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Abstract

The term “biomarker” historically refers to a single parameter, such as the expression level of a 

gene or a radiographic pattern, used to indicate a broader biological state. Molecular indicators 

have been applied to several aspects of cancer therapy: to describe the genotypic and phenotypic 

state of neoplastic tissue for prognosis, to predict susceptibility to anti-proliferative agents, to 

validate the presence of specific drug targets, and to evaluate responsiveness to therapy. For 

glioblastoma (GBM), immunohistochemical and radiographic biomarkers accessible to the clinical 

lab have informed traditional regimens, but while immunotherapies have emerged as potentially 

disruptive weapons against this diffusely infiltrating, heterogeneous tumor, biomarkers with strong 

predictive power have not been fully established. The cancer immunotherapy field, through the 

recently accelerated expansion of trials, is currently leveraging this wealth of clinical and 

biological data to define and revise the use of biomarkers for improving prognostic accuracy, 

personalization of therapy, and evaluation of responses across the wide variety of tumors. 

Technological advancements in DNA sequencing, cytometry, and microscopy have facilitated the 

exploration of more integrated, high-dimensional profiling of the disease system—incorporating 

both immune and tumor parameters—rather than single metrics, as biomarkers for therapeutic 

sensitivity. Here we discuss the utility of traditional GBM biomarkers in immunotherapy and how 

the impending transformation of the biomarker paradigm—from single markers to integrated 

profiles—may offer the key to bringing predictive, personalized immunotherapy to GBM patients.
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Targeting Immunosuppression in GBM

Glioblastoma (GBM) is a WHO grade IV malignant glioma which invariably results in 

recurrence and mortality despite the current standard of care—maximal safe surgical 

resection, fractionated radiation, and systemic temozolamide chemotherapy [1]. Patient 

treatment failure is attributed to GBM cellular heterogeneity and the aggressive diffuse 

infiltration observed at the tumor margins, which allows resistance to radiotherapy and the 

cytotoxic agents to propagate under selective pressure [2–5], especially upon tumor 

recurrence [6], and is further complicated by local and systemic tumor derived 

immunosuppression. While not yet fully elucidated, the causal mechanisms that link the 

physiology of the tumor to the dysfunction of the infiltrating and peripheral immune cells 

are complex and interdependent. They include: direct cell–cell inhibition, exposure to 

immunosuppressive cytokines, intermediate cell death signaling [7, 8], persistent or self-

antigen mediated tolerance [9], and exhaustion from chronic exposure to tumor antigens [10, 

11]. Underexpression of immunostimulatory MHC class I [12] and overexpressesion of 

suppressive surface proteins (e.g., FasL and PD-1L) and cytokines (e.g., TGF-β, IL-10, and 

CCL2) fosters the accumulation of regulatory T cells (Treg) and myeloid-derived suppressor 

cells (MDSC), while impairing the proliferation and functional activation of the cytotoxic 

lymphocyte (CTL) population. Meanwhile, accumulation of natural killer T (NKT) cells and 

Tregs in the peripheral circulation of GBM patients leaves them immunocompromised and 

leukopenic [13, 14].

Establishing effective, predictive immunotherapy regimens in GBM requires alleviating 

glioma-associated immune suppression while instigating, targeting, protecting, and 

resourcing specific responsiveness. Despite the obvious benefits of such a strategy due to 

difficulty targeting residual tumor cells and accumulating examples of therapeutic success, 

consistent biomarkers providing guidance in the design and prescription of regimens in 

GBM have lagged far behind the ability to administer the major classes of immunotherapy: 

effector cell therapy, antigen-presenting cell therapy, defined and complex vaccines, and 

monoclonal antibodies.

Effector cell therapies utilize adoptive immune function and employ ex vivo activation of 

potential anti-tumor effector cells—with non-specific lymphokines and/or potential tumor 

antigens—followed by re-introduction of these cells into the patient either via systemic 

injection or directly into the tumor site, guaranteeing some degree of cytotoxic function. 

