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ABSTRACT

Global network modeling of distal regulatory interac-
tions is essential in understanding the overall archi-
tecture of gene expression programs. Here, we de-
veloped a Bayesian probabilistic model and compu-
tational method for global causal network construc-
tion with breast cancer as a model. Whereas phys-
ical regulator binding was well supported by gene
expression causality in general, distal elements in in-
tragenic regions or loci distant from the target gene
exhibited particularly strong functional effects. Mod-
eling the action of long-range enhancers was criti-
cal in recovering true biological interactions with in-
creased coverage and specificity overall and unrav-
eling regulatory complexity underlying tumor sub-
classes and drug responses in particular. Transcrip-
tional cancer drivers and risk genes were discovered
based on the network analysis of somatic and ge-
netic cancer-related DNA variants. Notably, we ob-
served that the risk genes were functionally down-
stream of the cancer drivers and were selectively
susceptible to network perturbation by tumorigenic
changes in their upstream drivers. Furthermore, can-
cer risk alleles tended to increase the susceptibil-
ity of the transcription of their associated genes.
These findings suggest that transcriptional cancer
drivers selectively induce a combinatorial misregu-
lation of downstream risk genes, and that genetic
risk factors, mostly residing in distal regulatory re-
gions, increase transcriptional susceptibility to up-
stream cancer-driving somatic changes.

INTRODUCTION

Transcription networks provide a basis for the understand-
ing of regulatory mechanisms underlying particular biolog-
ical processes or traits (1–3). In particular, non-coding ge-
netic variations may contribute to relevant phenotypes by
disturbing the transcription network (4–6). In cancer, the
effect of non-coding risk factors (SNPs) on transcription
perturbation has received scholarly attention recently (7,8).
However, our understanding of the mechanisms by which
such regulatory variations act at the systems level is lim-
ited due, at least in part, to incomplete modeling of gene
regulatory networks. Although more genome-wide data for
transcription factor (TF) binding are becoming available,
identifying true targets is complicated when TF binding is
observed at distal regulatory elements (DREs) because only
a small fraction of DREs interact with the nearest transcript
(9), while most TFs preferentially bind to DREs rather than
proximal regulatory elements (PREs) (10–14). Numerous
DRE–PRE and PRE–PRE interactions have been reported
(15–17).

Moreover, physical TF-gene couplings do not necessarily
support functionality or reveal directionality (i.e. activation
or repression). TF knockdown does not necessarily change
the expression levels of genes that are physically bound as
observed in yeast (18) and human (19). The problem is exac-
erbated when sequence-based inferences of TF binding are
used because the presence of recognition motifs does not
necessarily indicate actual binding. Motif-based inferences
can be tested based on correlation in the gene expression
of the putative regulators and target genes (4). However,
transcriptional causality cannot be confirmed solely by ex-
pression correlation. A promising approach for identifying
functional TF target genes is Bayesian network modeling of
causal relationships embedded in gene expression patterns
(3,20,21). Moreover, the use of gene expression data from
clinical tissues may complement data obtained using cul-
tured cells. However, the large computational burden limits
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the scalability of Bayesian modeling, which accounts for the
lack of a global Bayesian network in humans to date.

In this work, we designed a comprehensive Bayesian prior
model by leveraging the ENCODE data for TF binding and
chromatin accessibility, TF motif information (22), three-
dimensional chromatin interactomes (15,16) and gene ex-
pression QTL (eQTL) mapping (23) in breast cancer. We
then tested the transcriptional causality of the prior inter-
actions by using ∼1400 breast cancer microarray and RNA-
seq profiles from The Cancer Genome Atlas (TCGA). We
also developed a computational method to construct for
the first time a global network in humans. These enabled a
comprehensive gene-wise characterization of cancer-related
DNA variants at an unprecedented level of biological cov-
erage and accuracy. Our primary focus was to understand
functional regulatory connections among genes contain-
ing predicted driver mutations in coding regions (24–26)
and genes associated with cancer risk factors discovered by
genome-wide association studies (GWASs) (27).

