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Abstract

Reactive oxygen species regulate cardiovascular and renal function in health and disease. 

Superoxide participates in acute calcium signaling in afferent arterioles and renal vasoconstriction 

produced by angiotensin II, endothelin, thromboxane and pressure-induced myogenic tone. 

Known mechanisms by which superoxide acts include quenching of nitric oxide and increased 

ADP ribosyl cyclase/ryanodine-mediated calcium mobilization. The effect(s) of superoxide on 

other calcium signaling pathways in the renal microcirculation is poorly understood. The present 

experiments examined the acute effect of superoxide generated by paraquat on calcium entry 

pathways in isolated rat afferent arterioles. The peak increase in cytosolic calcium concentration 

caused by KCl (40 mM) was 99 ± 14 nM. The response to this membrane depolarization was 

mediated exclusively by L-type channels as it was abolished by nifedipine but was unaffected by 

the T-type channel blocker mibefradil. Paraquat increased superoxide production 

(dihydroethidium fluorescence), tripled the peak response to KCl to 314 ± 68 nM (p<0.001) and 

doubled the plateau response. These effects were abolished by tempol and nitroblue tetrazolium, 

but not by catalase, confirming actions of superoxide and not hydrogen peroxide. Unaffected by 

paraquat and superoxide was calcium entry through store-operated calcium channels activated by 

thapsigargin-induced calcium depletion of sarcoplasmic reticular stores. Also unresponsive to 

paraquat was ryanodine receptor-mediated calcium-induced calcium release from the sarcoplasmic 

reticulum. Our results provide new evidence that superoxide enhances calcium entry through L-

type channels activated by membrane depolarization in rat cortical afferent arterioles, without 

affecting calcium entry through store operated entry or ryanodine receptor-mediated calcium 

mobilization.
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INTRODUCTION

Reactive oxygen species (ROS), such as superoxide  and hydrogen peroxide (H2O2), 

influence vascular physiology and pathophysiology 1, 2.  in the renal vasculature and 

tubules is an important negative modulator of nitric oxide (NO), a vasodilator and natriuretic 

agent, by limiting its availability. Together these two opposing radicals provide an important 

balance in regulating the magnitude of vasoconstriction, sodium excretion and blood 

pressure (BP)1. In addition to reducing NO bioavailability,  acts directly on vascular 

smooth muscle cells (VSMC) to augment calcium (Ca2+) signaling and enhance 

vasoconstriction 1, 3, 4. Our laboratory has observed that  participates in and amplifies 

acute renal vasoconstrictor responses induced by angiotensin II (Ang II) 5, endothelin-1 

(ET-1) 6, and thromboxane (TxA2) 7 and stimulation of cytosolic calcium (Ca2+) in the 

afferent arteriole by these agents 8, 9.  was implicated as the critical ROS, based on 

attenuation by dismutation of  by tempol. Other investigators have reported that 

mediates the acute renal vasoconstriction produced by Ang II in normotensive and 

hypertensive animals with attenuation by antioxidants 5, 10-12. Moreover,  potentiates the 

strength of the myogenic response of cortical afferent arterioles 13-15.

Excessive vascular and renal  lead to vascular dysfunction and/or disturbed salt and 

water homeostasis 1, 16, 17. Oxidative stress caused by increased ROS levels and NO 

deficiency is associated with renal vasoconstriction and the development of Ang II-induced 

and salt-sensitive hypertension 1, 3, 18-21.  activity is enhanced in NO deficient rats, and 

contributes to abnormal renal function 1, 22. For example, increased  activity is 

responsible for inducing salt-sensitive hypertension in endothelial NO synthase knockout 

mice 19, 22. Administration of superoxide dismutase (SOD) effectively reduces BP in salt-

sensitive and salt-independent models of hypertension 1, 23. Knockout mice deficient in 

extracellular SOD-3 have a higher basal BP than wild-type mice, a phenotype attributed to 

higher  and decreased NO levels in the kidney 24. Moreover, chronic Ang II 

administration produces more pronounced hypertension in SOD-3 deficient mice than in 

wild-type controls 25.