Early trials using Lymphokine-activated killer cells (LAKs) administered peripherally with 

IL-2 as an adjuvant for recurrent glioma produced anti-tumor responses in a subset of 

patients, but also dose-limiting systemic and neurological adverse events, such as aseptic 

meningitis, increased intracranial pressure, and fever following infusion [15–18]. Lillehei et 

al. delivered LAKs, along with IL-2, directly to the resection cavities of 20 recurrent GBM 

patients, finding much better tolerance of therapy, but no significant improvement in 

survival [19]. Subsequently, a small local delivery trial decreased tumor volume in two of 
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four patients [20], while trials by Dillman et al. reported a modest survival benefit (median 

20.5 months, 1-year survival rate 75 %) among 36 patients [21, 22]. None of these studies 

employed biomarkers for enrollment, nor conducted follow-up analysis of molecular 

correlates of the clinical outcomes.

Autologous CTLs, stimulated with tumor-derived antigens, offer the advantage of glioma-

directed cytotoxic function. Following preclinical studies confirming the survival, 

localization, and persistent anti-tumor specificity of autologous stimulated glioma-

infiltrating lymphocytes [23], Holladay et al. tested the ability of autologous monocytes pre-

loaded with irradiated autologous tumor cells and stimulated with IL-2 to selectively expand 

CD4+ and CD8+ T cells, compared to simple vaccination with such autologous irradiated 

tumor cells and adjuvant, first in a rodent model, then human patients. Although treatment 

was well tolerated in both arms of the clinical trial, and tumor regression and improved 

survival were observed among a subset of patients, there was no retrospective analysis of 

potential immune biomarkers associated with treatment responses [24, 25].

Chimeric Antigen Receptor (CAR) cells are CTLs, generally autologous, engineered ex vivo 

using recombinant DNA to express tumor antigen-specific proteins, most commonly 

chimeras of antigen-specific antibodies and T cell receptor (TCR) signaling domains, then 

reintroduced into the patient. CAR targeting the EGFRvIII mutated protein was first 

demonstrated in glioma cell culture [26], then by in vivo localization in pre-clinical murine 

studies, leading to tumor cell infiltration and increased survival [27, 28]. Currently, a single-

group pilot clinical study of an optimized EGFRvIII-CAR [29] in GBM (NCT02209376) 

includes pre-screening for expression of EGFRvIII (31 % of GBM [30]) as an enrollment 

criterion, utilizing the artificially-targeted nature of these constructs as a biomarker to ensure 

targeting potential in light of the severity of off-target, adverse events. The more general 

tumor antigens HER2 and EphA2 have been successfully targeted by CARs in glioma cell 

culture and preclinical models [31, 32], leading to a phase I clinical trial of autologous 

generated HERT-CD28 fusion receptor cells (NCT01109095).

Vaccination strategies rely on multi-step activation of adaptive immune cells to yield a 

viable population of tumor-specific CTLs, thus igniting fewer adverse events caused due to 

spurious cytolytic activity than effector cell therapies, but providing less predictable 

targeting of antigens, especially in immunoprivileged tissues, such as the CNS. The latter 

concern was alleviated by the success of amyloid-β vaccination in Alzheimers [33], and 

recombinant peptides, the most accessible and scalable vaccine inoculum, were first proven 

effective against tumor antigens in melanoma [34]. However, single peptide vaccination 

may lead to selection for tumor mutations, epitope masking, and ultimately immune escape, 

and are also limited by peptide degradation, MHC presentation efficiency, and recognition 

by the endogenous TCR repertoire [35]. Therefore, multi-peptide vaccines in GBM have 

employed mixtures of several potentially immunogenic, HLA-A02-restricted peptides 

representing tumor markers: WT-1, HER2, MAGE-A3, and MAGE-A1 or gp100 [36] 

(NCT02149225). Although this study includes the collection of longitudinal peripheral 

blood samples for evaluation of overall immunological response and their correlation with 

tumor progression, and to compare responses to each of the individual vaccine components, 

results are not available to date.
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Vaccination with a non-defined, lysate-derived protein extract utilizing the immunogenicity 

of heat shock protein peptide complex 96 (HSPPC96) has provided a shift toward a 

stimulatory peripheral and intratumoral immune response, marked by increases in CD4+, 

CD8+, and CD56+ T cells and IFNγ production. [37] Early phase success has led to a 3-arm 

phase III clinical trial (NCT01814813) evaluating both HSPPC96 vaccination and its 

combination with the anti-VEGF agent bevacizumab [37]. Although initial experiments 

retrospectively associated a decreased peripheral Treg abundance and increased CD8+ T cell 

functionality with survival benefit, these biomarkers are not used directly in regimen design 

or assessment.

