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ABSTRACT

High-Throughput (HT) SELEX combines SELEX (Sys-
tematic Evolution of Ligands by EXponential Enrich-
ment), a method for aptamer discovery, with mas-
sively parallel sequencing technologies. This emerg-
ing technology provides data for a global analysis
of the selection process and for simultaneous dis-
covery of a large humber of candidates but currently
lacks dedicated computational approaches for their
analysis. To close this gap, we developed novel in-
silico methods to analyze HT-SELEX data and uti-
lized them to study the emergence of polymerase
errors during HT-SELEX. Rather than considering
these errors as a nuisance, we demonstrated their
utility for guiding aptamer discovery. Our approach
builds on two main advancements in aptamer anal-
ysis: AptaMut—a novel technique allowing for the
identification of polymerase errors conferring an im-
proved binding affinity relative to the ‘parent’ se-
quence and AptaCluster—an aptamer clustering al-
gorithm which is to our best knowledge, the only
currently available tool capable of efficiently clus-
tering entire aptamer pools. We applied these meth-
ods to an HT-SELEX experiment developing aptamers
against Interleukin 10 receptor alpha chain (IL-10RA)
and experimentally confirmed our predictions thus
validating our computational methods.

INTRODUCTION

Systematic Evolution of Ligands by EXponential Enrich-
ment (SELEX) is an experimental technique allowing for
the identification of aptamers—short (20-100 nucleotides),
synthetic, single-stranded (ribo)-nucleic molecules selected
to bind specifically to almost any molecular target of inter-

est (1,2). The binding targets aimed at with SELEX vary
from small organic molecules (3,4), through transcription
factors (5-8) and other proteins and protein complexes (9),
to viruses (10,11) and cells (12,13). Aptamers thus have po-
tential applications in situations where so far antibodies
have been deployed. Aptamers moreover have important
advantages over antibodies, particularly in the development
of therapeutics. Unlike antibodies, which are biologics, ap-
tamers are chemically synthesized, can be well character-
ized by analytical methods, have limited toxicity and are ex-
pected to be less or non-immunogenic in the patient. Selec-
tively engaging biological targets is of immense clinical util-
ity; for example, almost half of all protein-therapeutics ap-
proved by the FDA since 2009 have been monoclonal anti-
body based (14). It is therefore not surprising that aptamers,
which bring the advantages of small molecule chemistry
to applications previously limited to biologics, are rapidly
making inroads into many therapeutic areas. One aptamer-
based therapy has been approved for clinical use (15) while
at least nine more are under different stages of clinical de-
velopment (16). The raising of antibodies is dependent on a
biological system and is consequently a process where one
has little control over specificity and affinity. Until recently,
the generation of aptamers also took a black box approach
where a traditional SELEX procedure iterates over four ba-
sic steps that together define one selection cycle: incubation
and binding, partitioning and washing, target-bound elu-
tion and amplification (Figure 1a). The process starts with
a sequence library of 107- 10> random molecules of fixed
length flanked by constant primer sites to aid amplification.
At the beginning of each cycle, such an RNA /ssDNA pool
is incubated with a target of interest. At the end of each
cycle, lower affinity binders are removed from the solution
whereas bound aptamer molecules are eluted and amplified,
forming the input for the consecutive round. The aptamer
molecules that persist until the final cycle are then evalu-
ated experimentally for binding affinity and optimized for
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Figure 1. Overview of the principles of HT-SELEX. (A) Schematic of the steps defining one selection cycle (clockwise): incubation of a sequence pool
with the target, binding of target affine species, partitioning of target-bound and low-affinity species, target-bound elution and amplification followed by
high-throughput sequencing. (B) Visualization of the model used to estimate the significance of enrichment between the selection rounds. Here, only the
sample sets (green) are observable quantities whereas the pool and experiment sets are hidden. Each selection round is partitioned into three sets denoted
as pool, representing the remaining sequences after selection and amplification, sample, describing the established, sequenced portion of this pool and
experiment, denoting the unknown species forming the input for the next cycle. my, m} and my, = my + my, stand for the frequency of a sequence in the

sets sample, experiment and pool, respectively. The enrichment of the sequence between selection cycles is defined as f;"””l for the sample sets and as

[+ for the experiment sets.

specific properties, such as size or stability, depending on
the intended application. Such an approach runs the risk
of either not being able to develop an aptamer to a specific
target or the selection of a sub-optimal aptamer.