Ang II-induced hypertension is coupled with oxidative stress in blood vessels 26, 27, and 

increased renal and non-renal vascular ROS is a common feature in both saltindependent 

and salt-sensitive hypertension 1, 20, 21, 28. A ROS-dependent rise in renal vascular resistance 

(RVR) and BP is observed in Ang II-infused hypertensive mice and rats 29, 30. Augmented 

oxidative stress in the spontaneously hypertensive rat (SHR) involves overexpression of 

NADPH oxidase and loss of extracellular SOD in the kidney 31. The SOD mimetic tempol 

normalizes elevated basal RVR and BP and restores endothelial function of renal arteries in 

the SHR and in the 2 kidney, 1 clip Goldblatt model of renovascular hypertension 32, 33, 

further implicating  in exaggerated renal vasoconstriction and the potentiation of 

hypertension during oxidative stress 34. Therefore, increased intrarenal ROS or an abnormal 

 balance can alter renal hemodynamics and sodium excretion to cause 

hypertension 1.
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The precise mechanism(s) by which  affects Ca2+ signaling and causes contraction of 

VSMC in the renal microcirculation is poorly understood. Ca2+ signaling studies have 

linked G-protein coupled receptors (GPCR) for Ang II, ET-1 and catecholamines, and TxA2 

to rapid  production and sensitization of RyR to mobilize Ca2+ from sarcoplasmic 

reticular stores in the renal vasculature 5, 7, 9, 35. In cerebral arteries, ROS generation by 

hypoxanthine/xanthine oxidase (HX/XO), and by Ang II stimulation activates L-type 

channels to promote Ca2+ entry from the extracellular fluid 36. Many GPCR ligands and 

perfusion pressure elicit contraction of afferent arterioles by stimulating Ca2+ entry through 

L-type channels 37. Interactions between  and L-type Ca2+ channel activity in the renal 

microcirculation have not been investigated.

METHODS

See details in Methods in the online-only Data Supplement. All animal studies were 

conducted in accordance with the National Institutes of Health (NIH) Guide for the Care and 

Use of Laboratory Animals and approved by the Institutional Animal Care and Use 

Committee at the University of North Carolina.

Preparation of afferent arterioles

Afferent arterioles (<20 μm in diameter) were isolated from 3 to 6 wk-old (50–120 g) male 

Sprague-Dawley rats using a magnetized iron oxide-sieving technique as previously 

described in our laboratory 8, 9. We elected to use young animals because the preparation 

and purification of single afferent arterioles with little advential tissue from young rats were 

technically much easier than from mature rats. Pilot studies established that the increase in 

cytosolic Ca2+ concentration produced by 40 mM KCl was similar in young and adult rat 

afferent arterioles (Online supplement, please see http://hyper.ahajournals.org). All animal 

research conducted adhered to the NIH Guide for the Care and Use of Laboratory Animals.

Measurement of paraquat-induced cytosolic  production

We used paraquatto generate  in fresh afferent arterioles. Paraquat (N,N’- dimethyl-4,4’-

bipyridinium dichloride) is a classic and well established model for longterm oxidant-

initiated toxicity due to its ability to generate . Paraquat redox cycles with cellular 

diaphorases and molecular oxygen to generate intracellular  at levels that do not acutely 

affect cell viability 39, 40. We selected 1 mM paraquat for testing because it causes marked 

afferent arteriolar constriction that is reversed by tempol without adversely affecting short-

term cell viability 35.

 production was measured in isolated afferent arterioles using the oxidative-responsive 

fluorescent dye dihydroethidium (DHE) as previously described 7. After a baseline 

recording of a 90 sec incubation period with paraquat (1mM) or PBS alone as a negative 

control, a final image was acquired. Some arterioles were incubated with tempol (1 mM) or 

catalase (250 U/ml) in PBS for 20 min before testing the response to paraquat.
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Measurement of cytosolic free calcium concentration

[Ca2+]i was measured in individual afferent arterioles as previously described 8, 41, 42. 