Ex vivo instruction of antigen presenting cells circumvents the need to achieve sufficient 

immune activation in vivo, while maintaining the lower risk profile of vaccination. 

Autologous dendritic cells (DC) are harvested from peripheral blood, stimulated with tumor-

specific antigens—from tumor lysate, recombinant peptides, or tumor mRNA transfection 

[38] —and reintroduced, specifically activating endogenous CTLs. In phase I/II studies, DC-

treated patients achieved decreased tumor size, increases tumor-infiltrating CD8+ cells, and 

reversal of prevaccination CD4:CD8 ratios. Significantly, adverse events were limited to 

transient elevations in liver transaminases with no secondary autoimmune disease [39–43]. 

In a similar trial with 25 randomized patients, DC vaccination with heat shocked autologous 

tumor lysate delayed tumor recurrence compared to a control cohort, increased levels of 

peripheral T cells (CD3+, CD4+, CD8+), and NK cells, and restored CD4:CD8 ratios [44]. 

Response of peripheral lymphocytes to cytokine stimulation via pSTAT signaling was later 

identified as a potential predictor of two-year survival and therapeutic efficacy [45].

Monoclonal antibody therapy, stimulatory or inhibitory, targets critical receptors that are 

markers or regulators of immune cell functional states. Early pre-clinical studies aimed at 

tumor-mediated immunosuppression, targeted Tregs through peripheral injection of 

monoclonal antibodies against CD25 (IL2Rα receptor) in a GL261 mouse model, resulting 

in Treg depletion, increased CTL activity and immunoactivating cytokines [46–48]. The 

importance of the EGFR pathway in GBM motivated the use of cetuximab (anti-EGFR) 

blockade, which strongly curbs tumor growth except in the presence of compensatory 

mutations and expression of alternative receptors (i.e. k-Ras, erbB1/2, [49, 50]), turning 

such features into contra-indicative biomarkers for this antibody therapy. Three antibodies 

with distinct immune targets showed efficacy in various glioma mouse models: anti-CCL2, 

targeting suppressive monocytes, provided a survival benefit when paired with 

temozolamide [51]; anti-PD1, blockading T cell exhaustion, provided survival with 

localized radiotherapy [51]; and anti-CTLA4 prevented T cell exhaustion when combined 

with the inflammatory cytokine IL-12 [52]. In human trials, Sampson et al. administered 

dacluzimab (anti-CD25) to patients receiving the PEPvIII vaccine. Positive response and 

depletion of circulating Tregs in the dacluzimab-treated patients supported potential 

therapeutic synergy [53, 54], as well as the use of peripheral Treg as a surrogate marker for 

response for these and other immunotherapeutic regimens in GBM.
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Profiling, prediction, and personalization in immunotherapy

In 2013, over two decades of contributions by innumerable scientists and clinicians toward 

demonstrating the clinical power of cancer immunotherapy were recognized by Science 

Magazine (AAAS) as the breakthrough of the year. Durable and curative responses from, 

most notably, “checkpoint-blockading” antibodies against CTLA-4 [55] and PD-1 [56–60] 

in several cancers, alone and in combination (for review, see [61]), and genetically 

engineered chimeric antigen receptors (CAR) cells, in both leukemia and solid tumors [62, 

63], have motivated the rapid expansion of clinical trials to new targets, mechanisms, and 

delivery systems. Yet, the potential to synergize these technologies with each other [64] and 

with more traditional immune interventions [65] depends heavily on clearing what the 

World Immunotherapy Council outlined in 2011 as “critical hurdles” [66]. Among these, re-

evaluation of the mainly radiographic and survival-based response evaluation criteria in 

solid tumors (RECIST) [67] was a priority, given their failure to capture molecular and 

cellular correlates of subclinical outcomes or to adequately stratify responders prospectively 

or retrospectively.

