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Abstract

Background—Genome-wide association studies (GWASs) have identified hundreds of genetic 

variants associated with complex diseases, but these variants appear to explain very little of the 

disease heritability. The typical single locus association analysis in a GWAS fails to detect 

variants with small effect sizes and to capture higher order interaction among these variants. 

Multilocus association analysis provides a powerful alternative by jointly modeling the variants 

within a gene or a pathway and by reducing the burden of multiple hypothesis testing in a GWAS.

Methods—We have proposed here a powerful and flexible dimension reduction approach to 

model multilocus association. We use a Bayesian partitioning model which clusters SNPs 

according to their direction of association, models higher order interactions using a flexible 

scoring scheme, and uses posterior marginal probabilities to detect association between the SNP-

set and the disease.

Results—We have illustrated our model using extensive simulation studies and applied it detect 

multilocus interaction in a GWAS study with type 2 diabetes in Atherosclerosis Risk in 

Communities (ARIC).
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Conclusion—We demonstrate that our approach has better power to detect multilocus 

interactions than several existing approaches. When applied to ARIC dataset with 9328 

individuals to study gene based associations for type 2 diabetes, our method identified some novel 

variants not detected by conventional single locus association analyses.
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1. Introduction

The rapid progress in genotyping technology has greatly facilitated our understanding of the 

genetic predisposition to various diseases. Several genome-wide association studies 

(GWASs) have been published on various complex diseases, where genotype data on a large 

number of single nucleotide polymorphisms (SNPs) are collected to study the association 

between these SNPs and the disease. A common strategy to assess the effects of the SNPs on 

the disease is to perform a univariate regression with each SNP as a predictor and rank the 

SNPs based on their p-values from the univariate regression analysis. The top significant 

SNPs, which satisfy the genome-wide threshold of multiple testing are reported by the 

studies. Several such GWASs have successfully detected susceptibility SNPs associated 

with complex diseases, such as type 2 diabetes (Voight et al., 2010), and Crohn's disease and 

rheumatoid arthritis (Wellcome Trust Case Control Consortium, 2007). Due to huge 

computational requirements, most of these GWASs are often limited to single SNP 

association analysis.

Multilocus association analysis such as gene-based association has gained great impetus in 

recent days as the single locus association findings have explained very little heritability of 

these complex traits. Moreover with the advent of high throughput sequencing technologies, 

there is a dire need to generate computationally efficient statistical methodologies to 

perform multilocus association analysis. Numerous recent studies (Tibshirani, 1996; Gayán 

et al., 2008; Province and Borecki, 2008; Bush et al., 2009; Chen et al., 2010; 

Mukhopadhyay et al., 2010; Pan, 2010) have developed multilocus association analysis 

techniques and software packages that evaluate the simultaneous association of multiple loci 

and traits. This large group of multilocus association analysis approaches can be classified 

into two broad categories; one that focuses on the detection of a subset of significant SNPs 

associated with a disease from a large group of loci (which include many null or not-

associated loci), and the other that tests for association between a large set of loci and a 

disease without classifying each SNP to null or non-null category (Wu et al., 2010; Larson 

and Schaid, 2013; Ma et al., 2013).

The set of approaches that focus on the detection of a subset of significant SNPs from a 

large group of loci tend to focus on modeling only the main effects of the SNPs (Tibshirani, 

1996; Servin and Stephens, 2007; Park and Hastie, 2008; Guan and Stephens, 2011; Li et al., 

2011). There is evidence that diseases often arise as a result of complicated interactions 

among SNPs (Merryweather-Clarke et al., 2003). Hence there could be significant gain in 

the power for detection of associated loci by allowing higher order interaction among these 
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multiple SNPs. The major obstacle in modeling of multilocus interaction is that the number 

of parameters increases exponentially with the number of loci. Thus the approaches that 

allow for higher order interaction need to incorporate variable selection or other dimension 

reduction techniques in their statistical model for association between the SNP-set and the 

disease (Lunetta et al., 2004; Schwartz et al., 2008; McKinney et al., 2009). Bayesian model 

selection or variable selection approaches offer an alternative technique for selecting 

multiple SNPs, and interactions among them. Several Bayesian approaches (Conti and 

Gauderman, 2004; Lunn et al., 2006; Zhang and Liu, 2007; Wakefield et al., 2010) have 

been developed that include efficient variable selection. Fridley (2009) recently gave an 

extensive overview on the Bayesian variable and model selection methods applied to genetic 

association studies.

Recently several attempts have been made to incorporate higher order interaction in 

Bayesian multilocus modeling. Marttinen and Corander (2010) used model searching 

algorithm starting from the marginal model to a saturated model to identify the optimal 

model for a combination of SNPs. Papathomas et al. (2012) proposed a Bayesian 

nonparametric clustering approach combined with variable selection to search for gene-gene 

interaction. Another popular parametric approach to detect interaction under the Bayesian 

framework is the Bayesian Epistasis Association Mapping (BEAM) (Zhang and Liu, 2007; 

Zhang et al., 2011; Zhang, 2011), which can handle large number of markers. This approach 

uses dimension reduction by classifying SNPs into ‘Null’, ‘main’ or ‘interaction’ group 

given their disease status. It still has limitations in terms of the number of loci that could be 

placed in the ‘interaction’ category since the model uses the saturated model for the 

‘interaction’ category.