MATERIALS AND METHODS

Data sets used for network construction

For breast cancer network construction, TF ChIP-seq ex-
periments in 104 different cell lines, including the breast
cancer cell lines MCF-7 and T47D, were obtained from
the ENCODE project database. In addition, the position
weight matrix of the TransFac (28) was mapped to DHS
positions in the two breast cancer cell lines (MCF-7 and
T47D). Among 485 TFs that were present in either the
ChIP-seq or motif data set, 436 were associated with DHSs
in the breast cancer cell lines and were also covered by the
TCGA breast cancer gene expression data. Chromatin in-
teractions mediated by RNA polymerase II in MCF-7 cells
(16) were incorporated into our TF and eQTL prior prob-
abilistic model. For Bayesian learning of causal network
structure, the TCGA microarray and RNA-seq data en-
compassing 1386 tumor samples were obtained, normal-
ized and discretized. For leukemia network construction,
we used large-scale gene expression data (29,30) and EN-
CODE epigenomics data in K562 including chromatin in-
teractions via RNA polymerase II (16).

Network construction

The possible scenarios of TF binding via DRE–PRE
and/or PRE–PRE chromatin interactions were used to con-
struct a probabilistic prior model. We merged the TF and
eQTL prior relationships by choosing the maximum prior
probability for duplicate pairs of regulators and targets.
The functional causality of the prior interactions was tested
based on our Bayesian network learning procedures that
coupled the GA with the MCMC-based algorithm. Instead
of using random seed networks, we applied the GA to ob-
tain 1000 suboptimal networks, each of which was evolu-
tionarily selected from 128 initial candidates and then used
as the input of the MCMC-based learning. The following
is the overall procedure of our GA-based selection of sub-
optimal network structures. First, the initial population of
chromosomes (networks) was created by adding links based
on the prior probability table and then adding randomly

generated links based on the Poisson distribution. Second,
the evolution loop was run by evaluating each chromosome
based on the fitness score function, classifying the chromo-
somes into four groups according to their fitness score, per-
forming the crossover of chromosomes based on their group
identity, generating mutations according to the mutation
rate defined for each group, and repeating the above steps
for a predefined maximum number of generations based
on stopping criteria. Third, the chromosomes were com-
bined and the optimal network was output. Fourth, the
above steps were repeated to generate a predefined num-
ber of different networks. Finally, the different networks
were combined by selecting the links that appeared com-
monly in a defined number of networks. To assess the ef-
fect of our prior data on the performance of Bayesian learn-
ing and the composition of output networks, we used prior
subsets or perturbed our prior table, and traced the con-
vergence of the fitness score and the number of the recov-
ered edges over 20 000 GA generations. Further details are
provided in Supplementary Information. The prior frame-
work and global network are available at our web page
(http://omics.kaist.ac.kr/resources/).

Prior evaluation

We first evaluated our prior information using a previously
established Bayesian method (3,20,21,31–33). To do so, we
chose a test co-expression module. WGCNA, an R pack-
age for weighted correlation network analysis (34), and the
Dynamic Tree Cut library for R (35), were used to unam-
biguously identify co-expression modules. Based on ∼1400
TCGA breast cancer gene expression profiles, five major
co-expression modules were identified. Two of them were
significantly enriched for genes involved in breast cancer,
cell cycle, DNA replication and DNA damage in terms of
Gene Ontology. These two modules were combined and
used to construct four different test sub-networks, each
based on distal and proximal TF binding, proximal TF
binding only, eQTL, or random selection following the
Poisson distribution. For each node in each of the four
test networks, we calculated the frequency of true positive
(TP), false negative (FN) and false positive (FP) links by
interrogating Reactome (http://www.reactome.org) (36), a
manually curated and peer-reviewed functional interaction
database. We also used a TF-target link catalog created by
combining well-established open-access databases, namely,
PAZAR (37) and HTRI (38). The F1 value was obtained
as 2*TP/(2*TP+FP+FN) for outgoing links of each node,
and the overall F1 frequency was compared for the four net-
works. For global network evaluation against the Reactome
database, we used precision, TP/(TP+FP), instead of F1,
because of disproportionately high FN caused by large net-
work size and small database size. For global prior evalu-
ation, we assessed the four partial prior tables in compar-
ison with the full prior model during our GA-based net-
work evolution. We traced the convergence of the fitness
score and the number of the recovered edges over 20 000
GA generations in 10 independent runs.

http://omics.kaist.ac.kr/resources/
http://www.reactome.org
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Subclass analysis

Gene expression data for a total of 103 tumor samples
with receptor status information and matched normal tis-
sue were obtained from the TCGA data portal. Based on
the status of the three receptor proteins, namely, estrogen re-
ceptor (ER), progesterone receptor (PR) and human epider-
mal growth factor receptor 2 (HER2), we classified the sam-
ples as luminal A (ER positive and/or PR positive, HER2
negative), luminal B (ER positive and/or PR positive,
HER2 positive), HER2-enriched (ER negative, PR nega-
tive, HER2 positive), or basal-like or triple-negative (ER
negative, PR negative, HER2 negative). Subclass-specific
genes were identified as differentially expressed between tu-
mor and normal tissues by at least 2-fold in >20% of pa-
tients who were classified as that subclass.

