 and

CC1. Using a novel analysis method, we plotted the homoplasy density and SNP density

across the whole genome and found evidence of recombination throughout the entire chro-

mosome, but when we examined individual clonal lineages we found very little recombina-

tion. However, when we analyzed three branches of multiple lineages, we saw intermediate

and differing levels of recombination between them. These data demonstrate that in S.
aureus, recombination occurs across major lineages that subsequently expand in a clonal

manner. Estimated mutation rates for the CC8 and CC5 lineages were different from each

other. While the CC8 lineage rate was similar to previous studies, the CC5 lineage was 100-

fold greater. Fifty known virulence genes were screened in all genomes in silico to deter-

mine their distribution across major clades. Thirty-three genes were present variably across

clades, most of which were not constrained by ancestry, indicating horizontal gene transfer

or gene loss.
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Introduction
Staphylococcus aureus, a major human pathogen that can cause skin and soft tissue infections
as well as fatal disease due to pneumonia, endocarditis and osteomyelitis, continues to be of
concern in both hospital and community settings, especially given the high rates of antibiotic
resistance [1]. Resistance to beta-lactams, including methicillin, in S. aureus was first detected
in 1961 [2] and methicillin-resistant S. aureus (MRSA) continues to cause significant disease
and mortality today. In 2005, more deaths occurred fromMRSA infections in the US than
from AIDS [3]. Understanding the evolution of this pathogen is important, but there have
been few analyses employing whole genome sequencing, looking at the overall relationships
among different clonal groups of S. aureus.

There have been several whole genome studies in S. aureus focused on a single sequence
type. Harris et al. 2010 [4] sequenced 63 isolates of sequence type (ST) 239, a globally dissemi-
nated healthcare-associated clone defined by multi-locus sequence typing (MLST). They pre-
sented data showing that CGS analysis revealed the global geographic structure for ST239 and
demonstrated the possibility of using this technique to track transmission within a single hos-
pital. In another clade-specific S. aureus study [5], next-generation sequencing was used to ana-
lyze 89 strains of clonal complex (CC) 398, a predominant livestock-associated S. aureus
lineage. The resolution of whole genome SNPs allowed for the determination that CC398 likely
has its origins as methicillin-sensitive S. aureus in humans, instead of animals, as was previ-
ously thought. A recent study of ST22 [6] allowed for phylogenetic reconstruction of an impor-
tant European clone, EMRSA-15 and estimations of evolutionary rates and most recent
common ancestor using Bayesian analysis.

Additionally, evidence for recombination has been detected in S. aureus, involving mobile
genetic elements, homologous recombination as well as large-scale chromosomal replacements
and our analysis supports recombination occurrences across the S. aureus genome. Monecke
et al. [7] describe a high rate of genetic recombination from a microarray analysis of 3000 clini-
cal and veterinary isolates; however they restricted their conclusions to the mobilome and did
not intimate a recombination impact on the core genome. Other whole genome sequence anal-
yses have been typically restricted to single lineages [4, 8–10] and have not been able to evaluate
the level of recombination in S. aureus as a whole or compare across lineages. Early studies
hinted that some recombination has occurred, but suggest that most S. aureus clonal variants
have arisen by point mutation [11]. Takuno et al. [12] examined twelve published S. aureus
genomes and detected homologous recombination at a relative rate of 0.6 to the mutation rate.
However, the impact and possible differing levels of recombination across diverse sequence
types in S. aureus remains undefined. A recent analysis across S. aureus lineages in a species-
wide study found that widespread homologous recombination exists and mobile elements are
associated with the strongest hotspots of recombination [13].

Horizontal transfer of virulence genes can be a source of diversity and differing success
among lineages. Virulence genes have been well studied in S. aureus [14, 15] and transfer of
those genes has been intimated as a factor in the emergence of new strains of MRSA [16]. In
addition to phylogenetic reconstruction, whole genome sequencing allows for the analysis of
gene content across analyzed genomes [17].

In this study, we used whole genome sequencing of many of the dominant S. aureus lineages
from the US and other regions of the world to: 1) infer genomic evolutionary patterns among
lineages 2) examine recombination in S. aureus across and within clonal complexes 3) estimate
mutation rates and the time to most recent common ancestor using Bayesian analysis and 4)
determine the distribution of known virulence genes. We found few differences fromMLST, a
high level of recombination between, but not within clonal complexes, differing mutation rates
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between two common lineages and evidence of horizontal gene transfer or gene loss in most of
the virulence genes interrogated. This study spotlights the evolution of two clinically important
lineages (CC5 and CC8) and adds to our understanding of the underlying patterns of evolution
in the species as a whole.