Massively parallel sequencing technologies have the po-
tential to revolutionize the SELEX protocol by allowing
sequencing of entire aptamer pools (17) leading to a new
protocol referred to as High-Throughput SELEX (HT-
SELEX). In an HT-SELEX procedure some (or all) selec-
tion rounds are sequenced and computationally analyzed
for potential binders, effectively reducing the number of re-
quired selection cycles and in turn leading to a substan-
tial reduction of unwanted experimental effects such as
polymerase chain reaction (PCR) biases, time and expense.
More precisely, a sample of the aptamer pool is sequenced
while another fraction serves as the input for the next cy-
cle (Figure 1a and b). Thus, unlike the traditional SELEX
approaches in which only a handful of aptamers are se-
quenced and analyzed after the last cycle, HT-SELEX pro-
vides data for a global analysis of the selection properties
and for the simultaneous discovery of a large number of
candidates. This large amount of information has utility
only in conjunction with suitable computational methods
to analyze the data, sort the potential aptamers and iden-
tify candidate aptamers with properties consistent with the
intended application. The latter is important because be-
sides merely binding the biological target (with the high-
est affinity possible) more sophisticated applications for ap-
tamers have been envisaged. As a case in point, aptamers
are being exploited as potent antithrombotics which can be
actively controlled, allowing high levels of anticoagulation
when needed followed by rapid or graded titration of the ef-
fect (18). Traditional SELEX is well suited to developing ap-
tamers with high affinity but more nuanced methods are re-
quired where multiple candidates to modulate a complex bi-
ological process are needed. In this context, the importance

of computational analysis has been increasingly recognized
for HT-SELEX data (19-21). However, current computa-
tional methods utilized to analyze this type of data, with a
notable exception of HT-SELEX based methods to uncover
transcription factor binding motifs (17,22), are limited and
mostly based on simple counting of aptamer species. Thus
the potential of the HT-SELEX data is rarely realized and
moreover often does not justify the time and expense of HT
sequencing. At the same time, the development of efficient
computational methods require to be informed by an im-
proved understanding of the properties of the HT-SELEX
process.

We were particularly interested in understanding the role
of mutations, by which we understand nucleotide sequence
errors arising at any stage of the selection experiment, in-
cluding amplification, and for RNA aptamers, transcrip-
tion. While the principles of mutagenesis during traditional
SELEX (23-25), and as a means of post-selection optimiza-
tion of binding affinity (26), have previously been described,
the lack of high-throughput sequencing of entire aptamer
pools posed a natural limit to the resolution of the available
data and consequent analysis.

We Specifically asked: (i) is the distribution of mu-
tants consistent with the random mutation model, and
(i1) is it possible to computationally identify mutations
that improve binding affinity. Our study was informed by
high-throughput sequencing data from five rounds of HT-
SELEX developing aptamers against the Interleukin 10 re-
ceptor alpha chain (IL-10RA). IL-10 is considered to be a
master regulator of immunity to infection and is an impor-
tant therapeutic molecular target (27). To address the first
question, we utilized our new clustering algorithm, Apta-
Cluster, which is, to the best of our knowledge, the only cur-
rently available tool capable of efficiently clustering entire
aptamer pools of more than 20 Million unique sequences.
In addition, we derived a mathematical estimator of the ex-



pected number of aptamers that originated from the initial
pool as opposed to those arising by a mutation and that
are above a specific similarity threshold with respect to an
aptamer of interest. We used this estimator together with
the AptaCluster method to obtain families of aptamer se-
quences related to each other by mutations. Interestingly,
we found that similar to a number of phenomena in life and
social sciences, the distribution of aptamers in these fami-
lies follows a scale-free distribution (28). We obtained the
same distribution using an in-silico aptamer evolution pro-
gram, AptaSim, which we have developed. We discuss the
practical implications of these findings for predicting bind-
ing affinity.

To address the second question, we developed
AptaMut—a method to identify mutations that improve
binding affinity. AptaMut identified several such mutations
and we have confirmed these predictions experimentally.
Furthermore, we discovered that in one particular cluster,
mutations conferring the biggest change in the binding
affinity stabilized a specific hairpin.

Our results demonstrate that new computational meth-
ods cannot only aid the elucidation of under-appreciated
properties of the SELEX procedure but can ultimately lead
to uncovering new practical predictive methods and ap-
tamers of desired binding affinity. Therefore, aiming at pro-
viding comprehensive HT-SELEX data-analysis software,
we developed a full software package called AptaTools, that
contains, in addition to the AptaCluster and AptaMut al-
gorithms, numerous additional useful tools for data prepro-
cessing, tracking the changes of aptamer families through-
out selection cycles, computing cycle-to-cycle enrichment
and secondary structure prediction.

Taken together, we demonstrated that HT-SELEX data
sets contain previously untapped information and provided
methods for their utilization. We expect that these new
methods along with our complete AptaTools package will
become indispensable for guiding aptamer selection and for
uncovering additional general properties of the selection
process, hence jointly contributing to a better utilization of
HT-SELEX results.