Fura-2 fluorescence was detected using a CCD camera (Digital Video Camera Co. DVC 

1500) after passing through a 510 nm emission filter. [Ca2+]i was determined by ratiometric 

analysis of Fura-2 emission intensities at two excitation wavelengths (340 nm, 380 nm). 

Signal intensity was acquired and processed using InCytIm2 software (Intracellular Imaging, 

Cincinnati, OH).

Protocols

Values for each arteriole were averaged and analyzed to identify the peak and the plateau 

phases of the response. Peak values were the average of three data points corresponding to 

the highest measured [Ca2+]i after stimulation. Plateau responses were defined as the 

average of the 5 data points occurring 45 sec (43-47 sec) after the peak response.

To determine the relative contributions of L-type and T-type channels to Ca2+ entry 

resulting from KCl-induced membrane depolarization, we used selective L-type and Ttype 

Ca2+ channel inhibitors nifedipine (1 μM) and mibefradil (1 μM). Arterioles were incubated 

for 10 min in HBSS containing either channel blocker prior to stimulation with 40 mM KCl.

To test the effects of  on Ca2+ entry through L-type channels, paraquat was added 90 sec 

prior to stimulation with 40 mM KCl. The effect of paraquat on Ca2+ entry via SOC was 

determined using a protocol previously described by our laboratory 43. Arterioles were 

incubated with Ca2+-free HBSS containing 10 μM thapsigargin for 20 min and then the 

thapsigargin-containing HBSS was replaced with a bathing medium composed of Ca2+-free 

PBS with 0.5 mM EGTA and 10 μM thapsigargin. Paraquat (1 mM) was added to the 

bathing medium 90 sec prior to switching the bath solution to PBS containing Ca2+ (1 mM).

To assess the contribution from Ca2+-induced Ca2+ release (CICR), arterioles were 

incubated in HBSS containing 50 μM Ry for 20 min to block Ry receptors (RyR) and 

prevent CICR 41. After incubation, arterioles were placed in a bathing medium composed of 

PBS with 1.1 mM Ca2+ and 50 μM Ry. In other experiments, paraquat (1 mM) was added 90 

sec prior to KCl stimulation.

Statistics

A two-tailed Student's t-test was used to determine significance between groups (Prism 

Software). P < 0.05 was determined to be significant.

RESULTS

The results for [Ca2+]i are presented as nM ± SEM change from baseline. Baseline [Ca2+]i 

for all afferent arterioles studied averaged 100 ± 4 nM (n=111). Basal values for each group 

of experiments did not differ statistically from the overall mean (p>0.1).
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High KCl stimulates Ca2+ entry through L-type channels

Fig. 1 (left panel) shows high KCl (40 mM)-induced depolarization of the plasma membrane 

of VSMC of afferent arterioles to stimulate Ca2+ influx to increase [Ca2+]i.. The initial peak 

increase in [Ca2+]i averaged 99 ± 14 nM while the sustained plateau phase at 45 s after 

addition of KCl was 53 ± 10 nM (Fig. 1, right panel). Fig. 1 (right and left panels) shows the 

complete abolition of high KCl-induced Ca2+ entry when L-type channels were blocked by 

nifedipine (1 μM). Addition of the T-type inhibitor mibefradil (1 μM) did not alter Ca2+ 

responses to high KCl. These observations support previous reports that KCl-induced 

depolarization exclusively activates voltage-gated L-type Ca2+ channels in the rat cortical 

afferent arteriole 44-47.

Paraquat incresees  production in afferent arteriolar VSMCs

Fig. 2 shows that paraquat (1 mM) induced a 50% increase in  generation (DHE 

fluorescence) in these afferent arteriolar VSMCs. This increase in  was abolished by 

tempol (p<0.001) and not affected by catalase.