Materials and Methods

Bacterial Isolates
Whole genome sequencing (WGS) analysis was performed on a convenience set of a total of
35 isolates: thirty S. aureus strains using the Illumina Genome AnalyzerIIx (GAIIx) (Illumina
Inc, San Diego, CA) and five S. aureus strains from MLST-derived Clonal Complex 8 (CC8)
using the SOLiD system (Life Technologies Corp, Carlsbad, CA). Strains were selected based
on diversity of previously performed PFGE typing to represent genetic diversity, although no
PFGE was performed for this study. Twenty-four typed strains were acquired from the
National Antimicrobial Resistance in Staphylococcus (NARSA) (http://www.narsa.net/content/
home.jsp) repository where they were characterized by PFGE and SCCmec type. Four strains
were selected from the ICARE study at Emory University [18] and were previously character-
ized only by PFGE, and one additional strain was provided by Laboratory Sciences of Arizona
and was characterized by PFGE and the DiversiLab system (bioMérieux, Durham, NC) using
rep-PCR. These strains included representatives of the majority of the PFGE types previously
described in the United States [19]. Statens Serum Institute (SSI) in Denmark, also provided
two strains from the dominant European community-acquired (CA) MRSA lineage, CC80.
Strains from CC8 and CC5 as determined by MLST were heavily represented. One additional
strain, N315, was re-sequenced as a confirmation of the analysis, but data from that strain is
not included here. In addition, 29 publicly available whole genome sequences were used in the
analysis (S1 Table). The majority (n = 52) of the strains were MRSA, although a few (n = 12)
methicillin-sensitive S. aureus (MSSA), vancomycin-intermediate S. aureus (VISA) and vanco-
mycin-resistant S. aureus (VRSA) were included.

Bacterial culture and genomic DNA preparation
S. aureus strains were grown on blood agar (Hardy Diagnostics, Santa Maria, CA) for 24 hours.
Genomic DNA was extracted using a Qiagen DNeasy Blood and Tissue Kit as per manufactur-
er’s instructions (Qiagen, Valencia, CA), with the addition of lysostaphin (Sigma-Aldrich, St
Loius, MO) at 200ug/mL to the enzymatic lysis buffer and an incubation from 1 to 5 hours.
Following extraction, quantification was performed on a NanoDrop 8000 (Thermo Scientific,
Waltham, MA) with verification by agarose gel electrophoresis. Extracted DNA quantities
were normalized to 10 to 15ng/uL in 200 uL, for final yields of 2 to 3 ug before library
preparation.

Indexed genomic library preparation and DNA sequencing
For isolates sequenced on the Life Technologies SOLiD platform, mate pair libraries were pre-
pared using the manufacturer’s protocol (Life Technologies Corp). Briefly, sheared, methylated
chromosomal DNA was prepared, adaptors were ligated, and the fragments were circularized.
Digestion with EcoP151 resulted in 25-base pair tags separated by a distance corresponding to
the initial library fragment size. After ligation of sequencing adaptors, library fragments were
amplified and attached to beads by emulsion PCR, and the 25-base pair tags were sequenced.

For isolates sequenced on the Illumina GAIIx (Illumina Inc) instrument, DNA samples were
prepared for multiplexed, paired-end sequencing following the manufacturers protocol. For
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each isolate, 1–5μg dsDNA in 200μl was sheared and then purified using the QIAquick PCR
Purification kit (Qiagen). Enzymatic processing of the DNA followed the guidelines as
described in the Illumina protocol, with the exceptions of processing enzymes obtained from
New England Biolabs (New England Biolabs, Ipswich, MA) and oligonucleotides and adaptors
from Illumina (Illumina Inc). After ligation of the adaptors, the DNA was run on a 2% agarose
gel for 2 hours; subsequently a gel slice containing 500–600 bp fragments of each DNA sample
was isolated and purified using the QIAquick Gel Extraction kit (Qiagen). Individual libraries
were quantified with qPCR on the ABI 7900HT (Life Technologies Corp.) using the Kapa
Library Quantification Kit (Kapa Biosystems, Woburn, MA). Based on the individual library
concentrations, equimolar pools of twelve S. aureus libraries were prepared at a concentration
of at least 1nM. To ensure accurate loading onto the flowcell, the same quantification method
was used to quantify the final pools. The pooled libraries were sequenced on the Illumina GAIIx

using “Genomic DNA sequencing primer V2” for 36 cycles. A 50 or 100bp read paired end run
was used for all isolates. An average total of 1.76 million reads was obtained for each sample.

MLST, spa type and virulence genes from whole genome sequencing
Reads from the Illumina GAIIx were aligned against MLST variants for each of seven house-
keeping genes using Lasergene’s Seqman NGEN version 2.2 software (Lasergene, Madison,
WI), producing consensus sequence for each allele. For the SOLiD sequences, reference-based
assemblies were performed using Life Technologies’ SOLiD system Analysis Pipeline Tool
(Corona Lite). De novo assembly was performed for all genomes using the correction algorithm
Spectral Alignment Error Correction followed by Velvet [20]. Assembled contigs were mapped
to the MLST reference genes using MUMmer [21]. Consensus sequence for each of the genes
was entered into the Locus and Allelic Profile Query on MLST.net to produce sequence types
(STs). Additionally, MLST sequences from each query genome were concatenated and a maxi-
mum parsimony phylogenetic tree was generated using MEGA version 5 [22, 23] for compari-
son to the whole genome SNP tree. Clonal lineage associations were also determined by MLST
mapping on www.spaserver.ridom.de or by comparison to similar spa types or spa repeat com-
positions to MLST analyzed isolates at the Danish National Staphylococcal Reference Labora-
tory at Statens Serum Institut, with subsequent grouping using eBURST at http://saureus.mlst.
net/eburst/.

spa typing of all isolates was performed in silico from de novo assembled contigs using either
Velvet 1.1 [20] or CLCbio’s Genomics Workbench 5.5 (CLCbio, Aarhus, Denmark). spa types
were analyzed using Ridom StaphType (Ridom GmbH, Münster, Germany). Six strains were
spa typed using conventional PCR and Sanger sequencing as previously described [24], five to
confirm the spa types determined in silico and one from which a spa type could not be deter-
mined in silico.