MATERIALS AND METHODS
The AptaCluster algorithm

The relevance of clustering of individual species into fami-
lies in HT-SELEX data is increasingly recognized, prompt-
ing the need for developing approaches that can take ad-
vantage of high-throughput sequencing data. Current algo-
rithms are mainly based on ad-hoc counting techniques (17)
or adaptations of traditional, all-vs-all clustering schemes
using a variety of similarity functions such as the Leven-
shtein distance (29,30) or k-mer counting (22) (see (31) for
a recent survey). While these methods can be optimized to
cope with moderately large data sizes (~ 1 Mio unique se-
quences), they become computationally intractable when
applied to higher resolution experiments due to their non-
linear scaling properties.

In contrast, AptaCluster is an algorithm to efficiently
cluster aptamer pools of over 20 Million unique items and
its preliminary version was reported in (32). Below we pro-
vide a high level description of the approach and a perfor-
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Figure 2. The AptaCluster algorithm, its validation and performance.
(A) Algorithmic approach of AptaCluster. Each colored sphere represents
a distinct sequence in the pool while similar colors stand for related se-
quences. To better illustrate the concept, we included identical sequences
(in the actual implementation identical aptamers are represented by their
sequence and corresponding count). AptaCluster iteratively partitions the
poolinto sets of potentially similar sequences using the concept of locality
sensitive hashing. In each iteration, an input to a hash function is gener-
ated by sampling a user-defined number of nucleotide positions (black ar-
rows). Similar sets (e.g. red buckets) from the different iterations are then
combined such that sequences below a certain threshold are grouped to-
gether forming the desired clusters. (B) Runtime (wall clock) analysis of
AptaCluster (green) and a greedy approach (blue) for pool sizes varying
between 1000 sequences and 100 million (Mio) sequences. Horizontal red
lines depict runtimes of 30 min, 60 min and 24 h, respectively. (C) Average
cluster size (blue) and the number of clusters (red) reported by AptaCluster
for each of the sequenced pools. (D) Average (blue) and top (red) cluster
diversity for each selection round as measured by the number of unique se-
quences per cluster. (E) Scale free nature of the cluster composition. Shown
are the distribution of aptamer frequencies as a function of their counts on
the example of the top clusters from the IL-10 selection (left) and the sim-
ulated data (right) produced by AptaSim.

mance analysis. Technical details related to the method are
specified in Supplementary Note 1 online.

As is routinely done for aptamer analysis, identical ap-
tamers are first counted and represented jointly by their
common sequence and their frequency. The key novelty
of AptaCluster is that to circumvent performing all-by-
all comparison used in standard clustering methods, which
would be computationally prohibitive for this data size, we
developed a two-stage approach where in the first step we
apply the concept of Locality Sensitive Hashing (LSH) (33)
to identify all pairs of aptamers with an evidence of possible
similarity (Figure 2a). The remaining pairs are expected to
be unrelated. In the second step, the distances between pairs
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with an evidence of possible similarity are evaluated pre-
cisely. This is now possible, since this set is relatively small.
The distances in the complement set are arbitrarily assumed
to be infinity.

To efficiently identify pairs with a potential to be similar,
we are considering aptamer sequences as #-dimensional vec-
tors, where 7 is the length of the randomized region. Then,
following the LSH protocol, we perform a randomized di-
mensionality reduction step and use the reduced represen-
tation as input to a hash function. Iterating this step ensures
that it is unlikely that two similar sequences never produce
the same hash value and thus will be falsely considered as
unrelated.

Having partitioned the selection pool into pairs with an
evidence of possible similarity and dissimilar pairs we then
cluster the first set by repeatedly choosing the highest fre-
quency sequence not assigned to any cluster and designat-
ing it as the seed of the new cluster. We then use a k-mer
based similarity function (34) to compute the distance of the
selected seed to all other sequences found as possibly simi-
lar and include each such sequence in the cluster if its k-mer
distance to the seed is smaller than a user-defined cutoff.

It is theoretically possible that two relatively similar se-
quences will never obtain the same hash value during the it-
erative similarity detection step and thus their distance will
be incorrectly set to ‘infinity’. The probability of such fail-
ure to detect similarity dependents on the number of LSH
iterations.

The AptaMut algorithm

AptaMut aims at extracting potential affinity altering mu-
tants based on the difference in cycle-to-cycle enrichment
of the mutant relative to the enrichment of the parent se-
quence. To provide a formal framework, we developed a
generative model mirroring the experimental design of the
HT-SELEX protocol. Our model takes into account the
fact that at each cycle, the sequenced aptamers only repre-
sent a fraction of the true pool size (Figure 1b).