This paper presents a new Bayesian methodology to detect multilocus effects incorporating 

the possibility of interaction among them in a case-control study setup. It aims to implement 

the data reduction strategy in Basu et al. (2010, 2011) within a Bayesian framework, by 

pooling the multilocus genotypes into ‘low-risk’, ‘high-risk’ and ‘not-associated’ categories 

based on direction of effects; and thus reducing the dimension of the genotype predictors 

from p to 3. An advantage over BEAM is that this approach can easily be extended to handle 

quantitative trait. Moreover it does not use a saturated model for interaction, rather uses 

different scoring algorithm to capture higher order interaction. We have considered two such 

scores to demonstrate the usefulness of the proposed model. Unlike Basu et al. (2010, 2011), 

this approach uses three parameters to classify the SNPs into ‘low-risk’, ‘high-risk’ and 

‘not-associated’ categories and hence is expected to have better power to detect multilocus 

association. The not-associated SNPs are efficiently separated through MCMC updating, 

which also provides the posterior probability of each SNP in the SNP-set being associated 

with the disease. Unlike BEAM, our model does not distinguish between main effects or 

interaction effects of a group of SNPs, but our flexible scoring scheme captures high order 

interaction effects effectively. Although our method can potentially be applied to scan a 

larger number of markers for association, it is more suitable to be used for a SNP-set, such 

as for a gene or pathways, where associations are searched within each gene or pathway 

instead of the whole genome.

Ray et al. Page 3

Hum Hered. Author manuscript; available in PMC 2016 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This paper is organized as follows. Section 2 describes our Bayesian Partitioning Model 

(BPM) and the reversible jump Markov chain Monte Carlo (RJMCMC) scheme in detail. In 

sections 3.1 and 3.2, simulation results are presented to investigate the performance of few 

existing methods and our BPM approach, demonstrating the advantages of the proposed 

method over several approaches. Section 3.4 illustrates the application of the methods to 

detect SNPs from a gene-based association study with type 2 diabetes data on 

Atherosclerosis Risk in Communities (ARIC) study. We conclude with a short summary and 

discussion outlining a few future research topics.

2. Method

A Dimension Reduction Approach via Bayesian Partitioning Model (BPM)

Here we propose a Bayesian approach to identify the SNPs associated with a disease from a 

group of p (p ≥ 2) SNPs. The model employs the data reduction strategy proposed in Basu et 

al. (2010, 2011) and models the joint effects of a group of SNPs on the trait and computes, 

via MCMC, the posterior probability of each SNP (or SNP-set) being associated with the 

disease. The dimension reduction strategy is to assume that the minor allele of each SNP can 

be either of 3 types :

(1) low risk (LR) : minor allele is associated with decrease in disease risk 

(‘protective effect’)

(2) not associated (NA) : minor allele has no effect on disease

(3) high risk (HR) : minor allele is associated with increase in disease risk 

(‘deleterious effect’)

Let Y = (y1, . . . , yn)T be the case-control status of n individuals; X = (X1, . . . , Xn)T be the n 

× p matrix of predictors. For the ease of explanation, we will assume that we only have data 

on SNPs. Hence Xi is a vector of the number of minor alleles of p SNPs for i-th individual. 

Each SNP can have 0, 1 or 2 minor alleles. Let  denote the risk-label allocation of SNP j; 

j = 1, 2, . . . , p, where  = (0,1,0), (1,0,0) or (0,0,1) denotes that SNP j belongs to NA, LR 

or HR category respectively. It is to be noted that the choice of which allele to code does not 

matter with respect to our dimension reduction strategy. It does not affect our conclusion 

because BPM detects SNPs associated with a disease. A priori we do not know if a SNP is 

NA, LR or HR. This is equivalent to the problem of model selection. For a set of p SNPs, we 

consider the risk allocation matrix , where  is a p × 3 matrix. Hence 

there are potentially 3p choices of models, which we need to search through in order to find 

the model that best explains the joint effect of the group of p SNPs on the trait and compute 

the posterior probability of observing the best model (or risk allocation) given the trait and 

the marker data on the n individuals.

Given a specific risk allocation , the effect of the group of p SNPs is assessed using 

logistic regression :
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(1)

where β1 < 0 and β2 > 0 respectively defines the fixed effects of the LR and the HR group of 

SNPs, and the predictors Z1i, Z2i are respectively the values of scores for the LR and HR 

groups of an individual i, (i = 1, 2, ..., n). It is to be noted that the values of the predictors Z1 

and Z2 depend on the allocation . A particular choice of this score would be Z1i = total 

number of minor alleles for the i-th individual in the low-risk group and Z2i = total number 

of minor alleles for the i-th individual in the high-risk group; (i = 1, 2, ..., n). We call it the 

‘M-score’. The flexibility of our method lies in the fact that many other scores can be 

proposed in order to capture the joint effect of the SNP-set on the disease. We discuss 

another such choice of score in section 2.2.