Known S. aureus virulence genes were queried in the whole genome sequence data of all
study strains. Panton-Valentine leukocidin S (lukS-PV) and Panton-Valentine leukocidin F
(lukF-PV) (accession number AB186917.1) were used as alignment references for the sequenc-
ing reads in the Seqman NGEN V. 2.2 software. Presence of the genes was confirmed by visual-
ization of read alignments across the entire 1,918bp region. To further assess the virulome,
blast score ratio (BSR) analysis was used as previously described [17, 25] to query known viru-
lence genes (S2 Table) and their homologs across all S. aureus strains. Briefly, TBLASTN [26]
was used to align the peptide sequence of each virulence factor against all sequenced genomes,
producing a query bit score. The score for each genome alignment was divided by the maxi-
mum bit score, produced by a self-alignment, to obtain the BSR for each virulence gene. The
BSR value can range from 1.0 (100% similarity across 100% of the peptide) to 0 (no significant
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alignment). The Multi-experiment Viewer [27] was used to visualize the BSR values only across
groups for which there were differing scores.

SNP analysis
In order to determine the core genome SNPs, sequences were aligned against FPR3757, a closed
USA300 S. aureus reference genome [28] for both the overall tree analysis and the CC8 strains.
CC5 strains were aligned similarly against a closed S. aureus ST5 reference genome, N315 [29].
BFAST [30] was used for all alignments. Indels and reads mapping to multiple locations were
removed from the final alignments. Each alignment was analyzed for single nucleotide poly-
morphisms (SNPs) using SolSNP (http://sourceforge.net/projects/solsnp/). Only loci that had a
minimum coverage of 10X and the base variant was present in greater than 90% of the calls,
were included in the final analysis. Additionally, duplicated regions were identified by a self-
comparison of FPR3757 or N315 using MUMmer version 3.22 [21] and SNPs within these
repetitive regions were removed. The 29 publicly available genomes were aligned using MUM-
mer/Nucmer. Results from SolSNP and the whole genome alignments were merged using a
custom script. Importantly, only loci present in all strains were included and a matrix contain-
ing the core, orthologous SNPs was generated.

Phylogenetic trees
To obtain phylogenetic trees, the matrix generated as described above was analyzed using max-
imum parsimony in MEGA version 5 [22, 23] and bootstrapped with 100 replicates. For groups
with limited genetic variation and limited recombination such as a single species or within a
single species, maximum parsimony is ideal for phylogenetic reconstruction [31] and provides
for the use of homoplasy metrics that are the best indicators for phylogenetic accuracy in
groups with little homoplasy [32] and can be used to identify recombined regions [5]. Addi-
tionally, phylogenetic trees were reconstructed using maximum likelihood for confirmation of
results. The Hasegawa, Kishino, and Yano (HKY) model of nucleotide substitution[33] was
incorporated, as this model had the lowest Bayesian Information Criterion score in a model
comparison conducted in MEGA version 5 [23]. Strain relationships were largely robust to the
choice of phylogenetic method. The first overall tree constructed included a publicly available
whole genome sequence of Staphylococcus epidermidis; RP62A (accession number:
NC_002976) as an out-group to determine the root of the tree. All subsequent trees, including
the CC8 and CC5 trees, were rooted with the most basal taxa from that subgroup.

SNP and homoplasy density
Recombined regions may contain a higher density of SNPs and the phylogenetic signal from
those SNPs will conflict with the signal from clonally inherited regions. To determine the loca-
tion and frequency of recombination, the SNP density was calculated using 1-kb non-overlap-
ping regions that were taken from the reference genome, FPR3757. Each region was pulled
from the SNP matrix generated as described above and parsimony informative (PI) sites were
tabulated. To identify homoplastic SNPs, a maximum parsimony tree was inferred with PAUP
v4.0b10, and a SNP was determined to be homoplastic if it had a CI value� 0.5. All homoplas-
tic SNPs were coordinated with the 1-kb fragments, and the ratio (homoplasy density) of
homoplastic SNPs to all PI SNPs was calculated. The number of PI SNPs and the homoplasy
density across each 1-kb window was plotted with Circos [34].
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Molecular clock analysis
To estimate evolutionary rates and divergence times of the different clonal complexes, we
employed a Bayesian molecular clock method as implemented in the BEAST v1.8.0 software
package [35]. First, SNPs with a Retention index (RI) value of< 0.5, as calculated by Paup
v4a140, were manually removed from the multiple sequence alignment to filter recombinate
regions from the data set. Similarly to the phylogenetic reconstruction using maximum likeli-
hood, the HKY model of nucleotide substitution [33] was incorporated again here to describe
nucleotide substitution patterns among taxa. Because only variable sites were included in this
analysis, we implemented an ascertainment bias correction model, as done in Gray et al, [36].
Path sampling [37] and stepping stone [38] sampling marginal likelihood estimators were
employed to determine the best fitting clock and demographic model combinations [39, 40]
(S3 Table). These methods of statistical model selection indicated that the combination of the
uncorrelated lognormal molecular clock and the nonparametric Bayesian skygrid models best
fit the data. The relaxed uncorrelated lognormal molecular clock model was used to infer the
timescale and mutation rates while allowing for rate variation among lineages [41] with a
gamma distribution prior on the mean clock rate (shape = 0.001, scale = 1000) and an expo-
nential prior (mean = 1/3) on the standard deviation as recommended by Faria et al. [42].
Three independent Markov chain Monte Carlo (MCMC) chains were run for 500 million gen-
erations each, with parameters and trees drawn from the posterior every 50,000th step. Log-
Combiner [35] was used to merge the samples from each chain, and the first 50% of each chain
was discarded as burn-in. Visual trace inspection and calculation of effective sample sizes was
conducted using Tracer [43] and confirmed MCMCmixing within and among chains. The
posterior mean and 95% confidence intervals have been reported for the evolutionary rate and
time to most recent common ancestor estimates.