Paraquat and  generation increase Ca2+ influx induced by membrane depolarization

Fig. 3 (left panel) demonstrates that the addition of paraquat (10−3 M) to generate of 

markedly enhanced the Ca2+ entry through L-type Ca2+ channels stimulated by KCl-induced 

membrane depolarization but not during basal conditions before addition of KCl. Paraquat 

increased both the peak and the plateau phases of the response to KCl (Fig. 3, right panel). 

The peak was enhanced 3-fold to 314 ± 68 nM and the plateau phase was augmented nearly 

2-fold to 92 ± 8 nM (p<0.01 for both).

Fig. 4 (left panel) illustrates the effect of  dismutation by tempol on the [Ca2+]i response 

to 40 mM KCl and paraquat stimulation. Tempol (10−3 M) had no effect on baseline [Ca2+]i 

before KCl stimulation, but abolished the enhancement produced by paraquat, yielding 

results approximating those of KCl alone in the absence of paraquat. Fig. 4 (right panel) 

shows that the effect of paraquat induced  production to increase both peak and plateau 

Ca2+ responses to KCl was eliminated by the antioxidant tempol. Similar inhibition of the 

paraquat stimulation was observed when NBT was used to scavenge  (NBT results 

online supplement only, please see http://hyper.ahajournals.org).

Paraquat and  generation does not increase Ca2+ entry through SOC channels

To verify that Ca2+ entry took place through SOC and not L-type Ca2+ channels, vessels 

were treated with nifedipine throughout the experiment. Fig. 5 (left panel) displays the 

magnitude of Ca2+ entry through SOC in the presence and absence of  generated by 

paraquat. Fig. 5 (right panel) shows the peak and plateau values for [Ca2+]i following 

activation of Ca2+ entry through SOC. Pretreatment with paraquat had no significant effect 

on Ca2+ entry through SOC during either phase (P>0.5).

Enhancement of Ca2+ influx by paraquat does not involve CICR

Increased [Ca2+]i resulting from Ca2+ entry through L-type channels is known to increase 

CICR from the sarcoplasmic reticulum mediated by activation of the ryanodine receptor 
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(RyR) 41. To test for a possible effect of  on RyR-mediated CICR, we used Ry (50 μM) 

to inactivate RyR and prevent CICR secondary to Ca2+ entry stimulated by high KCl. As 

Fig. 6 (left panel) shows, during RyR inactivation to prevent CICR, paraquat enhanced the 

peak and plateau [Ca2+]i responses initiated by membrane depolarization (p<0.05), again 

demonstrating the ability of paraquat-derived  to stimulate L-type channels. Also shown 

in Fig. 6, Ry decreased the [Ca2+]i response to high KCl, reducing the peak by 50% and the 

plateau phase by 23%. Thus, RyR-mediated CICR contributes to the [Ca2+]i response when 

Ca2+ entry is stimulated by membrane depolarization. Inactivation of RyR blunted the peak 

and plateau Ca2+ signals after paraquat to approximately the same extent (Fig. 6, right 

panel).  enhanced KCl-induced Ca2+ influx during paraquat treatment, suggesting 

did not affect RyR-mediated Ca2+ mobilization in these experiments. Therefore, we 

conclude that the paraquat-induced increase in Ca2+ entry during membrane polarization is 

primarily due to L-type channel enhancement, and not by recruitment of SOC or augmented 

CICR.

DISCUSSION

This study evaluated the effects of  generated by paraquat on Ca2+ signaling in VSMCs 

of rat renal afferent arterioles.  was verified as the primary ROS responsible for 

increased Ca2+ influx based on DHE measurement and effective abolition of the paraquat 

effect on [Ca2+]i by either tempol or NBT (NBT results online supplement only, please see 

http://hyper.ahajournals.org). Moreover,  production was negated by tempol but not 

catalase. Our major new finding is that  enhanced Ca2+ entry in response to membrane 

depolarization induced by high extracellular KCl. We conclude that  acted to increase 

Ca2+ entry by increasing the activity of L-type Ca2+ channels. The stimulation was rapid, 

requiring at most 90 sec of exposure to paraquat and was effective upon stimulation with 

KCl, whereas basal [Ca2+]i before stimulation was unaffected.