Next we obtain the joint posterior distribution of  and β as

(2)

Here we use MCMC to study the joint posterior density given by equation (2). To construct 

the Markov Chain, we make 3 simplifying assumptions in the model. First, we assume equal 

prior probabilities for a SNP to be in the 3 categories. If applied to a genome-wide data, a 

more informative choice of prior would be to assign much higher probability for each SNP 

to be in the NA (null) group (Servin and Stephens, 2007), but we applied this model to the 

top genes identified by a gene-based association analysis. Hence we decided to assign high 

probability for each SNP to be in the non-null group. Moreover, our choice of prior gave a 

simplified form (equation (4)) of the acceptance probability in equation (3). Second, we 

assume independent prior distributions of all the SNPs, i.e.,  = 

constant. Third, we assume , where P [β] is the prior distribution β of = 

(α,β1,β2) following a truncated tri-variate normal distribution : β ~ N3(μ, V) × I(β1 < 0) × 

I(β2 > 0). We let the prior parameters μ = (0,0,0)′ and set V such that we expect 95% of the 

SNPs to have relative risks that lie within [e−1.5, e1.5], as suggested by Wakefield et al. 

(2010). The diagonal of V is, therefore, set at {1, 0.2072, 0.2072} and the off-diagonal 

elements are set to be zero for an uncorrelated prior setting. The joint posterior distribution 

(equation (2)) of  and β lives on a high-dimensional product space. The SNP allocation 

label  lies on a discrete space {(0,1,0),(1,0,0),(0,0,1)}p while .

2.1 Construction of the Markov Chain—We construct a Markov Chain using 

reversible jump (RJMCMC) with “dimension” moves, and “allocation” & “coefficient” 

moves within a fixed dimension. The “dimension” moves include ‘death’ and ‘birth’ steps to 

increase or decrease the dimension, K, by one. The dimension parameter K can take 4 

values : 0; 1; 2; and 3, which refers to the case that the model has parameter(s) α; α and β1; 

α and β2; and all three parameters α, β1, β2 in equation (1), respectively. The first step in our 

RJMCMC is to choose one of the ‘death’, ‘birth’ and ‘fixed dimension’ moves at random. In 

a ‘death’ step, we drop one parameter, randomly choosing between β1 and β2. In a ‘birth’ 

step, we propose β1 or β2 and update  from its full conditionals (as described a little later). 
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The acceptance probability for these dimension moves (from step  to step t) is min 

(1,a(K(t–1), K(t))), with

(3)

where Q[D(t)|D(t–1)] is the proposal density of the move from model D(t–1) in step  1 to 

D(t) in step t. Since we assumed equal prior probabilities of a SNP to be in any of the 3 

categories, P[K(t)] = P[K(t–1)]. The 4 possible moves are random, hence P [K(t–1)|K(t)] = 

P[K(t)|K(t–1)]. Also, . The possible 

moves along with the corresponding acceptance probabilities are listed in Section 1 of 

Supplementary Materials.

We now look into the general form of the proposal density Q[D(t)|D(t–1)]. Note that,

So, equation (3) reduces to the simple form of a likelihood ratio :

(4)

We obtain  and  using the model in 

equation (1). Within a fixed dimension, we update the Markov chain through “allocation” 

and “coefficients” moves, that is, we first update  from its full conditionals and then 

update β using Metropolis Hastings algorithm.

Updating  from full conditionals: We assume a multinomial prior for the configuration 

of SNP  and equal prior probabilities of being in the “low-risk”, “NA”, and “high-risk” 

categories. So,  ~ Multinomial(m = 1; pj1 = 1/3,pj2 = 1/3pj3 = 1/3), where  ∈ {(1,0,0)′,

(0,1,0)′,(0,0,1)′}. If  denotes configuration of all SNPs except the jth SNP, then the full 

conditional of  at step t also has a multinomial distribution :  ~ 

Multinomial , where  are the posterior probabilities of SNP 

j to be in the LR, NA and HR group respectively. These posterior probabilities are given by
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(5)

where s = 1,2,3, as ∈ {1,0,0)′,(0,1,0)′,(0,0,1)′} and 

 is obtained using the 

model in equation (1).

Updating β using Metropolis-Hastings: After updating  from its full conditionals and 

getting , we sample β* from the proposal density N3(β(t–1),V) I(β1 < 0)I(β2 > 0). For 

each draw of β* from the proposal, we accept β* as β(t) with probability min (1,a′(β(t–1), 

β*)), where . Note that 

 and  are obtained from model in 

equation (1). The implementation of this RJMCMC is outlined in detail in Section 2 of 

Supplementary Materials.