Drug response matrix

We obtained gene expression data for MCF7 cells in
response to 155 small molecules (39). For each small
molecule, we selected the 200 genes that exhibited the largest
gene expression changes. For each of these responsive genes,
the closest upstream TF was obtained. For each TF, a
connectivity score was calculated for each small molecule
as the fraction of the responsive genes that were con-
nected to the given regulator. This process led to a matrix
of connection scores between transcription regulators and
small molecules. After column-wise and row-wise normal-
izations, unsupervised two-way hierarchical clustering was
performed based on the Spearman’s rank correlation and
pairwise complete-linkage method. Small molecules whose
mechanism of action is poorly understood and TFs whose
normalized connectivity score was close to zero (−0.2–0.2)
for every small molecule were removed, leading to a matrix
with 85 TFs and 135 drugs.

Expression perturbation

BRCA1 mutation status and gene expression data for the
patients with mutation information available were obtained
from the TCGA database. The expression perturbation of
the BRCA1-downstream genes was compared between pa-
tient groups (BRCA1-mutated versus non-mutated). For
each gene, the average expression perturbation of each
group was obtained as

∑n
i=1 |Xi − E|

n

where Xi is the expression level in the ith sample in the
group, n is the number of samples in the group and E is the
expected expression level of the gene. E was estimated as the
mean expression of the gene across all available samples.

Identification and analysis of transcriptional drivers and risk
genes

We collected 519 breast cancer risk loci by including SNPs
in linkage disequilibrium with the reported SNPs in the
GWAS catalog (27). We first searched our global network
for their targeting genes along with responsible regulators

as indicated by our TF prior information. We then searched
for the genes that were genetically associated with the risk
loci by interrogating previous eQTL maps. Non-coding mu-
tations in breast cancer were obtained from the whole-
genome sequencing of 21 patients (40,41) and filtered by
interrogating the catalog of polymorphisms among 1092
normal individuals (42) and the TransFac position weight
matrix (28). The clinical mutation simulation was based
on processed whole-genome sequencing data in leukemia,
melanoma, glioma, and gastric, liver, kidney, lung, prostate,
and colorectal cancers as obtained from the ICGC data por-
tal or supplemental websites. Mutations were randomly se-
lected from this pool and assigned to 23 virtual chromo-
somes in 21 virtual patients while maintaining the chro-
mosomal and individual distribution identical to those of
the breast cancer mutations. For the in silico simulation,
chromosomal positions were randomly selected with the
same distribution. Regulatory driver factors were identi-
fied as having a significantly large number of recurrently af-
fected target genes (P < 0.05 from the in silico or clinical
simulation). Two of the 17 regulatory driver factors were
coding driver factors. In total, 44 transcriptional cancer
drivers were identified. To calculate misregulation concor-
dance, gene expression data for 170 tumor-normal matched
samples were obtained from the TCGA data portal. For
each gene, patient samples were assigned a value of −1
(down-regulated), 0 (not changed), or 1 (up-regulated) ac-
cording to the differential expression between cancer and
normal at the threshold of 2-fold. The absolute correla-
tion coefficient between the differential expression vector
of regulators and that of their target genes was examined.
The mutation status of GATA3 in each patient was also
obtained from the TCGA data portal, and its correlation
with the differential expression of the target genes was
calculated. To understand the functional associations be-
tween the drivers and risk genes, we used GeneMANIA
(43) (http://www.genemania.org/) to identify enriched Gene
Ontology terms for transcriptional drivers and their down-
stream risk genes with high misregulation concordance (r
> 0.3). Significant enrichment (q < 0.1) was found for
GATA3, FOXM1 and E2F1. Genotype information for the
170 tumor-normal matched patients was obtained from the
TCGA data portal. Risk alleles were determined by com-
paring allele frequencies between the patient (TCGA) and
normal (1000 Genomes) populations. Misregulation con-
cordance was calculated as above for the pairs of the drivers
and risk genes when >10 patients were present in both the
risk and non-risk groups. The significance of misregulation
concordance was determined for each group by the P-value
of the correlation coefficient. Heterozygous samples were
classified into the risk group.