Specifically, for each selection round, we differentiate be-
tween three sets: (1) the pool, representing the sequences ob-
tained by selection and amplification, (ii) the sample, con-
taining the observed (sequenced) portion of this pool and
(iii) the experiment, consisting of the unobserved portion of
the pool forming the input for the next cycle. Furthermore,
we let mg, my and m, be the frequency of a mutant in the
sets sample, experiment and pool, respectively. For the sam-
ple sets, we define the observed enrichment of the parent
of the mutant between selection cycles as f}“”l. Finally,
let P(m*, m*+!, f*>>*1) refer to the probability of simul-
taneously observing m* mutants in sample set X and m**!
in samlple set X'+ 1 assuming the actual enrichment to be

X—> X+

Our model then aims at comparing the probability of ob-
serving frequencies m*, m**!'in sample sets X, X+1 of a
mutant with the probability of observing the optimal fre-
quency, my * ff""“, for the initial frequency m} and en-

richment /*~**!. Accounting for the fact that the actual
enrichment is subject to stochastic variations resulting from

experimental noise, we define a score S of a mutant as:
J5 P (my. m* f) p(Ndf
IeP (mjY S emy, f) p(NHdf

X x+1 px—sxbl)
S(ms,m S )_

s

In the equation above, we model the enrichment as a con-
tinuous random variable £ that follows normal distribution
p(f). The estimation for P is based on the assumption that
the sequenced aptamers in each cycle only represent a frac-
tion of the true pool size and that the process of selecting
these sequences from the pool can be described in terms of
Bernoulli experiments.

Note that a log of this score near zero indicates a neu-
tral mutant while significantly positive (respectively nega-
tive) log scores indicate a possibility of beneficial (respec-
tively detrimental) mutants. A comprehensive description
of the approach is detailed in Supplementary Note 4 online.

HT-SELEX experimental setup

Selection details. A DNA template for the selection li-
brary was ordered from IDT (Coralville, IA). 1 nM of each
Ny template (5-TCTCGATCTCAGCGAGTCGTCG-
Nyp-CCCATCCCTCTTCCTCTC TCCC-3) and 5’ primer
(5-GGGGGAATTCTAATACGACTCACTATAGGG
AGAGAGGAAGAGG GATGGG-3) were annealed
together, extended with Taq polymerase (Life Science) and
transcribed in vitro using Durascribe (in-vitro transcrip-
tion) IVT kit (Illumina). The random RO RNA was purified
by denaturing PAGE and, after preclearing with human
IgG-coated (Sigma) beads (GE Healthcare), used for in-
vitro selection. 1 nM of RO RNA was used in a first round
of selection to coincubate with 0.3 nM of bead-bound
human IL-10RA-Fc fusion protein (Novus Biologicals) in
100 mM NaCl selection buffer. After washes, a recovered
bound RNA fraction was reverse transcribed using the
cloned AMYV RT kit (Life Science). cDNA was amplified by
either emulsion or open PCR using Platinum Taq PCR kit
(Life Science) as described below. The DNA template was
used to IVT RNA for the next round. During subsequent
rounds, amount of protein was reduced 25\% each time,
while concentration of NaCl was gradually increased to
150 mM.

Emulsion PCR. c¢DNA was amplified using Platinum Taq
PCR kit with addition of 10% PCRx enhancer solution
and following primers: 5-GGGGGAATTCTAATACGA
CTCACTATAGGGAG AGAGGAAGAGGG ATGGG-
3 and 5-TCTCGATCTCAGCGAGTCGTCG-3. After
preparing the master mix PCR reaction solution, it was sep-
arated to 100 wL aliquots and each aliquot was mixed with
600 L ice-cold oil fraction assembled from components
supplied with emulsion PCR kit (EURx) according to man-
ufacturer’s instructions. Water and oil mixture was emulsi-
fied by 5 vortexing at +4C and amplified in standard PCR
machine for 25 cycles. Control open PCR reaction was car-
ried with aqueous phase only for 16 cycles.

Preparing libraries for high-throughput sequencing.  After
four rounds of selection, 3 nM of RNA was prepared for
round 5. The RNA was pre-cleared using IgG-coated beads



and separated into three identical aliquots. Each aliquot
was incubated with either human IL10RA protein, murine
IL10RA protein or human IgG. After standard washes,
bound RNA fraction was extracted from beads and re-
verse transcribed as described previously. A cDNA gener-
ated from round 5 bound fractions, as well as RNA recov-
ered from bound fractions at rounds 2, 3 and 4, was ampli-
fied by emulsion PCR with two sets of primers as described
previously (9). Amplified DNA was purified by 2% agarose
gel electrophoresis and sequenced using Illumina’s HiSeq
2500 device with 100-cycle paired-end sequencing protocol.