Results
Using next-generation sequencing technologies, we sequenced and mapped genome-wide core
SNPs in 35 diverse strains, plus 29 publically available whole genome sequences of S. aureus. In
addition, we used whole genome data to determine MLST and clonal complex assignments,
SCCmec type, PVL status and spa type in silico for all strains, both publically available and
newly sequenced (Table 1). Strains were chosen to represent much of the diversity seen in the
US in S. aureus, but they do not represent the total diversity of the species. The number of
reads per genome and statistics on the novel genome assemblies are presented in S4 Table and
characteristics on all strains in the study are in S1 Table. All read data from the 35 strains
sequenced in this study are deposited at NCBI in the short read archive under the BioProject
accession number PRJNA214785.

Phylogenetic trees and Recombination
The maximum parsimony phylogeny presented in Fig 1 was reconstructed using 80,836 SNPs
identified in comparison to a S. aureus CC8 reference (FPR3757). Of the total SNPs, 57,236
were parsimony informative. The phylogeny had a consistency index (CI), excluding parsi-
mony uninformative SNPs, of 0.59 which indicates a moderate level of homoplasy. The
majority of bootstrap support values (41/52) were greater than 90%, indicating strong confi-
dence in the groupings. The phylogenetic tree was rooted by the CC45 clade, which was deter-
mined to be most basal from a tree rooted with a near-neighbor, S. epidermidis (S1 Fig). This
original tree included the northern Australian CC75 isolate, MSHR1132 (accession number:
FR821777) however; this genome was removed for subsequent trees because of its large patris-
tic distance from the other strains included in this study. MSHR1132 is more than 17,500 SNPs
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Table 1. Genotype of Staphylococcus aureus isolates used in this study, same order as in phylogeny.