RESULTS

Prior framework construction and its evaluation

Bayesian prior models were constructed based on TF
binding, genetic association of gene expression and three-
dimensional chromatin interactions. TF binding was de-
fined either as the peak of chromatin immunoprecipitation
(ChIP)-sequencing (ChIP-seq) tags or as the presence of
cognate motifs within DNaseI hypersensitive sites (DHSs).

http://www.genemania.org/
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The TF prior model (Figure 1) was developed in the present
study, while the eQTL prior model (Supplementary Fig-
ure S1) was modified from previous Bayesian approaches
(3,20,21). Details of the models are described in the Sup-
plementary Information. A total of 2 960 981 relationships
between 436 TFs and 11 932 putative target genes were in-
corporated into our TF prior model. We merged the TF
and eQTL prior relationships while choosing the maximum
prior probability for duplicate pairs of regulators and tar-
gets. This process yielded a total of 3 328 575 unique prior
relationships between 9679 potential regulators and 13 026
putative target genes.

For prior evaluation, we first used an established
Bayesian method. Markov Chain Monte Carlo (MCMC)
has been used to model hundreds to thousands of genes
in a predefined coexpression module (3,20,21,31–33). We
followed this approach by first identifying a key coexpres-
sion module (Supplementary Figure S2) and constructing
an MCMC-based Bayesian network for this module. Four
different test networks were generated based on four differ-
ent subsets of our prior information, namely, the complete
TF priors (covering both DREs and PREs), the proximal
TF priors (considering PREs only), the eQTL priors and
the null prior set consisting of randomly generated links.

We computed the relative fraction of true positive links
as the F1 score for each node by querying a manually cu-
rated functional interaction database and known TF-target
relationship databases (see Methods). The distribution of
the F1 scores was compared among the four test networks.
As shown in the left panel of Figure 2A and Supplemen-
tary Figure S4A, the complete TF prior model led to a net-
work with the largest number of high-F1 links and low-
est number of low-F1 links, indicating that modeling long-
range TF interactions is essential for accurately recovering
true functional interactions. Moreover, the TF prior mod-
els were less dependent on gene expression patterns than
the null prior model as assessed by expression correlations
between distant nodes in the network (right panel of Fig-
ure 2A). By contrast, the eQTL priors as well as the random
priors did not add a substantial amount of additional infor-
mation beyond the expression patterns. Prior information
also appeared to affect network topology. The relative dis-
tribution of the outdegree and indegree of TFs in the tested
sub-network differed depending on which prior subset was
used (Figure 2B).

Global network construction and prior evaluation

To enable a global regulatory network, we coupled a ge-
netic algorithm (GA) with MCMC. We first applied the GA
to obtain 1000 suboptimal networks, which were fed into
the MCMC pipeline (summarized in Supplementary Figure
S3A), thereby achieving a >120-fold increase in the initial
search pool and a >22-fold reduction in computation time
compared with the pure MCMC approach (see Supplemen-
tary Information). We attempted to compare the outputs
of our GA-MCMC hybrid approach and the pure MCMC
method. Because the pure MCMC was practically impossi-
ble to implement for full-scale global network construction,
we performed a pilot GA-MCMC and pilot pure MCMC
by using 10 instead of 1000 MCMC seed networks based

on the identical prior data and entire gene expression data.
There was 93.2% consistency between the two output net-
works (Supplementary Figure S3B).

Based on the ∼1400 TCGA expression data used for
causal network construction, the correlation of regulator
expression and target expression was obtained for each link
functionally recovered from the TF prior data. Activation
and inhibition regulator-target relationships were identified
based on the sign of the correlation when the absolute cor-
relation coefficient was greater than 0.1. Without regard to
the binding mode of the TF prior interactions, activation
was observed approximately 1.5-fold more frequently than
inhibition.