2.2 M-score vs. P-score—The M-score corresponds to a model (equation (1)) where 

Z1(Z2) is the total number of minor alleles in the LR (HR) group. The M-score technique is 

theoretically equivalent to considering only main effects of the SNPs in a logistic regression 

model with equal effect sizes of the SNPs in the LR group and equal effect sizes of the ones 

in the HR group. For example, let us consider the allocation  where the first p1 SNPs are 

in LR group and the rest p2 SNPs are in HR group, p1 + p2 = p. Thus, for individual i, M-

score for LR group is  and for HR group is . Equation (1) 

becomes

Now we propose a pair-wise score to capture higher order interaction among the SNPs. The 

P-score is calculated as total number of pairs of minor alleles in LR and HR groups. To 

implement P-score in equation (1), we define Z1i as the number of unordered samples of 

minor alleles of size 2 (without replacement) from the total number of minor alleles in the 

LR group of individual i (i = 1, 2, ..., n). Similarly Z2i is defined for the HR group. Z1i = 1 

(Z2i = 1) when there are only 2 minor alleles in the LR (HR) group of ith individual. A score 

of 0.5 is arbitrarily assigned if there is only 1 minor allele in a group.

Each allocation  and the corresponding P-score is equivalent to a multiple logistic 

regression model with predictors as some function of the main effects and the pairwise 

interaction among the SNPs. For our hypothetical example with first p1 SNPs in LR group 

and the rest p2 SNPs in HR group, we consider the multiple logistic regression model (1) :
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Thus, through P-score we can theoretically capture main effects as well as pair-wise 

interaction effects among the SNPs. In practice, our simulation studies showed that P-score 

can capture higher order interaction effects as well (refer section 3.1). Our simulation study 

(refer to Section 3 of Supplementary Materials) using 1000 cases and 1000 controls showed 

the advantage of the proposed pair-wise-score modeling (P-score) over the main effect 

modeling (M-score) in presence of interaction. One can use other scoring schemes, such as 

Gaussian kernels, to capture interaction among SNPs.

3. Results

We performed several simulation studies to demonstrate the importance of the choice of 

scores for our model and to compare our approach with some existing ones.

3.1 Simulation 1

We first compared our BPM approach with BEAM (Zhang and Liu, 2007) using simulation 

studies on uncorrelated SNPs. We also compared our approach with the logistic kernel 

machine (LKM) regression method. The kernel machine regression (KMR) tests (Wu et al., 

2010) are computationally efficient tests which score similarity among individuals through 

di erent choices of kernels (such as linear, identity-by-descent, quadratic) and use a score 

test to detect association between the SNP-set and the disease status.

We simulated data on 20 uncorrelated SNPs with 200 cases and 200 controls. Only the first 

4 SNPs were associated with the case-control status. We considered 5 epistatic models with 

different main effect sizes (and directions) and interaction effect sizes. Two-way, three-way 

and four-way interactions were considered. We considered both additive and dominant 

genetic model for this power comparison. The following models were used in our 

simulations:

Model 1: , where Xj = 0,1,2 denote SNP j with 

0,1,2 minor alleles respectively.

Model 2: logit(p) = −4 − 2X4 + X1X2X3, where Xj = 0,1,2 denote SNP j with 0,1,2 minor 

alleles respectively.

Model 3: logit(p) = −4 + 2X1X2X3X4, where Xj = 0,1,2 denote SNP j with 0,1,2 minor 

alleles respectively.

Model 4: , where Xj = 0,1 for SNP j with 0, ≥ 

1 minor alleles respectively.

Model 5: , where Xj = 0,1,2 denote SNP j with 

0,1,2 minor alleles respectively.
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For each of these models, we simulated 200 datasets with each SNP at minor allele 

frequency (maf) 0.2. We first compared, using ROCs, the power of our BPM M-score and P-

score approaches with that of BEAM to detect genetic variants associated with disease. 

Here, we are interested in testing the null hypothesis that a chosen SNP is null. For every 

simulated model, we considered a range of cutoffs between 0 and 1, and for each cutoff, we 

calculated the number of times the posterior probabilities of each of the associated SNPs 

(such as SNP1, SNP2, SNP3, SNP4) in the non-null category was higher than the cutoff 

value. We also calculated the number of times the posterior probabilities of each of the truly 

null SNPs was higher than the cutoff out of 200 simulations. We generated a ROC curve by 

calculating the average number of truly associated SNPs (true positive rate) detected and the 

average number of false-positives (false positive rate) detected by BPM and BEAM for a 

given cutoff. The average number of false positives detected by BPM gives an estimate of 

BPM's type I error in testing if a chosen SNP is null. For BPM, we ran single chain of size 

10,000. The first 5,000 were discarded as burn-in. For BEAM, we took the default chain size 

of 100,000 with a burn-in of 50,000. Thin parameter was set at 1. The default prior 

probabilities of 0.01 were used for each SNP to belong to marginal or interaction groups.

According to Figure 1 and Table 1, our BPM approach outperformed BEAM for all 5 

models at Bonferroni corrected level of 0.0025 (= 0.05/20) except for Model 2 where the 

performances were very similar. For Model 1, we only had main effects under an additive 

genetic model. BEAM had lower true positive rate (tpr) than BPM for a false positive rate 

(fpr) < 0.1. Especially M-score performed well due to its ability to capture the main effects 

effectively. For a Bonferroni corrected level of 0.0025, BPM had a power of 0.48, while 

BEAM had only 0.26.