Strain Isolate SCCmec type MLST Clonal Complex PVL +/- spa by WGS

1 USA500-ICARE157 SCCMEC IV ST8 CC8 PVL(+) t008

2 USA300-ICARE392 SCCMEC IV ST8 CC8 PVL(+) t008

3 FPR3757 SCCMEC IV ST8 CC8 PVL(+) t008

4 USA300-OR-54 SCCMEC IV ST8 CC8 PVL(+) t2849

5 USA300-AZ-573 SCCMEC IV ST8 CC8 PVL(+) t008

6 USA300-0114 SCCMEC IV ST8 CC8 PVL(+) t008

7 USA300-ICARE043 SCCMEC IV ST8 CC8 PVL(+) t008

8 TCH1516 SCCMEC IV ST8 CC8 PVL(+) t622

9 USA300-CA-263 SCCMEC IV ST8 CC8 PVL(+) t008

10 IBERIAN-GA-356 SCCMEC IV ST8 CC8 PVL(-) t064

11 USA500-NRS385 SCCMEC IV ST8 CC8 PVL(-) t064

12 USA500-GA-355 SCCMEC IV ST8 CC8 PVL(-) t064

13 USA500-NY-177 SCCMEC IV ST8 CC8 PVL(-) t064

14 COL SCCMEC I ST250 CC8 PVL(-) t008

15 Newman none ST254 CC8 PVL(-) t008

16 NCTC 8325 none ST8 CC8 PVL(+) t211

17 TW20 SCCMEC III ST239 CC8 PVL(+) t037

18 JKD6008 SCCMEC III ST239 CC8 PVL(-) t037

19 T0131 SCCMEC III ST239 CC8 PVL(-) t030

20 MSSA476 none ST1 CC1 PVL(-) t607

21 MW2 SCCMEC IV ST1 CC1 PVL(+) t128

22 USA400-BAA1752 SCCMEC IV ST1 CC1 PVL(+) t125

23 USA900-20210 none ST15 CC15 PVL(-) t084

24 CC80-24329 SCCMEC IV ST153 CC80 PVL(+) t044

25 11819–97 SCCMEC IV ST80 CC80 PVL(+) t044

26 USA700-NRS386 SCCMEC IV ST72 CC72 PVL(-) t126

27 USA700-GA-442 SCCMEC IV ST72 CC72 PVL(-) t148

28 USA800-NRS387 SCCMEC IV ST5 CC5 PVL(-) t088

29 USA800-NY-313 SCCMEC IV ST83 CC5 PVL(-) t5576

30 ED98 none ST5 CC5 PVL(-) t002

31 Mu3 SCCMEC II ST5 CC5 PVL(-) t002

32 Mu50 SCCMEC II ST5 CC5 PVL(-) t002

33 N315 SCCMEC II ST5 CC5 PVL(-) t002

34 ECT-R2 pseudo-SCC ST5 CC5 PVL(-) t002

35 04–02981 SCCMEC II ST225 CC5 PVL(-) t003

36 JH9 SCCMEC II ST105 CC5 PVL(-) t002

37 JH1 SCCMEC II ST105 CC5 PVL(-) t002

38 USA100-OR-10 SCCMEC II ST5 CC5 PVL(-) t002

39 USA100-OR-293 SCCMEC II ST5 CC5 PVL(-) t2597

40 USA100-NY-76 SCCMEC II ST5 CC5 PVL(-) t002

41 USA100-NRS382 SCCMEC II ST5 CC5 PVL(-) t002

42 USA100-NY-54 SCCMEC II ST105 CC5 PVL(-) t002

43 USA100-CA-126 SCCMEC II ST5 CC5 PVL(-) t242

44 USA100-CA-248 SCCMEC II ST5 CC5 PVL(-) t242

45 JKD6159 SCCMEC IV ST93 Singleton PVL(-) t202

46 ED133 none ST133 CC133 PVL(-) t2678

47 LGA251 SCCMEC XI ST425 CC425 PVL(-) t6300

(Continued)

Whole Genome Analysis of Diverse S. aureus

PLOSONE | DOI:10.1371/journal.pone.0130955 July 10, 2015 7 / 19



distant from the nearest S. aureus strain and nearly 40,000 SNPs distant from S. epidermidis
and clearly represents a unique, basal clade as has previously been reported [7, 44]. Strains
TW20, T0131 and JKD6008 are closely related to the CC8 clade and share a recent common
ancestor. These strains belong to the MLST sequence type ST239, a hybrid known to have
resulted from a large-scale recombination event whereby an ST8 strain acquired an approxi-
mate 635 kb region from an ST30 donor [45, 46], which is consistent with their placement on
the overall phylogenetic tree. Although ST239 belongs to CC8 using MLST, we analyzed those
strains separately from other CC8 strains, as they are quite distant from the other CC8’s (3943
SNPs) and clearly represent a distinct clade.

Homoplasy density within closely related taxa can indicate recombination and PI SNP den-
sity can highlight regions of recombination from outside groups. When plotted across the
entire chromosome in a circular schematic diagram to identify recombined regions from both
closely related taxa and outside groups, the homoplasy and PI SNP density patterns of the core
genome SNPs (Fig 1A) showed many more recombined regions than when subclades were ana-
lyzed in isolation (Fig 1B). In the homoplasy density plot of the diverse CC phylogeny (Fig 1A,
inner circle), homoplasy is scattered throughout the genome, indicating multiple recombina-
tion events dispersed across the genome over the evolutionary history of the species. The PI
SNP density of the whole tree (Fig 1A, outer circle) is dispersed across the whole genome with
a few peaks indicating some regions where recombination has occurred. These data support
the hypothesis that recombination, both from outside and closely related taxa, is common in
the S. aureus genome when examined across diverse groups. Regions that were filtered from
the analysis are visible in Fig 1A by a lack of SNP loci and most correspond to a genomic island
or phage that is not present in all the strains analyzed.

For the individual clades, very little evidence of recombination is present when analyzed on
their own (Fig 1B), as has been noted previously [4, 5, 8, 47]. Few PI SNPs and low homoplasy

Table 1. (Continued)

Strain Isolate SCCmec type MLST Clonal Complex PVL +/- spa by WGS

48 RF122 none ST151 CC705 PVL(+) t529

49 MO13 SCCMEC V ST59 CC59 PVL(+) t437

50 USA1000-CA-629 SCCMEC V ST87 CC59 PVL(-) t216

51 USA1000-94318 SCCMEC IV ST59 CC59 PVL(+) t316

52 08BA02176 SCCMEC V ST398 CC398 PVL(-) t034

53 SO385 SCCMEC V ST398 CC398 PVL(-) t011

54 71193 none ST398 CC398 PVL(-) t571

55 USA1100-04031 none ST30 CC30 PVL(+) t019

56 MRSA252 SCCMEC II ST36 CC30 PVL(-) t018

57 USA200-NRS383 SCCMEC II ST346 CC30 PVL(-) t018

58 USA200-OR-131 SCCMEC II ST36 CC30 PVL(-) t012

59 USA600-BAA1754 SCCMEC IV ST45 CC45 PVL(-) t671

60 USA600-NY-315 SCCMEC II ST45 CC45 PVL(-) t132

61 USA600-CA-347 SCCMEC II ST45 CC45 PVL(-) t004

62 USA600-BAA1751 SCCMEC II ST45 CC45 PVL(-) t266

63 USA600-NRS22 SCCMEC II ST45 CC45 PVL(-) t266

64 MSHR1132* SCCMEC IV ST1850 CC75 PVL(-) novel**

*not included in final tree.

**repeats 259-31-17-17-17-22-17-17-23-17-22.

doi:10.1371/journal.pone.0130955.t001
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densities were observed when five single clades (CC8, ST239, CC5, CC59 and CC45) were ana-
lyzed. For example, the CC8 only analysis (top circular plot) demonstrated few regions of ele-
vated homoplasy density, which is consistent with the high CI for this group of 0.99. There
were 2 regions with elevated PI SNPs and both occurred in the same phage that was not
included in the analysis of all taxa. In the CC5 only analysis (third circular plot from top), there
is more evidence of recombination than in the CC8 analysis and this corresponds with the CI
value of 0.76 calculated for this group. Elevated homplasy density is infrequent, but dispersed
across the genome. The PI SNPs identified are clustered in a single region.