Our results extend previous studies showing that membrane depolarization by high KCl 

exclusively activates L-type Ca2+ channels to increase [Ca2+]i and contract the rat cortical 

afferent arteriole with little to no participation of T-type channels sensitive to 

mibefradil 44-46. Both responses were abolished by removal of extracellular Ca2+ or by 

pharmacological inhibition of voltage-gated L-type channels using nifedipine or 

nitrendipine 44-46. Based on patch clamp studies of voltage-activated Ca2+ currents, freshly 

isolated VSMCs of the rat afferent arteriole have a high density of L-type channels but do 

not express functionally active voltage-dependent T-type Ca2+ channels 47. In rat 

juxtamedullary afferent arterioles, it is reported that T-type channels are functionally 

expressed, but do not contribute to constrictor responses to KCl 48. On the other hand, 

another study reports that high KCl-induced Ca2+ entry is attenuated in rat juxtamedullary 

afferent arterioles and rabbit cortical afferent arterioles during inhibition of T-type channels 

by mibefradil 49.

Our results provide important insight into physiological and pathophysiological mechanisms 

within the kidney as L-type Ca2+ channel activity is a critical determinant of contractile tone 

of the afferent arteriole, whether stimulated by GPCR agonists or increased renal perfusion 
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pressure 37.  is known to modulate renal hemodynamics 1 and vasoconstrictor responses 

to GPCR agonists such as Ang II, ET-1 and PE 5, 6. Our finding of a direct action of  on 

Ca2+ entry provides a mechanism to explain our previous demonstration that NADPH-

derived  mediates the afferent arteriolar [Ca2+]i response to Ang II and ET-1 8, 9. The 

immediate increase in [Ca2+]i stimulated by either agonist was attenuated by both tempol 

and apocynin, indicating participation of NADPH-derived . Moreover, the actions of 

Ang II and ET-1 were attenuated by 8-Br-cyclic ADPR and nicotinamide, implicating 

involvement of ADPR cyclase and RyR in the Ca2+ signaling pathway, steps proposed to be 

downstream of  production.

ADPR cyclase synthesis of cADPR can sensitize RyR to [Ca2+]i to enhance CICR 50. Our 

earlier studies of afferent arterioles showed that RyR-mediated CICR also contributes to the 

increased [Ca2+]i following membrane depolarization induced by high KCl 41. Locking the 

RyR in the closed position with a high concentration of ryanodine (50-100 μM) attenuated 

~50% of the [Ca2+]i response to Ca2+ entry through voltagegated L-type channels. Our 

current studies confirm this finding and extend it in that  generated by paraquat had 

essentially no effect on the RyR-mediated CICR response to increased [Ca2+]i secondary to 

KCl-induced depolarization.

In our studies of freshly isolated afferent arterioles, paraquat did not elicit a change in basal 

[Ca2+]i, suggesting no acute effect of  on Ca2+ entry in the absence of KCl-induced 

membrane depolarization when L-type channels are quiescent. This contrasts with other 

published reports that ROS increased basal [Ca2+]i in VSMC from nonrenal vessels 36, 51. 

Differences among studies may stem from ROS exposure times and concentrations, 

intracellular vs extracellular ROS generation, and vascular beds. It is noteworthy that 

HX/XO primarily generates extracellular ROS, whereas paraquat stimulates intracellular 

 production. Our 90 sec exposure time to paraquat /  was considerably shorter than 

some previous studies. In cultured rat mesenteric arterial VSMCs, ROS generated by cell 

membrane permeable LY23583 increased Tempo-9AC florescence after 25 min, a response 

abolished by tempol, whereas [Ca2+]i was increased after 15 min 50. In these nonrenal 

VSMC of WKY but not SHR, the increase was attributed to augmented Ca2+ influx through 

both L-type and T-type Ca2+ channels as it was inhibited by putative selective antagonists 

verapamil/diltiazem (10 μM) and mibefradil (10 μM), respectively 51.