Presently, the expression of immunotherapeutic target proteins at the tumor site or among 

the circulating immune cells is commonly monitored by flow cytometry or RNA expression. 

However, the only ones formally utilized in clinical trials as prospective biomarkers are the 

T cell “exhaustion marker” PD-1 and its tumor-expressed ligand PD-L1 for predicting 

efficacy of the anti-PD-1 monoclonal antibody [68] and other antibodies targeting that 

pathway. Even in this case, the fidelity of PD-1 as an “exhaustion” marker, compared to 

other T cell surface markers (such as LAG-3, TIM-3, and TIGIT, associated exclusively 

with specific subsets of exhausted T cells [69, 70], remains disputed, and the biological 

mechanism by which these antibodies restore functionality of the CTL population 

(specifically, blockade of exhaustion signaling versus depletion of exhausted cells [71] is not 

completely resolved). For anti-CTLA-4 therapy, a clinical biomarker has not yet been 

ratified, though retrospective analysis of clinical data has suggested clusters of diagnostic 

correlates (for a review see [72]), and subsequent laboratory work on patient samples has 

validated its dependence on related immune receptors [73]. Meanwhile, the list of single 

factors with direct and indirect influence on the evolution of the immune response continues 

to grow—particularly small molecule metabolites and the pathways regulating them (e.g. 

indoleamine dioxygenase [74], arginase [75], and α-galactosylceramide [76]), “danger” 

pathways (e.g., DAMPs, TLRs, and high-mobility group box-1 release [77], for a review see 

[78]), and innate immune, wound-healing, and inflammatory signals (e.g. STING pathway 

ligands, inflammasome expression, TGF-β family signaling, and NFκB induction).

Despite the benefits of simple biomarkers, achieving prognostic and therapeutic 

predictability through any single expression-based marker beyond the targeted pathway has 

proved an expanding challenge, especially across tumor types. However, this need no longer 

constitutes a roadblock. Evolving technology in gene expression profiling, flow cytometry, 

and histopathology has allowed these assay paradigms to achieve depth and accessibility, 

leveraging “whole profile” metrics with the prognostic potential, rather than singular 

indicators associated with these underlying states.
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Quantitative, high-sensitivity resolution of rare populations and functional markers by flow 

cytometry has drastically increased the amount data obtained per sample. Multi-parameter 

profiles, including the relative abundance of T cells (CD3+), B cells (CD19+), NK cells 

(CD56+CD16+), Treg (CD4+CD25+CD127lo), total monocytes (CD86+) and 

immunosuppressive monocytes (CD14+HLA-DRlo/neg) have been associated with survival 

across GBM, non-Hodgkins lymphoma, and renal cell carcinoma, with particular 

significance in the relationship between CD4+ T cells and immunosuppressive monocytes in 

circulating blood [79].

Histopathology, meanwhile, has leveraged improvements in high-throughput automated 

microscopy of tumor infiltrating lymphocytes in situ. In particular, the recently 

commercialized Immunoscore system utilizes relative abundance of functionally marked T 

cell populations in the histologically identified tumor core vs. infiltrating margin, achieving 

survival-significant prognostic resolution beyond standard clinical staging of colorectal 

cancer [80].

With strong evidence that tumor-associated immunosuppression originates locally, 

characterization of gene expression patterns in the tumor microenvironment became an early 

focus. Microarray and later next-generation sequencing (RNAseq) of biopsied tissue have 

provided simultaneous whole-transcriptome profiling of tumor and immune genes, and 

given rise to several sub-transcriptomic technologies aimed at making high-content, 

abbreviated profiling widely accessible to clinical samples. For example, the nanostring [81] 

nCounter platform (quantifying cell type markers, tumor antigens, and a suite of >400 

immune genes) has been applied to both cryopreserved and FFPE tissue from several tumor 

types, bringing mid-throughput gene expression profiling to archival samples. These profiles 

were successfully correlated with risk of recurrence (ROR) [82], intrinsic subtype, and 

trastuzumab responsiveness in breast cancer, OS and PFS neuroblastoma [83], and with 

subtype in diffuse large B cell lymphoma (DLBCL) [84]. The expression of other smaller-

scale panels of genes and miRNA have been correlated with clinical and pathological 

outcomes in different tumor types [85], including a recent computational study of TCGA 

samples further reduced prognostic immunoprofiling to a minimal geneset reflecting 

cytolytic activity [86].