Data indicating recombination in the three deep branches of our phylogeny (Branch 1,
Branch 2 and Branch 3 in Fig 1A) are also plotted across the whole genome. Each branch con-
tains more than one clade and either seven or eight taxa that have similar branch lengths, with
the exception of the branch leading to the ST93 strain, JKD6159. These three schematic circular
diagrams indicate varying, but relatively high, levels of recombination present in each branch

Fig 1. Evolutionary relationships of S. aureus clones found in the US and abroad. (A) Circular map indicating homoplasy and SNP density in all taxa.
Outer grey circle indicates the core reference chromosome beginning at the origin. The external track indicates the homoplasy density and the internal tack
indicates parsimony informative (PI) SNPs for all strains analyzed showing dispersed homoplasy and PI SNP density. (B) Maximum-parsimony tree of 64
isolates of diverse S. aureus based on 80,836 SNPS, of which 57,236 were parsimony-informative, with a consistency index of 0.59. The numbers shown
next to the branches represent the percentage of replicate trees where associated taxa cluster together based on 100 bootstrap replicates. The tree is rooted
with the CC45 clade. Clonal complex or sequence types are indicated. Circular maps of homoplasy and SNP density for four of the clonal complexes and one
sequence type (ST239) are located to the right of the tree and those for five of the branches are located on the left of the tree.

doi:10.1371/journal.pone.0130955.g001
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when compared to the individual clades. For example, the circular plot of Branch 1 shows
some dispersed homoplasy density (inner circle) where the total homoplastic SNPs/total PI
SNPs = 20.2%, compared to Branch 2, which shows much more (36.1%), and Branch 3, which
shows very little (0.84%). The density of PI SNPs appears to be less variable across the three
branches analyzed, but nonetheless highlights differing regions of high SNP densities. These
data indicate varying recombination rates between branches and an intermediate level of
recombination when compared to the whole tree and individual clades.

The CC8 clade contained strains previously PFGE-typed as USA300 and USA500 (Fig 2A,
CI = 0.99, 1,717 total SNPs), two clinically significant groups of MRSA in the US. Additionally,
this group contained isolates typed as Iberian by PFGE. The taxa included in this group are
consistent with previous characterizations of these PFGE types [48]. The USA300 MRSA iso-
lates that were included in this clade are grouped in a single, tightly clustered sub-clade and all
contained the PVL locus and SCCmec type IV (Table 1). The CC5 clade included strains with
the PFGE types USA100 and USA800 (Fig 2B). This tree had a CI of 0.76 and was based on
1948 SNPs of which 632 were parsimony informative. Most of the USA100 isolates clustered
on a single branch which may provide a good target for assay development for this group, pre-
viously defined by PFGE and representing the dominant strain associated with nosocomial
infections in the US [49].

Molecular clock analysis
Bayesian estimation of divergence times and nucleotide substitution rates on the S. aureus full
data set, using a relaxed molecular clock, revealed that the time to the most recent common
ancestor (TMRCA) was 16,673 (95% CI: 4484–35976) years with an estimated mean nucleotide
substitution rate of 1.8 x 10−5 substitutions per nucleotide site per year (95% CI: 4.8 x 10−6–3.7
x 10−5). Other estimates for S. aureus, based on single lineages, have been estimated at 10−6

substitutions per nucleotide site per year [4, 6, 8], which falls within the distribution of our esti-
mated mean rates determined from multiple lineages indicating similar rates are estimated
from multiple and single lineages. Further, the same Bayesian analysis was applied to each of
the two clades of strains, CC8 and CC5. For the CC8 clade, a similar nucleotide substitution
rate to the overall data set, of 3.8 x 10−5 (95%CI: 1.8 x 10−5–8.9 x 10−5) was estimated. However
for CC5, a value of 1.8 x 10−3 (95%CI: 1.1 x 10−7–4.5 x 10−3) substitutions per nucleotide site
per year was estimated. Recent analysis of sterile site infection S. aureus isolates collected over
time from the same patient, revealed a significantly higher microevolutionary rate in ST5 com-
pared to ST8 strains[50]. For the CC5 group, a TMRCA of 190 (95% CI: 59–373) years versus
an estimate of 2385 (95% CI: 588–4847) years for CC8 was determined, indicating that CC5 is
a more recently emerged group. Additionally, the ST239 clade within CC8 was determined to
have a TMRCA of 160 (95% CI: 34–332) years, where the 95% CI overlaps previous timing esti-
mates for this clade [13, 36].

spa type and PVL from whole genome sequencing
All isolates were spa typed in silico from the WGS data, which showed similar results to previ-
ous published spa types of the epidemic lineages [7]. Identical spa types did fall within a single
clade, however each clade contained more than a single spa type, (Table 1, isolates are listed in
the same order as the phylogeny in Fig 1. We performed traditional PCR and Sanger methods
on five strains to confirm spa types found in silico and found that four matched between tradi-
tional and WGS methods. In the fifth strain, a single repeat of the same motif was missed
where WGS determined the spa type as t004 (09-02-16-13-13-17-34-16-34) and the traditional
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method determined spa as t266 (09-02-16-13-13-13-17-34-16-34). However, both spa types
are associated with the same clonal complex, CC45.