We first evaluated the four partial prior models that we
tested above. Convergence was observed with 10 indepen-
dent GA runs using each subset prior table by tracing the
number of recovered edges according to the number of GA
generations (left panel of Figure 2C), the fitness score ac-
cording to the number of edges (right panel of Figure 2C),
and the fitness score according to the number of the GA
generations (Supplementary Figure S4B). Overall, the TF
prior model covering distal binding and long-range inter-
action appeared to play a major part, while using only the
eQTL prior data did not outperform the null prior model,
replicating the subnetwork-scale prior evaluation results.
Most importantly, incorporating DREs in network mod-
eling was critical in recovering functional regulatory inter-
actions with increased specificity and sensitivity. Addition-
ally, we constructed and evaluated a leukemia network in
the same manner as we did for the breast cancer network,
and were able to confirm our findings on the importance of
long-range TF prior modeling are not specific to one type
of cancer (Supplementary Figure S5).

Clinical evaluation of the global network

We next performed clinical evaluations. Breast cancer can
be classified based on the status of three receptor proteins
as luminal A, luminal B, HER2-enriched, or basal-like.
The genes that were differentially expressed between tumor
and normal tissue in a specific subclass were mapped to
our transcription network to identify upstream regulators.
GATA3, FOXA1 and FOXM1 were identified as key sub-
class regulators (Supplementary Figure S7), in agreement
with previous findings based on annotated pathways (24).
Because FOXA1 is a direct descendant of GATA3 in the
network, we only used GATA3 as a representative regula-
tor. The percentage of the subclass-specific descendants of
GATA3 or FOXM1 was quantitatively correlated with the
expected prognosis of the four subtypes (Figure 3A). For
example, the highest percentage of the basal-like genes was
specifically related to FOXM1, highlighting the role of this
regulator in contributing to the aggressive nature of this
subtype.

Next, we attempted a network-based interpretation of
drug-response signatures. It has been difficult to under-
stand the mechanism of action of drugs with only resulting
gene expression signatures. Our causal network enabled the
identification of the causal regulator that initiated the tran-
scriptional changes in response to a given drug. In a pre-
vious work (39), MCF7 cells were treated with 155 small
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Figure 1. Bayesian prior model based on physical TF binding and long-range chromatin looping. (A) Schematic view of possible regulator-target interac-
tions. (B) Model for PRE binding observed in breast cancer cells. (C) Model for PRE binding observed in other cell types but within accessible chromatin
in breast cancer. (D) Model for DRE binding observed in breast cancer cells. (E) Model for DRE binding observed in other cell types but within accessible
chromatin in breast cancer. (B–E) TF binding was defined either as the peak of ChIP-seq tags or as the presence of cognate motifs within DHSs.

molecules, and gene expression changes were monitored.
For each drug, we determined upstream transcription regu-
lators. For each of these regulators, a connectivity score was
calculated for each drug as the fraction of the responsive
genes connected to the given regulator. This process yielded
a matrix of connection scores representing how responsible
each TF was for the transcriptional response to each drug.
An unsupervised clustering identified three major clusters
of drugs and biologically plausible TFs (Figure 3B). Es-
trogen and its receptor agonists/antagonists were associ-
ated with ESR1 and its associated factors, GATA3 and
FOXA1 (44) (orange cluster). These luminal cancer regula-
tors (7,24), along with other cancer-related TFs, were also
responsive to anti-cancer agents (red cluster). Epigenetic
drugs were linked to chromatin-modifying regulators (green
cluster).