Gene expression profiling, combined with in situ pathology, has given rise to the broad 

proposition of an inflamed vs. non-inflamed tumor state [87] characterized by the balance 

and activation of the immune pathways driving them. Importantly, such a model offers a 

context in which to triage the needs to elicit an anti-tumor response (through vaccines, 

adjuvants, antigen presenting cell therapies, or effector cell therapies) and to alleviate 

immunosuppression (by depleting Tregs, MDSCs, and immunosuppressive cytokines, 

chemokines, and small metabolites, or blockading tolerance/ exhaustion pathways), and 

predict synergistic combinations of therapies depending on that state. However, like the 

orthogonally informative model of immunoediting [88], this framework is broad and does 

not yet resolve known confounding factors such as the organ-specificity of baseline and 

tumor-associated immune activity, and what drives transitions between states.

Sims et al. Page 6

J Neurooncol. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Two new platforms with great disruptive potential in immunological profiling of cancer and 

other diseases have emerged in the last five years. Time-of-flight mass cytometry (CyTOF) 

of cells using antibodies conjugated to heavy metal molecular tags in place of fluorophores 

allows quantification up to 25+ dimensions [89, 90], allowing unprecedented detection of 

specific populations, informing the relationship between immune cell development, 

function, and perturbation in disease [91]. Whole-repertoire amplification and high-

throughput sequencing of the antigen-specific receptors of whole lymphocyte populations 

(TCRseq and BCRseq) provides a link between antigen specificity and function, as well as 

novel statistical indicators of clonal selection and bias during immunosuppression, treatment 

response, and residual disease in cancer, infection [92–94], autoimmunity [95], and response 

to immunotherapy [96, 97]. Both technologies are rapidly expanding into new clinical 

paradigms, and developing tools for analysis and integration of these “big data” readouts 

with their corresponding clinical and lower-dimensional phenotypes promises enrich 

immunological biomarker profiles in both infectious disease [10, 98, 99] and cancer.

GBM immunotherapy and the biomarkers of the future

Motivated in part by the characteristics that make GBM a therapeutic challenge [2, 100–

102], glioma research has already seen the clinical impact of high-dimensional, “big data” 

profiling of the tumor tissue and its immune components on our interpretation of classical 

biomarkers (Table 1). For example, the cytologically diagnosable 10q23 deletion [103] as a 

biomarker of tumor etiology and prognosis [104–107] preceded elucidation of the tumor 

suppressor functions of PTEN and their cross-talk with glioma-specific growth pathways. In 

the broadest synthesis to date, comparative sequencing of genomic rearrangements [108] 

and gene expression profiling through the TCGA collaborative produced a cohesive set of 

>800 genes [109] by which to classify GBM tissue into subtypes (proneural, classical, and 

mesenchymal). These subtypes stratified prognoses, drug and radio-sensitivity [110, 111], as 

well as the expression of many other known biomarkers. EGFR, for which overexpression 

[112], genomic amplification [113, 114], and truncation [115–117] were each associated 

with differential prognosis [118, 119] and therapeutic response [6, 120–122], was found to 

have a pleiotropic role in tumor cell growth and angiogenesis [123], concomitant with these 

variations [113, 116] [124]. The “classical” subtype, which captures this EGFR-active state, 

is predictive of sensitivity to PEPvIII-KLH DC vaccination [125] (see above) and 

therapeutic targeting of the pathway [126]. Hypermethylation of O6-methylguanine DNA 

methyltransferase (MGMT) [127] predicted increased sensitivity to temozolamide and 

radiation [128] before the “hypermethylator” phenotype was well-established in GBM and 

other tumors [129, 130]. Isocitrate dehydrogenase-1 mutation (IDH1-R132H), was a known 

biomarker of longer OS in GBM [108, 131] before its association with transcriptome-wide 

expression alterations characteristic profile of the “proneural” subtype, and functional 

contribution to genome-wide hypermethylation [132] were appreciated.