Binding assays details.  In vitro measurements of affinities
of the candidate aptamers to their respected targets were
performed using double filter binding assay (35). In vitro
transcribed and PAGE-purified RNAs were dephosphory-
lated with CIAP (New England Biolabs) and radiolabeled
with PNK (New England Biolabs) using 32gamma-ATP
(Perkin Elmer). Radiolabeled aptamer RNAs were incu-
bated individually with a range of concentrations of target
or control proteins at 37C in the binding buffer. Complex
formation was determined by passing the mixture through
stacked nitrocellulose and NYLon membranes (Whatman)
with subsequent measurement of the radioactivity retained
on nitrocellulose (bound RNA fraction) and NYLon (un-
bound fraction) using phosphoimager screen (Kodak) and
Typhoon instrument (Amersham bioscience). K4s were cal-
culated as concentrations of the protein required to retain
half of the RNA in the RNA:protein complex.

RESULTS

Our results combine the development of dedicated com-
putational methods and insights into the HT-SELEX pro-
cess gained using these methods. On the methodological
side, we developed AptaTools as a general software suite to
analyze HT-SELEX that includes AptaGUI—a graphical
user interface for data visualization, tools for data prepro-
cessing, clustering the aptamer pools, tracking the changes
in aptamer families over selection cycles, computing cycle-
to-cycle enrichment for individual sequences and sequence
families and secondary structure prediction. Alongside we
report the results of the effort to identify aptamers targeting
IL-10RA that was supported by our computational meth-
ods, as well as general insights into the selection process ob-
tained with these analyses.

The AptaCluster algorithm, its validation and performance

We tested the accuracy and the reproducibility of our ap-
proach with respect to the distance computations using data
from our IL-10R A experiment. Specifically, we used the 20
top clusters reported by AptaCluster and determined the k-
mer distances of all the cluster seeds to all other aptamers in
the pool for different values of LSH iterations. We then cal-
culated the false negatives rate (FNR) where a sequence pair
considered a false negative refers to a sequence which has a
distance to the seed below the specified clustering threshold
but was assigned an ‘infinity’ value. We found an on aver-
age overly low false negative rate varying between 10~° and
10~* (Supplementary Figure S1).
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Finally, to appreciate the advantages of our approach, we
have compared its performance to a member of the general
class of (©(N?) computational time) clustering algorithms.
We implemented a sample algorithm in this class which con-
siders aptamers in decreasing order of their counts, com-
putes their distance to all other aptamers in the pool and
assigns the aptamer to the seeds cluster if the distance is be-
low a user-defined threshold. While our approach can han-
dle over 100 million sequences in a little more than 1 h, this
naive approach is unable to handle 1 million items within
one day (Figure 2b) on identical hardware.

Identification and analysis of families of sequences related to
each other by mutagenesis

The errors during the amplification step of the SELEX pro-
cedure can introduce new sequences into the selection pool.
Importantly, the sequences that are selected for and thus ap-
pear in higher copy numbers in the selection pools are most
likely to produce mutants. Since the randomized region is
typically relatively long, the coverage of a randomized pool
of 107-10" initial sequences is sparse and such mutants
might help to provide additional sampling of the sequence
space around the sequences that are selected for. To better
understand the initial sequence diversity, we started by es-
timating the expected number sequences with at least K%
sequence identity in an initial pool of M random molecules
and with a randomized region of length »n. This number is

given by
(l? ) ¥
1

4n

2
F(n k)= MxYy
i=0

which, as formally shown in Supplementary Note 2, de-
creases exponentially with » and where 1/k is the percent
divergence, that is K = 1-1/k (see Supplementary Figure
S2).

Based on this formula, we set the clustering parameters
(see Supplementary Note 1) such that, with high probabil-
ity, all cluster members are obtained as a result of poly-
merase errors from a common ‘founder sequence’—the seed
of the cluster. We confirmed that these putative mutants
were indeed absent from early pools (Supplementary Table
S1). In addition, tracing the clusters over several selection
rounds, we observed that not only the number of clusters de-
creases while the average number of the sequences per clus-
ter increases, but also the variability of the sequences within
the clusters increases, consistent with mutagenesis based
cluster evolution (Figure 2¢ and d). Importantly, similar
to many evolutionary processes (28), the aptamer counts
in each cluster followed approximately a scale-free distri-
bution (Figure 2e). To confirm that this distribution is in-
deed expected, we developed AptaSim—a simulator of HT-
SELEX that includes error-prone amplification. In order to
accurately represent the initial randomized pool in terms
of base composition and dependencies within consecutive
nucleotides, both possible technology-dependent artifacts,
we used a first order Markov Model (MM) trained with
all aptamers from the earliest sequenced IL10 round. Ad-
ditional design details of AptaSim are provided in Supple-
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mentary Note 3 online. The results obtained with AptaSim
confirmed that the distribution of sequences related to a
given ‘seed sequence’ by mutations is consistent with dis-
tribution within the sequence families obtained with Apta-
Cluster (Figure 2e).