Amberg et al. investigated the role of ROS in activating Ca2+ entry via L-type Cav1.2 Ca2+ 

channels and the resultant constriction of pressurized, freshly isolated cerebral arteries 36. 

Total internal reflection fluorescence microscopy revealed that Ang II and endogenous ROS 

rapidly stimulated Ca2+ entry by increasing L-type Ca2+ channel sparklet activity. Both the 

Ang II-induced increase in Ca2+ sparklets and arterial tone were abolished by apocynin 

inhibition of NADPH oxidase, implicating a stimulatory role of ROS, either  or H2O2. 

Additionally, exogenous ROS generated by HX/XO increased PKCα and L-type Ca2+ 

channel activity and cerebral arterial vasomotor tone as a result of Ca2+ entry within 2 min 

of addition; the latter was abolished by inhibition of L-type channel activity with 

diltiazem 36. Exogenous ROS increased both Ca2+ sparklet activity and sparklet site density 
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in voltage clamped arterial myocytes, further supporting the conclusion that ROS increases 

Ca2+ influx through L-type channels.

L-type channels are sensitive to oxidants, potentially due to direct redox modification of 

cysteines on the channel, or by redox modification of regulatory proteins involved in 

channel function 52-54.  may amplify Ca2+ entry through L-type Ca2+ channels by 

promoting clustering that leads to cooperative gating 55. In this manner, increased 

production during ANG II-induced hypertension may explain increased L-type Ca2+ channel 

sparklet activity in arterial VSMC 56, 57 and the increased density of L-type channels 58. 

Another new finding of our present studies is that  does not influence Ca2+ entry 

mediated by SOC in freshly isolated afferent arterioles. In cultured VSMC of porcine 

coronary artery and bovine pulmonary artery, ROS generated by HX/XO was reported to 

stimulate [Ca2+]i by inhibiting plasma membrane Ca2+-ATPase and SERCA 59-62. Such 

inhibition is predicted to deplete intracellular Ca2+ stores and thereby indirectly enhance 

SOC entry. Both TRPC and STIM-Orai channels have been proposed to be the primary SOC 

channels in other vascular beds 63, 64. AVP stimulation of  and H2O2 production is 

reported to increase TRPC6 channel activity and Ca2+ influx in the A7r5 line of cultured 

VSMC and cultured mouse aortic VSMC 65. Presently, the molecular identity of SOC 

channels in the renal microcirculation is unknown.

In summary, our major novel finding is that  enhances Ca2+ entry through L-type 

channels in VSMCs of freshly isolated afferent arterioles. We found no evidence for 

potentiation by paraquat of either Ca2+ entry through SOC or Ca2+ mobilization and CICR 

mediated by RyR.

PERSPECTIVES

It is well established that ROS play a pathophysiological role in the development of 

hypertension, however the specific mechanisms by which ROS alter renal hemodynamics in 

health and disease are poorly understood.  interacts with NO and participates in rapid, 

acute constriction of the afferent arteriole and increased renal vascular resistance, but the 

effects on Ca2+ signaling pathways in the renal microcirculation are not known. Our studies 

provide new information that  acts to enhance Ca2+ influx through L-type Ca2+ channels 

in the afferent arteriole, the major preglomerular resistance vessel in the kidney where Ca2+ 

entry through voltage-gated channels is a predominant Ca2+ signaling pathway. This 

stimulatory effect can be reversed both by  dismutation with tempol and by 

scavenging with NBT. Ca2+ entry through store-operated channels resulting from 

thapsigargin-induced intracellular Ca2+ depletion of SR stores is not markedly influenced by 

cellular  levels.