The drug response profile described above was based
on luminal-type cells (MCF7). In a recent study (45), the
EGFR inhibitor erlotinib was demonstrated to sensitize
basal-like cancer cells (BT-20). We identified the genes re-
sponsive to erlotinib in BT-20 cells. There was a slight ten-
dency toward specific up- and down-regulation of genes in
the GATA3 and FOXM1 pathways, respectively (Supple-
mentary Figure S8A). However, the largest fraction of genes
was commonly present in the pathways of both GATA3 and
FOXM1. We examined the relative distance of these genes
to the two key regulators based on the number of interven-
ing nodes in the network. The network distance of the up-
regulated genes to GATA3 was shorter than to FOXM1
compared with the down-regulated genes (Supplementary
Figures S8B and S9), supporting the hypothesis that this
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Figure 2. Quantitative prior evaluation. (A) Evaluation of four different test networks built on four different prior subsets. (Left) Distribution of the F1
scores for edges in a key breast cancer subnetwork as calculated by interrogating a manually curated and peer-reviewed pathway database. (Right) The
average gene expression correlation of a node with other nodes at a varying network distance. (B) Ratio of the outdegree to indegree of TF nodes in the
tested subnetworks. (C) Global network performance of four partial prior models. Convergence patterns were observed in 10 independent GA runs that
used each prior subset by tracing the number of recovered edges according to the number of GA generations (left) and by tracing the fitness score according
to the number of edges (right).
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Figure 3. Tumor subclass and drug response analysis based on the global transcription network. (A) Frequency of subclass-specific genes present in the
GATA3 or FOXM1 pathways. (B) Connectivity between small molecules (columns) and responsible TFs (rows) computed based on the mapping of
transcription response signatures to the network. Unsupervised clustering was performed using the normalized connection scores, leading to three major
clusters, a anti-cancer cluster (red), an epigenetic-drugs cluster (green) and an estrogen-receptor cluster (orange). (C) Expression perturbation of gene
under BRCA1 in the global transcription network according to the mutation status of BRCA1 (D) Relative frequency of subclass-specific genes present in
the GATA3 pathway as a ratio to the FOXM1 pathway in the two test networks based on the complete TF priors or proximal TF priors. (E) Correlations
of the drug-TF connections scores between the full-scale full-prior network and the two test networks based on the complete or proximal TF priors. (F)
Comparison of the connection scores for the selected proper drug-TF pairs (red, orange and green arrows in B) between the full-scale full-prior network
and the two test networks based on the complete or proximal TF priors.
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drug treatment may sensitize basal-like cells by inducing a
luminal gene expression phenotype (45).

We also sought to interpret the clinical implications
of BRCA1 mutations (46–48). Mutations will perturb
the expression of the downstream genes in the regula-
tory network. The expression perturbation of the BRCA1-
downstream genes was compared between patients with and
without BRCA1 mutations. For each gene, the average ex-
pression perturbation of each group was obtained. As a re-
sult, the average expression perturbation of the BRCA1-
mutated group was larger than that of the non-mutated
group for 75.2% of the BRCA1-downstream genes (Fig-
ure 3C). This implies that BRCA1 mutations actually influ-
ence the transcription of genes that our network predicts
as regulatory targets, and that clinical features related to
BRCA1 mutations can be explained by action mechanisms
of these target genes. Furthermore, 94% of these genes were
responsive to putative BRCA1-targeting drugs as defined
to have a positive drug connectivity score for BRCA1 in
our drug response matrix in Figure 3B. Only 5% of genes
that were not influenced by BRCA1 mutations were re-
sponsive to the BRCA1-targeting drugs. Therefore, the pre-
dicted BRCA1-targeting drugs may indeed interact with the
BRCA1 protein. These findings illustrate clinical and ther-
apeutic implications of our network construction and anal-
ysis schemes.

Biological implications of distal regulation in the global net-
work

To assess the biological importance of incorporating DRE
priors in network modeling, we ran pilot MCMC with 10
seed networks as described above by using either the TF
priors covering both distal and proximal regulation or the
TF priors considering proximal binding only. We evaluated
these MCMC global networks by referring to the curated
functional interaction database as we did for subnetwork
evaluation in Figure 2A. As a result, we found that DRE
information enhances the precision of the global network
(Supplementary Figure S6A). Also, we computed the rela-
tive fraction of potentially true-positive links as the F1 score
for each node by querying the full-scale GA-MCMC net-
work. Higher F1 scores were achieved when using DRE in-
formation (Supplementary Figure S6B).

We then tested the performance of the two test networks
in terms of their capability to explain breast cancer sub-
classes and drug response. The specific regulation of lu-
minal A/B subclass genes by GATA3 relative to FOXM1
as we observed in the full-scale network (Figure 3A) was
pronounced much better by the complete TF priors than
the proximal TF priors (Figure 3D). The drug-TF connec-
tivity scores obtained by analyzing the full network (Fig-
ure 3B) were compared with the scores obtained from the
two test networks in the same manner. Markedly higher cor-
relations of the connectivity scores were observed when the
complete TF priors were used (Figure 3E). We then selected
properly matched drug-TF pairs (the red, green, orange ar-
rows in Figure 3B from the anti-cancer cluster, epigenetic-
drugs cluster and estrogen-receptor cluster, respectively).
While the connectivity scores of the proper matches were
much higher than those of the other matches overall, the

complete-TF test network produced significantly higher
scores than the proximal-TF test network (Figure 3F), in-
dicating that modeling distal regulation is critical in un-
derstanding gene expression programs underlying drug re-
sponse.