AptaMut—combining cycle-to-cycle enrichment with a prob-
abilistic model to identify binding-improving mutations

We note that some of the mutated sequences might be bet-
ter binders than the sequence they are derived from. Such
sequences would not only provide additional candidates for
further in-vitro testing and refinement, but also reveal cru-
cial information about the relevance of the nucleotide posi-
tion as a function of binding affinity. However, due to the
late introduction to the pool, their count is low excluding
the use of an aptamer sequence’s frequency as a predictor
of their binding affinity. Since aptamers with advantageous
binding properties are expected to be selected in consecu-
tive SELEX rounds at a higher rate as compared to less
affine species, one can therefore use cycle-to-cycle enrich-
ment to predict the relative ordering of aptamers with re-
spect to binding strength (36-38). We tested the utility of
cycle-to-cycle enrichment of aptamer frequencies, i.e. their
relative increase in multiplicity, as a predictor of binding
affinity and found it to be a better predictor than the sim-
ple aptamer count (Figure 3a and b). Specifically, we experi-
mentally tested 30 sequences for binding including the most
frequent aptamers from our IL-10RA experiment of cycle
5 and a number of arbitrarily selected sequences with lower
number frequency. All sequences tested originated from the
initial pool. For these sequences, we measured the dissoci-
ation constant Ky in nano Mol (nM). We found that sort-
ing by cycle-to-cycle enrichment for the last selection cy-
cle produces a sophisticated partition between binders and
non-binders as compared to sorting by aptamer frequency
(Figure 3a and b).

Having confirmed the utility of cycle-to-cycle enrichment
as a predictor of binding affinity, it might be tempting to
apply this strategy to mutants as well. However the implicit
assumption of the cycle-to-cycle enrichment strategy is that
the fraction of the pool that is used for sequencing is a good
representative of the fraction that is used as the input for
the next cycle. This is a reasonable assumption for abun-
dant sequences but can be incorrect for the less frequent mu-
tants whose count in the sequenced pool is strongly affected
by stochastic variations during pool partitioning and PCR
amplification. Therefore, we developed an approach that di-
rectly models the fact that at each cycle, the sequenced ap-
tamers represent a fraction of the true pool size. Specifically,
assuming that the partition into sequenced and experiment
pool follows a Bernoulli process, we can compute the prob-
ability of observing a given number of sequence copies in
the sequenced pools under the assumption of a particular
enrichment value. After appropriate normalization, we ob-
tain a score reflecting the likelihood of observing the counts
of a mutant in consecutive cycles relative to the expected
counts under the assumption of having the same enrichment
as the parent sequence. In this model, a log of this score
near zero indicates a neutral mutant while significantly pos-
itive (respectively negative) log scores indicate a possibility

of beneficial (respectively detrimental) mutants. Note that
all scores are computed relative to the parent sequence, and
it is possible that a sequence with a detrimental mutation
shows cycle-to-cycle enrichment. The mathematical details
of the test are provided in the Supplementary Note 4 online.

AptaMut—experimental and computational validation

We used AptaMut to identify favorable mutants from three
representative clusters identified by AptaCluster of selec-
tion cycle 5 and whose binding affinities of their seed se-
quences had been determined to represent strong (Kq = 27
nM), intermediate (Kg = 65 nM) and weak target (Kg =
120 nM) binding. We scored these mutants by their signif-
icance of enrichment, and experimentally tested a total of
eight candidates for their binding affinity. All but one mu-
tant showed either comparable Ky values or an increased
binding affinity with respect to their parent sequence (up
to 3-fold when starting with a seed with intermediate Ky
value). Interestingly, mutants from the strongest target-
binding seed did not show improvement whereas significant
better binders could be found in the two remaining cate-
gories (Figure 3¢) suggesting that the sequence with inter-
mediate Ky value was easiest to improve upon.

We noted that cluster 1 contained several mutants that
were experimentally confirmed to improve binding affinity.
Therefore we asked if these mutants collectively provide in-
sight into the mechanism behind this improvement and if
the analysis of mutants allows for the identification of the
binding motifs approximate location. To see if this might
be the case, we predicted the secondary structures of the
seed and potentially beneficial mutants using MFold (39),
selected based on having a log-score of less than —0.5 (30 in
total), as well as the secondary structures of mutants with
the highest depletion rate at the same cutoff (top degen-
erative mutants, 10 in total). We identified a hairpin loop
that showed significantly less mutations in the set of bene-
ficial mutants as compared to the set of degenerative mu-
tants (p-value = 0.025, Fisher exact test) suggesting its im-
portance for binding (Figure 3d). Interestingly some of the
predicted beneficial mutations, including one experimen-
tally confirmed to improve binding affinity (Mutant 2), were
found to induce a conformational change in the structure
while still exposing the conserved loop region. Coinciden-
tally, the mutant with the highest change in affinity (Mu-
tant | — K4 = 27 nM) was also predicted to contain the
most stable stem loop region. In addition, a global search
for the hairpin loop in all sequenced pools (supported by the
pattern search option implemented within AptaTools) un-
covered this motif in unstructured regions in at least two ad-
ditional aptamer families which also showed cycle-to-cycle
enrichment but with smaller values as compared to cluster
1. A detailed list of all analyzed mutants can be found in
Supplementary Table S2.