For Model 2, as soon as we added an interaction term to a main effect model, BPM P-score 

had uniformly better power than the M-score and the BEAM due to its ability to capture 

interaction effects. Even in the presence of a strong main effect, M-score could not 

outperform P-score. Here, BEAM performed marginally better than BPM M-score.

The same was true for Model 3 (an interaction-only model) where BEAM outperformed M-

score marginally, but P-score captured the four-way interaction efficiently and outperformed 

BEAM. Here, while BEAM had very low tpr of 0.25 at a fpr of 0.0025, BPM P-score had a 

good tpr of 0.55 (refer Table 1). To see if BPM really performs better than BEAM in 

capturing higher-order interactions, we also considered another additive genetic model 

(figure not provided here) where the first 5 out of 20 independent SNPs were causal and 

were interacting with each other to increase the disease risk. The BPM P-score had 

uniformly better power than BEAM again.

For Model 4, we considered a dominant genetic model with only pairwise interaction effects. 

The true effect sizes being small, all the methods lost some power under the dominant 

model, but BPM had better power than BEAM (except for error levels close to 1). BPM M- 

and P-scores performed similar according to the ROC curve (Figure 1).

For Model 5, our method outperformed BEAM even when the basic model assumption of 

equal effect size was violated for our BPM approach. BEAM had lower power than BPM for 
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an error level of < 0.2, especially for M-score due to M-score's ability to capture the main 

effects effectively.

Next we compared the powers of BPM, BEAM and LKM methods to detect multilocus 

association. Our null hypothesis of interest is that none of the SNPs is associated with the 

disease status. Since LKM can only test if a group of SNPs is associated or not at a given 

type I error level, we calculated the number of times each of these BEAM and BPM 

approaches detected at least one causal SNP out of the 4 SNPs for varying error levels. 

Table 2 (and Figure 2 of Supplementary Materials) show that at Bonferroni adjusted error of 

0.0025, BPM had better power over BEAM and LKM for the main-effect-only model 

(Model 1). All three methods had comparable power when there was a main effect and an 

interaction effect in the model (Model 2). In presence of only a fourth-order interaction 

(Model 3) or several pairwise interaction effects (Model 4), LKM had the best performance 

closely followed by the BPM approach. One thing to keep in mind is that LKM can only test 

for association between a SNP-set and a disease; its limitation is that it cannot specifically 

identify the null and the non-null SNPs.

3.2 Simulation 2

Here we performed a simulation study with correlated SNPs to see the impact of linkage 

disequilibrium (LD) on our BPM approach. We considered correlation coe cients of ρ = 0, 

0.5 and 0.9. The SNPs were simulated from a latent multivariate gaussian variable with an 

AR1(ρ) structure. As before, we simulated 200 datasets on 200 cases and 200 controls with 

20 SNPs (first 4 are causal) at maf 0.2. We performed this comparison with M-score and 

with Model 1. The power of BPM for 3 different correlations (ρ = 0, 0.5, 0.9) at various 

error levels were plotted (refer Section 5 of Supplementary Materials). At low type-1 error 

levels, BPM lost power with the increase in LD values among the SNPs. For higher error 

levels, the power of the BPM M-score approach to detect association were similar for ρ = 0 

and ρ = 0.5. This observation was not consistent for all our simulations. We noticed 

sometimes gain in power for ρ = 0.5 over ρ = 0 but fall in power for high correlation like ρ = 

0.9, especially for models with interaction effect. In summary, moderate correlation among 

SNPs did not a ect the performance of the BPM approach significantly but for high SNP-

SNP correlation, BPM lost power for stringent error levels.

3.3 Convergence diagnostics

Checking convergence of RJMCMC is not straightforward. The general consensus is to 

monitor common parameters (in our case, α) using popular fixed-dimensional convergence 

diagnostics (Sisson, 2005). Gelman and Rubin's diagnostic (Gelman and Rubin, 1992) gave 

point estimate for the median potential scale reduction factor (psrf) for as 1.00 (< 1.1 means 

the chain has converged to the stationary distribution and we need not run the chain longer). 

We also plotted posterior distributions of all 3 parameters α, β1 and β2 for 6 independent 

chains (using M-score) for a randomly chosen dataset under Model 1 (main effect only 

model) with uncorrelated SNPs (refer Section 6 of Supplementary Materials). The starting 

parameters β and  were di erent for each chain. Convergence was achieved for all these 

chains. Mean values of β1 and β2 (averaged over all 6 chains) were respectively − 0.96 (sd = 
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0.18) and 0.23 (sd = 0.15), which were close to the true effect sizes of −1 and 0.2 

respectively.

In Figure 4 of Supplementary Materials, we presented summaries of β1 and β2 (using 

boxplots) for 15 randomly chosen datasets out of 200 datasets simulated under Model 1. In 

this model, the effect size of SNPs with negative direction (protective or LR SNP) was −1 

and that with positive direction (deleterious or HR SNP) was 0.2. Since we are looking at 

M-score result, we expect the estimated β1 and β2 to be close to −1 and 0.2 respectively. 