We next sought to estimate the functional effects of DRE
and PRE TF binding based on the degree of enrichment of
priors in the functional network (prior recovery rate). We
first classified each prior relationship into two prior types
(TF prior or eQTL prior) or four binding types (TF binding
to PRE, TF binding to DRE tethered to PRE, TF binding
to PRE tethered to PRE, or TF binding to DRE tethered to
PRE tethered to PRE). The fraction of the prior relation-
ships recovered in the functional network (i.e. the number of
relationships in the functional network divided by the num-
ber of relationships in the prior list) was obtained for each
class. This fraction was divided by the expected degree of en-
richment to obtain an odds ratio. To estimate expected en-
richment, we obtained all possible pairs of genes that were
used for functional network construction and counted the
fraction of the gene pairs that were present in the final func-
tional network as an edge without regard to the regulatory
sign. The final odds ratio was used as the enrichment score
for each class of prior relationships.

As shown in Figure 4A, the high-probability (Pr ≥
0.75) TF priors were >10 times more likely than expected
to be retained in the posterior network, with enrichment
gradually decreasing in proportion to the prior probabil-
ity (black bars). This pattern was not observed with the
eQTL prior model (gray bars). A high recovery rate for
edges and nodes was observed when TFs bound DREs
that were tethered to PREs (Figure 4B and Supplemen-
tary Figure S10). Regulator-target functional associations
via promoter-promoter interactions were relatively low, al-
though they were higher than expected (Figure 4B). The
majority of the prior and posterior DRE–PRE interactions
were intra-chromosomal and involved either intragenic or
short-range (<1 Mb) intergenic DREs (Figure 4C). The
posterior fraction of the intragenic DREs was higher than
the prior fraction (Figure 4C). Intriguingly, a distant DRE–
PRE pair was more likely to be functional than closely
spaced DREs and PREs (Figure 4D). The distance distri-
bution suggests that physical chromatin contacts are fre-
quently formed between DREs and PREs that are <200 kb
apart, but a sizable fraction of them may be non-functional;
in contrast, functional interactions tend to span longer dis-
tances (Figure 4D). These results underscored the func-
tional importance of the long-range actions of DREs.

Network analysis of transcriptional drivers and risk genes

We then characterized the transcriptional target genes of
breast cancer-risk SNPs identified in multiple GWASs (27).
Most (>80%) of these transcriptional risk genes were con-
nected to functional DREs. These genes may increase can-
cer susceptibility when their transcription is genetically mis-
gregulated. Our primary question centered on the role of
these risk genes, particularly in relation to transcriptional
cancer drivers. Here we considered two types of transcrip-
tional cancer drivers. Coding driver factors were defined as
TFs containing recurrent missense mutations in their cod-
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Figure 4. Characterization of distal regulatory interactions in the prior framework and functional network. (A) Recovery rate of the TF prior and eQTL
prior interactions in the functional network according to their prior probability. (B) Recovery rate of the TF prior interactions in the functional network
according to regulator binding mode. (C) Frequency of DRE–PRE interactions in the prior (physical) and posterior (functional) network according to
their positioning. (D) Frequency of DRE–PRE distances in the prior (physical) and posterior (functional) network.

ing region (24–26). A total of 29 coding driver factors were
identified. Regulatory driver factors were defined as TFs
carrying in trans recurrent non-coding mutations in their
binding sites at a high frequency. To identify such regula-
tory driver factors, we mapped non-coding motif-breaking
mutations in 21 breast cancer patients (40,41) onto our
gene network (Supplementary Figure S11), discovered re-
currently mutated genes and examined responsible TFs for
these genes. Most (∼80%) of these mutations were concen-
trated in functional DREs. Based on in silico and clinical
simulation (see Methods), we identified 17 regulatory driver
factors as having a significantly large number of recurrently
affected target genes (P < 0.05).