We performed a similar analysis for Cluster 2 identifying
a total of 46 mutants with log-score smaller than —0.5 for
each, the beneficial and degenerative sets, respectively (see
Supplementary Table S3). Out of the three putatively benefi-
cial mutants that we have experimentally tested for binding,
two confirmed our prediction of increased affinity to the tar-
get as compared to the seed sequence. In this case, manual
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A 1D Consensus Sequence Cluster Size Fraction Unique Enr. KD B 1D KD
6 ACTATAACGCGTCAAAGTGCTTATCGAACACTATTTGTAA 27842 0.006025 407 2318.03 50 0 25
2 T, ACTCGATTCTCCTAGCCCGCTAGA. TCCCCcTCCC 401977 0.086981 2064 29.4554 65 1 120
30 2691 0.000582 102 4.29201 25 2 65
0 2191739 0.474255 4883 4.02953 25 3 60
1 \ 788907 0.170706 3199 3.99062 120 4 18
33 Az CCTTTTT A \ 2152 0.000466 95 3.96389 10 5 500
40 CCGCTAACACTC 1695 0.000367 98 3.71368 120 6 50
4 33473 0.007243 488 1.5169 18 7 250
8 24982 0.005406 360 1.46659 80 8 80
12 13018 0.002817 254 0.971524 20 9 250
3 71213 0.015409 916 0.691825 60 12 20
18 6622 0.001433 273 0.448961 80 14 125
22 4547 0.000984 186 0.405318 20 15 500
7 25356 0.005487 427 0.391821 250 16 250
15 7519 0.001627 230 0.342604 500 18 80
14 9461 0.002047 245 0.300622 125 20 250
5 33011 0.007143 519 0.25693 500 22 20
16 7031 0.001521 223 0.21148 250 24 500
20 5901 0.001277 174 0.202396 250 26 500
9 16788 0.003633 342 0.18987 250 30 25
24 4055 0.000877 152 0.153568 500 33 10
26 3009 0.000651 163 0.13792 500 40 120

C ID Aptamer Sequence % Pool 5 Enrichment % Pool 4 XD log-Score
1 TAACACTCCATTCTCCTACCCCUCTACAAATTCCCCTCCC 0.076149675 30.31212404 0.002512185 65

TCGATTCTCCTAGCCCTC! TCCCCTCCC 0.000670138 429.7421301 1.56E-06 46 -19.1643
CGATTCTCCTATCCCGC cccerece 0.000308995 45.72701337 6.76E-06 27 -8.98E-1
TCGATTCCCCTAGCCCGCTA! TCCCCTCCC 0.000204049 32.71285346 6.2 E-06 33 -8. 73E-2
2 0.1 8 3.91 9 0.03 4 120
0.0001 7 1. 9 1.0 E-05 143 -0 .0
1. . E-0 98 - . 4
1. E-05 78 -0 .
1 0.006297607 1.590793207 0.003958784 18
2.49E-05 11.96811712 2.08E-06 19.8 -10.5271
AGCCATGACGATGTCGTTACGTAGAT 1.67E-05 8.013434942 2.08E-06 21.2 -06.1543
D Seed Sequence - Secondary Structure Analysis O Primer Region

O Randomized Region
Conserved Region

Motif region

Figure 3. Cycle-to-cycle enrichment analysis and AptaMut results. (A and B) Cycle-to-cycle enrichment as a superior predictor for binding affinity and
mutant analysis results. Top 20 clusters reported by AptaCluster sorted by their enrichment from cycle 4-5. Shown are the cluster identification (ID),
consensus sequence, cluster size in round 5 (Cluster Size), the percentage of a cluster with respect the remaining pool (pool fraction), the cluster diversity
(Unique), cycle-to-cycle enrichment and the Ky values of the most frequent aptamer. Cycle-to-cycle enrichment successfully partitions the clusters into
binders and non-binders. The black line at 125 nM indicates the threshold used to visually separate strong binders from weak binders. In contrast, panel
(b) depicts the same aptamer families if sorted by cluster size only which cannot discriminate between target-affine binders and non-binders. (C) Selection
of mutants belonging to three clusters of interest reported by AptaMut and tested for binding affinity (K4). The last column displays the log score of the
mutants’ enrichment with respect to the seed sequence (grayed rows). All but one mutant show higher binding affinities compared to their parent sequence.
(D) Structural analysis of the mutants of seed with ID 1 showing a conserved hairpin (indicated in yellow). The hairpin showed significantly less mutations
in the set of top beneficial mutants compared to the mutation rates in the set of degenerative mutants. Structures were predicted using MFold (39) with
standard parameters. Alternative structures induced by nucleotide substitutions are highlighted in blue and aquamarine, respectively. The mutant with the
highest improvement in binding affinity (Mutant 2) correlates with the most stable stem loop.