Figure 4 shows that the estimates align quite well with the true values.

We also looked at convergence of the multivariate categorical parameter . For this 

purpose, we randomly selected 3 SNPs (out of 20), each of which was known to belong to 3 

di erent groups LR, NA and HR (refer Model 1). Figure 6 of Supplementary Materials 

graphically compared the posterior probabilities of each of the chosen SNPs to belong to 

each of the groups across 6 independent chains. Stability of the posterior probabilities of the 

various categories over independent chains indicate convergence.

3.4 Real Data Analysis

Extensive evidence, including that gathered from twin and family studies, supports the 

hypothesis that genetic factors are a major contributor to the risk of type 2 diabetes (T2D). 

More recently, a GWAS of T2D conducted in populations of European ancestry have 

identified more than 50 SNPs reaching genome-wide levels of significance, most of which 

appear to act in the pancreatic beta-cell development or function (Voight et al., 2010; Morris 

et al., 2012). Several GWASs of related quantitative traits such as fasting glucose have 

offered additional signals. These loci are significant contributors to risk of T2D, with 

population attributable risks > 5% per locus in many cases. These results provide strong 

evidence for the existence and identification of common genetic risk factors for T2D.

The ARIC study is an ongoing prospective study designed to investigate the etiology and 

natural history of atherosclerosis and its clinical manifestations, and to measure variation in 

cardiovascular risk factors, medical care and disease by race, gender, place and time (The 

ARIC Investigators, 1989). ARIC has collected fasting glucose measures from the entire 

cohort at 4 separate visits over a 9-year period and self-reported physician diagnosis and 

medication use in up to 14 separate interviews over a 20-year period. Diabetes was defined 

as fasting glucose ≥126 mg/dL, non-fasting glucose ≥ 200 mg/dL, self-reported physician 

diagnosis of diabetes, or current use of diabetes medications. Details about ARIC Study 

samples and their genotyping can be found in Section 10 of Supplementary Materials.

We conducted single SNP association analyses on the Caucasians (sample size 9328 with 

812 cases) using PLINK (Purcell et al., 2007) and a gene based association analysis in 

VEGAS (Liu et al., 2010). As per VEGAS, the two strongest signals were located in genes 

TCF7L2 (gene pvalue 8 × 10−6) on chromosome 10 and MMRN1 (gene pvalue 5.7× 10−5) 

on chromosome 4. PLINK identified the SNPs rs7903146 (pvalue 1.7 × 10−11) and 

rs1318557 (pvalue 2.5 × 10−6) to be the most significant SNPs of genes TCF7L2 and 

MMRN1 respectively. Since VEGAS gives only gene-based pvalue, we wanted to explore if 
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some additional SNPs in these two genes could be identified by our BPM approach which 

were not detected in the single-SNP association analysis.

To implement our BPM approach, we again focused on the Caucasian participants. We 

implemented the BPM approach on the SNP data separately for each of two genes 

mentioned above. We followed the same definition used by VEGAS for the allocation of 

SNPs to the genes. Our goal was to analyze each of the genes separately using our BPM 

approach (both M- and P-scores), find the optimal allocation of the SNPs within each gene 

and compare the BPM performance with single-SNP association findings.

For the gene-based association analysis, we excluded the SNPs with maf < 5% and the SNPs 

with absolute pairwise correlation coe cient |ρ| > 0.8 with another SNP. For a given gene 

data, we computed posterior probabilities for the minor allele of each of the SNPs to be in 

each of the three categories (LR, NA and HR) based on a long chain of 500,000 MCMC 

iterations. Within each iteration, β is iterated 10 times. The posterior probability of a SNP to 

be in a particular group was calculated as the average number of times that SNP was 

allocated in that group in each MCMC iteration. The starting allocation was randomly 

generated for each chain. Using Heidelberger-Welch (HW) tests (Heidelberger and Welch, 

1983), the burn-ins were decided for each gene and each score to ensure stationarity of the 

common parameter α of each chain at 5% significance level.

Given the posterior probabilities of a SNP in the LR, NA and HR group, we used a cutoff 

0.4 for the non-NA (LR+HR) posterior probability to assign a SNP into a non-NA group. 

Any SNP with a non-NA (LR+HR) posterior probability exceeding the threshold was 

assigned to be non-NA. The allocation of a non-NA SNP to LR or HR group was based on 

the group having higher posterior probability among the two. For each score and each gene, 

we thus obtained the final allocation  of the SNPs and calculated the approximate Bayes 

Factor (ABF) (Wakefield, 2008) as a measure of evidence in favor of null or the alternative 

hypothesis of association.

For the calculation of ABF01 (the posterior odds of null model to the alternative model 

selected using ≥ 0.4 posterior probability for a SNP to belong to non-NA group), we 

evaluated the joint likelihood of Y and β under the null as well as under the alternative. Since 

there is no closed form of the joint likelihood, we used Laplace approximation around the 

maximum a posteriori (MAP) estimate ofβ to obtain the null likelihood. On the other hand, 

we computed the alternative joint likelihood by using the Laplace approximation around the 

posterior mode of β obtained from the posterior samples (Zheng et al., 2012). In our 

calculations, we found the posterior mode to be almost same as the MAP estimate of β under 

the alternative.