The PVL toxin genes lukS/F-PV were not only found in the USA300 isolates mentioned pre-
viously, other genomes also contained these genes that have been suspected as indicators of
community acquired (CA) strains [51–53]. The two CC80 strains from Denmark also con-
tained PVL, as well as two of the three strains from CC1 (USA400) and four additional strains,
all within different clades.

Virulence Genes Screen. In addition to PVL, the major groups of known virulence genes
were screened across all strains and results of only those genes that varied across clonal com-
plexes are presented in Fig 3. The majority of the genes are chromosomal with a few exceptions
(S2 Table). Strains are listed in the order that they grouped on the phylogenetic tree with the
clonal complexes indicated. All raw BSR values for each marker screened in this study, includ-
ing invariant genes, are listed in S5 Table.

The Staphylococcal enterotoxin genes exhibited distinct patterns, especially within CC8 that
contains many strains of the CA-MRSA lineages. All USA300 strains sequenced contained the

Fig 2. (A) Maximum-parsimony tree of the 16 strains belonging to the CC8 clade based on 1,717 SNPS
(860 parsimony informative SNPs) with a consistency index of 0.99. (B) Maximum-parsimony tree of the
17 strains belonging to the CC5 clade based on 1,948 SNPS (632 parsimony informative SNPs) with a
consistency index of 0.76.

doi:10.1371/journal.pone.0130955.g002
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sek and seq genes, as well as an ortholog of sei, but not other enterotoxin genes, indicated by
red box #1 in Fig 3. The majority of the USA500 strains collected in the last two decades, were
positive for sea, seb, see, sek and seq. A different compliment of enterotoxin genes are present
in the CC5 strains, including seg, sei, sem, sen, and seo. The USA100 strains, a subclade within
the CC5 clade (Fig 3, red box 2), are the only group from which all members carry the plasmid-
borne sej gene. This suggests that the presence of the sej may be important for the adaptive
radiation of this predominantly hospital-associated (HA) lineage. CC45, which contains all of
the USA600 strains, also has a unique set of enterotoxin genes, some of which are also present
in the nearest lineage of CC30.

All genomes screened contained only one set of capsular polysaccharide genes that define
either the CP5 or CP8 serotypes (cap5H-J and cap8H-K, respectively). Each clade contained
only one serotype, either CP5 or CP8. The hemolysin genes were present in all genomes
screened as were many of the leukocidins, other than PVL (S5 Table and Table 1). The fibrino-
gen-binding proteins screened were present in many of the isolates with efb being present in
all. Nearly all three of the Ser-Asp rich fibrinogen-binding proteins, sdrC, D and E, were par-
tially present in almost all genomes, which has not been shown previously. However, it is

Fig 3. Heat map indicating the BSR values for virulence genes that varied across strains (33 of 50 screened). BSR values visualized with Multi-
Experiment Viewer [27]. The left hand side of the figure contains the phylogeny as in Fig 1A. Clades are indicated with boxes; the black boxes indicated the
CC5 and CC8 groups and the red boxes indicate the USA300 and USA100 groups. Gene names along with scale for heat map are indicated at the top of the
heat map.

doi:10.1371/journal.pone.0130955.g003
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possible that these sdr genes are truncated in the assemblies due to repeat regions shared
among the three genes, so the results could be due to bioinformatics analysis of short read data
and not represent a true biological phenomenon.

Discussion
The current study places well characterized clinical S. aureus strains, including many dominant
US clonal groups, in relation to other known lineages based on WGS analysis. This high-reso-
lution phylogenetic approach demonstrates the relationships among and between clonal
groups of S. aureus. The mutational and recombinogenic differences among members within
and among clades provide insights into the mutational patterns that have shaped the evolution
of not only two clinically significant clades (CC8 and CC5), but also the entire species.

When comparing recombination across three levels of analysis (single clades, branches
including more than one clade and the whole tree including representatives from fourteen dif-
ferent STs), we found recombination levels varied. In a novel analysis, we utilized homoplasy
and PI SNP density as indicators of recombination within closely related taxa and from outside
groups and showed clear recombination occurring across clonal lineages and clonal expansion
within a single lineage. As expected, we demonstrated evidence of recombination dispersed
throughout the genome with higher levels of recombination occurring across clonal groups
than within. However, when analyzing the deep branches of our phylogenetic tree, we found
that recombination was different for each of the three branches examined. Branch two had a
homoplasy density similar to that of the overall tree indicating a very high level of recombina-
tion for this group, but differing from the other two branches analyzed. These varying levels of
recombination deep in the tree show that recombination may be playing a different role in the
evolution of each group and that broad generalizations to the species as a whole may not apply.
Additionally, selection may be playing a role in the differing levels of recombination as some
groups may be under more intense selective drug pressure than others. A recent study looking
across the core genome of the S. aureus genome found that homoplasy rates varied on both a
broad and fine scale as well [13].