analysis did not reveal any clearly conserved single stranded
regions or other striking properties that would by eye distin-
guish beneficial and degenerative mutants. This prompted
us to use additional computational analysis to confirm the
consistency of our predictions. Interestingly, more than half
(24/46) of the sequences belonging to the degenerative set
had two mutations per sequence, allowing us to construct
a phylogenetic tree using PAUP* (40). Our null hypothesis
was that if our predictions were random, the positive and
negative sets would be arbitrarily mixed in the tree’s braches.
This however was not what observed. Rather, except for the
subtree containing the false negative experimentally tested

for binding affinity, the beneficial and degenerative mutants
formed separated branches in the tree (see Supplementary
Figure S3). This clustering of mutants, either of the positive
set or the negative set to the same evolutionary branches,
validated that AptaMuts scoring assignment is consistent
with aptamer evolution and not a random pattern.

DISCUSSION

In this study we focused on the evolution of sequences in the
context of an HT-SELEX experiment. HT SELEX can gen-
erate billions of data points, and a full utilization of these
data calls for advanced computational analyses. However
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Figure 4. Visualization of an aptamer landscape at different rounds of selection. Red points on the plane represent individual aptamers and their distance
to each other indicates their similarity. The z-axis corresponds to the binding affinity to the target. (A) The pool composition at the initial state of SELEX.
Sequences in the initial pool are a uniform but scarce sample from all 4" possible species. (B) As the selection progresses, non-binders (high z-values)
are competed out of the pool, whereas target-affine species (low z-values) are amplified, introducing mutants into the pool that explore the topological
neighborhood around their parent sequence. (C) Landscape at the final round of selection, showing the final aptamer families as the result of repeated

selection and error-prone amplification.

even the key step in data analysis—clustering the complete
aptamer pool based on sequence similarity—could not be
performed in reasonable time (up to two days for one mil-
lion sequences) using classical clustering algorithms. Our
new AptaCluster algorithm which we developed breaks this
barrier and allows for efficient clustering of entire selection
pools in only hours.

The analysis of the sequence landscape has to start from
an understanding of the properties of the initial pool. If all
possible sequences were present in the pool and no poly-
merase errors or any type of biases occurred, we would ex-
pect that consecutive iterations of the SELEX procedure
will converge to optimal binders (Figure 4a). However, con-
trary to these theoretical predictions, and consistent with
other reports (41,42) we found the most frequent aptamers
are not necessarily the best binders. It is important to ap-
preciate that if the randomized sequence region is relatively
long, then the initial pool covers the universe of all possible
sequences very sparsely. We provided a general formula that
allows an estimate of how sparse the sampling is. This ob-
servation has two consequences. First, in the initial cycles,
the process of partitioning into the pool that is sequenced
and the pool that goes to the next cycle is expected to be
very noisy and this noise is amplified in subsequent cycles.
Therefore cycle-to-cycle enrichment, which is independent
on the starting point but rather captures the enrichment of
already abundant sequences, would be a better predictor of
binding propensity than the current norm of using absolute
counts. We provided an experimental proof-of-concept for
this hypothesis (Figure 3a). The second consequence of the
scarcity is that it is rather unlikely that any given sequence
from the initial pool is ‘optimal’ with respect to binding no
matter how frequent it is (Figure 4b). Instead, they merely
mark the sequence neighborhood where the good binders
might be. Incidentally, polymerase errors can help to ex-
plore these neighborhoods (Figure 4¢). Thus it is important
to be able to predict which mutated sequences are likely to
improve the binding.

Our AptaMut procedure is designed, and experimentally
and computationally validated, to serve this purpose. The
consequences of identifying such beneficial mutations go
beyond identifying a better binder. We have demonstrated
that the analysis of these mutants can help to identify im-
portant features related to binding, such as structural sta-
bility or sequence properties. Such subtleties are critical to

many increasingly sophisticated applications for aptamers.
Currently there are no methods, either experimental or
computational, that address such requirements. Thus, with
proper computational tools, polymerase errors can be lever-
aged to increase sampling density around the most impor-
tant points of the sequence landscape and to provide valu-
able information about sequence properties that are impor-
tant for binding.

AptaMut and AptaCluster are implemented as a part of
our user-friendly software suite AptaTools that we continue
to develop to fully exploit the scientific and technological
potential of HT-SELEX.
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