Beyond functioning as biomarkers, high-dimensional profiling have rendered new targets 

and informed diagnostic and therapeutic options directly. Inference of regulatory networks 

from transcriptomic data has further elucidated these profiles [133–135], motivating clinical 

and pre-clinical attempts to synergistically target subtype-specific regulatory nodes [134]. 

Thus, use of the IDH1-R132H peptide vaccine [136] and EGFRvIII-targeting therapies can 
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be guided not only by the single target epitopes but by the broader phenotypes of proneural 

and classical GBM. Meanwhile, in silico [137, 138] and experimental efforts have begun to 

capture the diversity of new, potentially immunogenic GBM antigens [139]. A mass 

spectrometry-based study [140] yielded 11 candidate peptides now included in the IMA950 

vaccine trial (NCT01929191). Gene expression profiling of stereotactically localized 

biopsies, combined with novel computational analyses, has uncovered cell type-specific 

signatures at the non-contrast enhancing infiltrated margins with the potential to inform 

post-surgical therapy targeting the residual tissue from which recurrence arises [61, 141].

Fundamental, outstanding questions in experimental GBM treatment and immunotherapy 

paradigms likely require the combination of gene expression, tissue pathology, and 

immunological profiles to resolve. The largest randomized Phase III clinical trial in GBM 

(PRECISE) leverages dysregulated immune signaling (overexpression of IL-4 and IL-13 

receptors [142, 143]) to target high local concentrations of the protein toxin-conjugated 

IL13-PE38QQR (cintredekin besudotox) to the tumor stroma [142, 144, 145]. Despite 

distinct drug distribution profiles [146], no difference in median OS nor adverse events were 

observed compared to carmustine wafer delivery of BCNU (Gliadel) in recurrent GBM 

[144, 147]. Microarray analysis of treated cultured cells [148] confirmed cytotoxicity (tumor 

cell apoptosis) as well as differential expression of immune-related genes (e.g. IL-8). Yet, 

confirmation of this phenotype and its relationship to subclinical efficacy in patient samples 

has not been established. Meanwhile, bevacizumab, a neutralizing antibody against vascular 

endothelial growth factor A (VEGF-A) [149]—both a biomarker and effector of 

angiogenesis [150–154, 155]—presents a conflict between reported efficacy by PFS [156, 

157] and OS [158], with an apparent negative impact on concurrent or subsequent therapies 

[159, 160]. Both the similar shortfall of radiographic metrics as progression criteria and 

known cross-talk between VEGF and immune signaling [161–163] suggest that combined 

tumor-immune profiling may be key to interpreting these findings. Reconciling such 

conflicting or occult therapeutic outcomes requires a profile-wide understanding of the role 

of the targets, the metrics used to evaluate responses, and confounding factors in the tumor 

microenvironment.

High-dimensional profiling now allows both animal models [164] and experimentally 

treated tissue [165], to be compared to their human counterpart or source and validated in 

unprecedented detail, producing higher-fidelity translational platforms for pre-clinical 

experiments. Perhaps more importantly, the recent technological advances being integrated 

into the biomarker strategies of the cancer immunotherapy field at large allow 

unprecedented volumes of molecular and immunological data to be extracted from clinical 

samples which are relatively straightforward to procure—such as tissue cryopreserved 

during resection, and reasonable quantities of peripheral blood obtained throughout care—

directly from patients in immunotherapy trials. Although currently no single biomarkers 

adequately stratify responses in GBM, tumorigenesis research and immunotherapy research 

are converging, and have begun to use high-dimensional profiles to capture tumor and 

immune states predictive of disease and therapeutic response [166], promising synergy for 

these two fields in the development of a new generation of biomarkers for immunotherapy. 

[167–176].
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