We first analyzed gene MMRN1 from Chromosome 4 with 57 SNPs after screening. For 

BPM, the M-score chain for α passed HW stationarity test and half-width mean test at 5% 

level without any burn-in while a burn-in of 100,000 was needed for P-score. Figure 5 of 

Supplementary Materials also showed convergence of these two chains. From Table 3 we 

saw that, at cutoff 0.4, only 4 SNPs were detected as LR for M-score, which included the 

most significant SNP rs1318557 (pvalue 2.5 × 10−6) from the single-SNP association 
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analysis. The posterior probabilities of this SNP to belong to LR category was 0.47. The 

other 3 SNPs chosen by BPM were not at all significant in the single-SNP association 

analysis (refer Table 3). M-score had −2 log10(ABF01) = 10.5 > 10, which indicated very 

strong evidence of association (Zheng et al., 2012).

On the other hand, P-score could not detect any SNP as LR/HR at the chosen cutoff , 

although at a lower cutoff of 0.2, it detected these above mentioned SNPs. This may indicate 

the fact that these SNPs in MMRN1 are not contributing through interactions and hence the 

P-score could not perform as well as the M-score.

We next analyzed gene TCF7L2 from chromosome 10 with 109 SNPs after screening. Using 

HW tests at 5% level, burn-ins of 200,000 and 150, 000 for M- and P-scores respectively 

ensured stationarity for common parameter α. At cutoff 0.4, with −2 log10(ABF01) = 15.7 > 

10, M-score found only 2 SNPs rs17747324 and rs7903146, which were allocated in HR and 

LR group respectively (refer Table 4). Meanwhile P-score detected 11 SNPs (including the 2 

non-NA SNPs from M-score) with −2 log10(ABF01) = 11.5 > 10 (refer Tables 5). Both 

scores detected the two most significant SNPs from single-SNP analysis. It is to be noted 

that ABF values across scores are not comparable since the two scores can give different 

ABF values even if the same allocation is used. As per ABF, both the allocations from BPM 

indicated very strong association of the selected non-NA SNPs with the disease. The high 

ABFs from both scores seemed to be driven by the very strong association through 

rs17747324 and rs7903146. Also, P-score detecting more SNPs than M-score suggested 

possible interaction among the selected SNPs. As seen from Tables 4 & 5, BPM captured 

some novel SNPs, which again emphasizes the power gain by joint modeling of SNPs within 

a gene over single SNP association analysis.

4. Discussion

Our BPM approach makes use of the fact that we are interested in detection of the associated 

SNPs and not in the estimation of individual SNP effects. The main advantage of classifying 

the SNPs into these three groups is that for each specific choice of allocation of risk-labels 

to the SNPs, we can model the joint effect of the SNP-set on the disease with only three 

parameters. This approach could be especially advantageous when we are considering joint 

modeling of a large group of SNPs with a relatively small sample size. In addition to this, 

our proposed approach provides the flexibility of assigning scores to each of these low-risk 

or high-risk group of SNPs in order to capture the high-order interaction among the SNPs. 

Our model provides the flexibility of adjusting for other covariate effects (refer Section 9 of 

Supplementary Materials) and allows for modeling of epistatic and nonlinear SNP effects. 

Here we considered a pair-wise scoring scheme that captures such higher order interaction 

among the SNPs. Other scores such as Gaussian kernels can be used to capture these 

epistatic effects. Our simulation studies and real data analysis demonstrated the usefulness 

of this proposed method to detect SNPs with higher order interaction. It is to be noted that 

we only considered multiplicative interaction in our simulation experiments. In general, the 

concept of interaction is much broader than multiplicative interaction. We intend to study 

the performance of BPM for broader class of interactions in future.
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One advantage of the BPM approach is that it models the latent state of association (risk-

allocation) of the SNPs given the phenotype and genotype data and thus does not get 

strongly influenced by the LD among the SNPs. We conducted simulations to study the 

impact of the LD on power of detection of our BPM approach. In general, we found that the 

approach loses some power when there is strong correlation (0.9) among the SNPs, but the 

performance was very similar between SNPs with no LD and SNPs with moderate LD (0.5). 

One must note that for large number of SNPs in very high LD, the autocorrelation plots will 

show high autocorrelation even for large values of lag and hence more RJMCMC iterations 

will be needed for convergence. In such a scenario, the BPM chain (due to its single-site 

updating scheme) is likely to get stuck, which will be indicated clearly in the running mean 

plot of parameter. On the same note, our assumption of independent prior distributions for 

risk-allocations of all SNPs is reasonable since we model the latent state of association for 

each SNP. For our future work, we intend to implement some Markovian structure on the 

prior distribution to model the dependency among the SNPs and investigate if there is any 

improvement on the power for detection of association.