During renal autoregulation, changes in tone of the cortical radial arteries and afferent 

arterioles result from pressure-induced activation of L-type Ca2+ channels to maintain RBF, 

glomerular filtration rate, and buffer pressure-natriuresis. Acute increases in  modulate 

the efficiency of renal autoregulation by augmenting the myogenic response of afferent 

arterioles 13, 15. An enhancement in L-type channel activity by  may provide a 
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mechanistic explanation for these observations. Increased  production participates in 

renal vasoconstriction and sodium retention during the development of 

hypertension 1, 10, 11, 34, 66. The ability of  to increase Ca2+ entry through L-type 

channels is likely to play an important role in the vasoconstriction of the preglomerular 

vasculature often associated with sodium retention and the development and maintenance of 

hypertension.
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Refer to Web version on PubMed Central for supplementary material.
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NOVELTY AND SIGNIFICANCE

What is new?

• Our studies provide new information that  acts to enhance Ca2+ influx 

through L-type Ca2+ channels in the afferent arteriole, the major preglomerular 

resistance vessel in the kidney.

• We also show that superoxide does not participate in other Ca2+ signaling 

mechanisms we investigated, such as store operated calcium entry and 

ryanodine receptor-mediated calcium mobilization and subsequent calcium-

induced-calcium-release.

What is relevant?

• The ability of  to increase Ca2+ entry through L-type channels is likely to 

play an important role in vasoconstriction the preglomerular vasculature often 

associated with sodium retention and the development of hypertension.

Summary

• Our studies address a lack of understanding of the mechanisms by which 

superoxide affects Ca2+ signaling and causes contraction of VSMC of renal 

resistance arterioles.
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Fig. 1. 
Left panel: [Ca2+]i responses to KCl in the presence of the L-type and T-type Ca2+ channel 

inhibitors, nifedipine (n=7) and mibefradil (n=8), respectively, are compared to a control 

KCl response (n=8). Right Panel: Effects of nifedipine and mibefradil on average peak and 

plateau [Ca2+]i responses. (*** p<0.005)
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Fig. 2. 

Paraquat elicited a 50% increase in cytosolic  (DHE fluorescence, n=7, filled bar) as 

compared to buffer as a negative control (n=7, open bar) and paraquat (n=7, filled bar). The 

paraquat-induced increase in  production was abolished by tempol (n=7, p<0.005, gray 

bar), but was not significantly influenced by catalase (n=7, patterned bar) (*** p<0.005 vs. 

control, # p<0.005 vs. paraquat).
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Fig. 3. 
Left panel: [Ca2+]i response of freshly isolated afferent arterioles to KCl-induced (40 mM) 

membrane depolarization before (n=14, open circles) and after paraquat stimulation (n=10, 

filled circles). Note that paraquat did not affect basal [Ca2+]i prior to stimulation with KCl. 

Right panel: Average peak and plateau (45 sec after the peak) responses to KCl in the 

presence and absence of paraquat (*** p<0.005, ** p<0.01).
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Fig. 4. 
Left panel: The [Ca2+]i responses to KCl in the presence and absence of paraquat (closed 

and filled circles, respectively) (same as in Fig. 4), and the effect of tempol dismutation of 

paraquat-generated  (n=8, open squares). Right panel: Effect of tempol on the average 

peak and plateau [Ca2+]i values. (*** p<0.005 vs. control, # p<0.05 vs. paraquat).

Vogel et al. Page 17

Hypertension. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Left panel: The magnitude of Ca2+ entry through SOC after thapsigargin-induced depletion 

of sarcoplasmic reticular Ca2+ stores and the lack of effect of paraquat (n=8 for both). Right 

panel: Peak and plateau values for [Ca2+]i as a result of Ca2+entry through SOC before and 

after addition of paraquat.
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Fig. 6. 
Left panel: [Ca2+]i responses to KCl during inactivation of RyR-induced CICR in the 

presence (n=9) and absence (n=8) of paraquat. Right panel: Effect of paraquat on the 

average peak and plateau [Ca2+]i responses (*** p<0.005, * p<0.05).
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