The rates of evolution for all the taxa in this study were greater than rates estimated by
other studies [4, 6, 8], however, the 95% CI overlaps previous estimates. The taxa here are
diverse across clonal complexes and while there is a demonstrated level of homoplasy due to
genomic region swapping across lineages, our analysis filtered those regions from the data set
so should not be confounded by recombination. Other studies that estimate substitution rates
for S. aureus included only strains of a single ST, which did not have the same levels of recom-
bination as demonstrated in this study. However, the rate estimates for the individual lineages,
CC8 and CC5, were 10−5 and 10−3, substitutions per nucleotide site per year, respectively.
Interestingly, a 10-fold difference in rates between these two groups was found in a study that
followed individual patients and sampled repeatedly to determine the microevolutionary SNP
accumulation rate over time [50]. However, the significance of this rate difference remains
unclear. The TMRCA estimates for CC8 and CC5 indicate that CC5 is a more recently emerged
group.

We found evidence of the S. aureus genome’s flexibility when examining virulence gene dis-
tribution. Our results showed differing patterns of virulence gene distribution across separate
lineages for some genes and no differences for others, as has been seen in other studies[54, 55].
For example, the capsular polysaccharide genes that define the CP5 and CP8 showed distinct
lineage specific variation. Previous studies have shown similar distribution of the cap5 and
cap8 genes, where each clonal group is dominated by a single capsular type [56, 57]. Addition-
ally, the staphylococcal enterotoxin genes, most of which are not on mobile genetic elements,
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support groupings based on SNP phylogenies within the CC8 clade. There is a distinct set of
the staphylococcal enterotoxin genes absent in the sub-clade that contains the USA300 strains,
with only sek and seq gene products fully present. However, the USA500 group within the
same clade had three additional staphylococcal enterotoxin genes present, indicating a loss of
some virulence factors in the more derived, but highly successful USA300 group. A similar pat-
tern of staphylococcal enterotoxin genes was noted in an MLST and gene analysis of CC8
strains [48]. Another successful clone, ST398, that is the predominant clone in pigs, shows a
similar lack of many virulence genes in our analysis. This could be due to a potential adaptation
to non-human hosts associated with the loss of human-related virulence factors shed in the
process of adaptation [5]. This flexibility of the S. aureus genome allows for adaptive radiation
of successful lineages, which appears to be the hallmark of this organism. Mobile genetic ele-
ments that carry many of the virulence factors in S. aureus are often lineage associated [58–60]

An examination of our phylogeny of diverse S. aureus strains highlights some important
insights about the relatedness of well-know lineages. The CC8 clade shows a tightly clustered
group of USA300 isolates within the CC8 clade containing few SNPs (221 SNPs; 9 parsimony
informative SNPs), suggesting a short evolutionary history of this strain that dominates in the
US [61–63]. The USA600 (ST45) isolates are distant from all other clades in our analysis; its
basal location on the rooted tree signifies an early divergence from other S. aureus. Our data
demonstrates the genetic uniqueness of this group and that its evolution may be distinct from
other S. aureus clades, which could contribute to the apparent increased virulence noted in
some strains of this clade [64].

The USA100 isolates, while not a distinct clade, did group separately from the other strains
of CC5, notably the USA800s. USA100 has been historically known as a dominant HA-MRSA
strain in the USA and is still thought to be the most common strain of nasal MRSA isolates [19,
62]. These genomes also carry a distinct group of virulence genes, as has been reported for HA
strains [16, 56, 57], and may indicate separate evolutionary pressures from community-associ-
ated (CA) MRSA, even within the same clade.

While ST72 was originally thought to belong to CC8, recent evidence based on MLST data
as well as 170 additional distinct genes suggest that this group is the product of recombination
between CC5 and CC8 [7]. Our analysis lends further evidence to this hypothesis, given the
location of two ST72 (USA700) strains on the phylogeny between the CC8 and CC5 clades.

Comparisons between US strains to those originating in other countries reveal some inter-
esting insights into S. aureus relatedness across large geographic distances. The two strains that
originated in Denmark were previously typed as CC80-MRSA-IV—the most prevalent Euro-
pean MRSA clone [65–68] and grouped close to the CC5 and CC8 clades, indicating that these
successful MRSA clades in Europe share genetic history with the successful clades in the US.
Future studies will be necessary to identify genetic similarities that lead to successful clone
establishment. The ST93 strain, JKD6159, which is the predominant CA-MRSA clone in Aus-
tralia [69], lies at a significant genetic distance from other S. aureus lineages in our phylogentic
tree. The genome-wide SNP phylogeny supports the previous finding from a comparison of
coding sequences showing the highly successful ST93 clone is divergent from other previously
sequenced genomes of S. aureus, particularly other CA strains [70, 71]. Further, the three line-
ages containing a majority of CA strains, CC30, CC8 and CC80 are distant on the phylogeny,
suggesting they don’t share a common ancestor or traits and that these groups have evolved
independently, multiple times.
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Limitations
Despite the significant conclusions we can draw from this phylogenetic analysis of S. aureus
strains across diverse types, a sample selection bias likely exists. Our strain selection relied
largely on publically available strains representing the PFGE types predominant in the US;
however MSSA strains are underrepresented resulting in a MRSA-dominated tree. The results
indicate that there is extensive microevolution in the major clades in the US. This is also likely
the case in other parts of the world. However, the sample size is less than optimal to make con-
clusions regarding non-US strains.
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CC45-USA600 clade is root.Maximum-parsimony tree based on 42,810 SNPs and having a
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