One big assumption for this BPM approach is that it assumes all the SNPs within each risk 

group have same effect-sizes. We investigated the performance of our proposed approach 

through simulation studies when this assumption is violated (Model 5). In our simulation 

studies, the proposed approach performed quite well as compared to BEAM and LKM even 

when the SNPs had very di erent effect sizes.

One limitation of the current version of the BPM approach is that the update of  is 

realized conditionally on  for a locus j = 1, 2, . . . , p. Given that the space being 

explored is huge, the sampler is not very computationally efficient in exploring the entire 

model space. BPM was also found to be somewhat sensitive to starting parameter β for the 

real data analysis. We intend to implement Block-Gibbs sampler and simulated annealing 

strategies for better exploration of the model space. We have developed a C++ program for 

implementation of our BPM approach. Although potentially this approach could be applied 

to a large set of SNPs, the current algorithm is more suitable for gene-based association 

analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The ROCs for BPM (M- and P-scores) and BEAM for the 5 epistatic models with 4 causal 

SNPs. True positive rate (tpr) or sensitivity for each dataset was calculated as the proportion 

of causal SNPs detected based on their posterior marginal probabilities in the non-null 

category and for a series of cutoff s for the posterior probabilities. It was averaged across the 

200 simulated datasets with 20 uncorrelated SNPs. In a similar way, false positive rate (fpr) 

was calculated. As the cutoff for the posterior probability was varied, the fpr also varied. 

Increasing order of fpr is plotted along x-axis, and tpr along y-axis. Here, the heavy black 

curve represents BPM P-score, the heavy blue dashed curve is BPM M-score and the light 

red dashed curve is BEAM.
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Table 1

Comparison of BPM & BEAM: Power of the three methods in detecting the four associated SNPs for 

Bonferroni corrected error level 0.0025 (= 0.05/20) based on 200 datasets with 200 cases and 200 controls.

Simulated Model

Method 1 2 3 4 5

BPM M-score 0.48 0.29 0.15 0.23 0.22

BPM P-score 0.41 0.31 0.55 0.21 0.19

BEAM 0.26 0.30 0.25 0.05 0.15
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Table 2

Comparison of BPM, BEAM & LKM: Power of the six methods in detecting at least one of the four 

associated SNFs for Bonferroni corrected error level 0.0025 (= 0.05/20) based on 200 datasets with 200 cases 

and 200 controls.

Simulated Model

Method 1 2 3 4

BPM M-score 1.00 1.00 0.41 0.50

BPM P-score 0.93 0.98 0.91 0.48

BEAM 0.81 1.00 0.34 0.12

LKM-linear 0.91 0.995 0.84 0.56

LKM-quadratic 0.89 1.00 0.96 0.64

LKM-ibs 0.93 0.99 0.80 0.69
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Table 3

The final allocation of the non-null SNPs selected by using a 0.4 cutoff on the posterior probability of each 

SNP to be in non-NA(LR+HR) group from BPM M-score analysis. The single-SNP results of these non-null 

SNPs in MMRN1 gene are also listed for comparison. The direction of single-SNP coefficient and the group 

allocation by BPM match.

SNP rsID rs11727074 rs6812192 rs12646270 rs1318557

Final allocation A LR LR LR LR

Posterior probability 0.38 0.48 0.43 0.47

Single-SNP coefficients –0.2 –0.2 –0.3 –0.3

Single-SNP pvalues 6.2 × 10–2 1.4 × 10–3 4.0 × 10–2 2.5 × 10–6
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Table 4

The final allocation of the non-null SNPs selected by using a 0.4 cutoff on the posterior probability of each 

SNP to be in non-NA(LR+HR) group from BPM M-score analysis in TCF7L2 gene. The single-SNP results of 

these non-null SNPs are also listed for comparison. The direction of single-SNP coefficient and the group 

allocation by BPM match.

SNP rsID rs17747324 rs7903146

Posterior A HR LR

Posterior probability 0.46 0.48

Single-SNP coefficients 0.42 –0.38

Single-SNP pvalues 3.6 × 10–11 1.7 × 10–11
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Table 5

The final allocation of the non-null SNPs selected by using a 0.4 cutoff on the posterior probability of each 

SNP to be in non-NA(LR+HR) group from BPM P-score analysis in TCF7L2 gene. The single-SNP results of 

these non-null SNPs are also listed for comparison. The direction of single-SNP coefficient and the group 

allocation by BPM match.

SNP rsID rs7079711 rs11196181 rs17747324 rs7903146 rs7079673

Posterior A LR LR HR LR LR

Posterior probability 0.49 0.46 0.61 0.41 0.37

Single-SNP coefficients –0.33 –0.24 0.42 –0.39 –0.12

Single SNP pvalues 5.2×10–4 4.2×10–2 3.6×10–11 1.7×10–11 2.8×10–1

rs11196228 rs7084875 rs290483 rs7922641 rs4918801 rs10885424

LR LR HR HR HR LR

0.27 0.40 0.36 0.26 0.52 0.23

–0.33 –0.01 –0.02 0.001 0.11 0.01

3.1×10–2 8.8×10–1 7.3×10–1 9.9×10–1 3.7×10–1 9.2×10–1
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