We investigated our TF prior-based network connections
as well as interrogated the breast cancer eQTL data (23)
and other eQTL maps to identify a total of 90 risk genes

(Supplementary Figure S11). We identified a subnetwork
consisting of these risk genes and the transcriptional cancer
drivers (the coding or regulatory driver factors as described
above), and then examined the structure of this subnetwork.
The number of driver-to-risk connections (left panel of Fig-
ure 5A) was >7-fold higher than that of risk-to-driver con-
nections (left panel of Figure 5B). This result is due in part
to the intrinsic high outdegrees of the drivers because large
numbers of driver-to-risk connections were generally ob-
served when sampling the risk genes while fixing the drivers
(left panel of Figure 5A; a marginal P-value of 0.1). How-
ever, the percentage of the risk genes with incoming links
from the drivers (>85%) was rarely observed in the permu-
tation (P = 0.001; right panel of Figure 5A). These find-
ings imply that the transcriptional risk genes are specifically
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Figure 5. Functional connectivity between the transcriptional drivers and risk genes. (A) The statistical significance of the number of causal links directed
from the driver to risk genes (left) and that of the percentage of the risk genes with incoming links (right) were determined based on 1000 random samplings
of the same number of genes as the true risk genes. (B) The same statistical tests were performed for the number of causal links directed from risk to driver
genes (left) and the percentage of the driver genes with incoming links (right). (C) Misregulation concordance between selected key transcriptional drivers
(GATA3, FOXM1, E2F1 and REST from left to right) and all genes in the network (gray), downstream genes in the network (black) and downstream genes
that are risk genes (red, blue, pink and cyan). (D) GeneMANIA functional association analysis of transcriptional drivers (GATA3, FOXM1 and E2F1
from left to right) and their downstream risk genes with high misregulation concordance. Gene nodes connected via co-expression, physical interaction,
pathway, co-localization, and genetic interaction and shared enriched functions (q < 0.1) are displayed.
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regulated directly or indirectly by the transcriptional cancer
drivers.

We sought to examine whether the tumorigenic changes
in the drivers could induce the misregulation of the risk
genes. To this end, we obtained the expression data for the
tumor-normal matched samples from the TCGA data por-
tal and examined the concordance between the differential
expression status of key transcriptional cancer drivers and
that of all genes, all downstream genes and downstream
risk genes. As illustrated by the colored curves in Figure 5C
and Supplementary Figure S12A, downstream risk genes
tended to be selectively misregulated in patients with driver
alterations. GATA3 is frequently mutated in luminal sub-
types (24). GATA3 coding mutations also appeared to se-
lectively induce the misregulation of downstream risk genes
(Supplementary Figure S12B).

These data suggest that risk genes might participate in so-
matic tumor development initiated by their upstream driver
regulators. To better understand the transcriptional role
of risk genes in transformation and cancer progression,
we examined their cellular function in the context of the
pathway of their upstream drivers. For a few representa-
tive driver regulators, the downstream risk genes that exhib-
ited high misregulation concordance were identified, and
their shared function was investigated. A functional clus-
ter of GATA3 and its nine cooperating downstream risk
genes, including ERBB4 and ZNF703, was identified as
having a shared function of cell migration regulation (left-
most of Figure 5D). Similarly, BRCA1 and CHEK2 were
suggested to participate in cancer development by modulat-
ing DNA repair and cell cycle checkpoints in collaboration
with FOXM1 and E2F1, respectively (middle and right of
Figure 5D).

Role of DNA variants in the cooperation of drivers and risk
genes

We observed that only a subset of the downstream genes re-
sponded to tumorigenic changes in the drivers. The concor-
dance of misregulation between the drivers and their down-
stream genes was not higher than that between the drivers
and irrelevant genes (black curves versus gray shades in
Figure 5C). Only the risk genes were responsive to the al-
teration of their upstream drivers (colored curves in Fig-
ure 5C). We suspected that DNA variation might play a
synergistic role in mediating the selective susceptibility of
the risk genes to the drivers. In other words, cancer risk
variants might increase the transcriptional sensitivity of the
target genes to driver alteration, for example, by modulat-
ing the DNA binding affinity of the drivers themselves, the
co-binding regulators of the drivers, or the downstream reg-
ulators of the drivers.

To test a potential synergistic role for risk alleles, we ob-
tained genotype data for the tumor-normal TCGA sam-
ples and inferred risk alleles by comparing allele frequen-
cies in the TCGA patients with those in normal genomes
(42). For driver-risk pairs for which genotype data are avail-
able, we computed misregulation concordance within the
risk group of patients and within the non-risk group of pa-
tients separately. We first identified the cases in which mis-
regulation concordance was significant (P < 0.01) in either

the risk group or the non-risk group. The risk group ex-
hibited higher concordance in 86% of the identified cases
(Figure 6A). For example, the risk allele (T) of rs4784227
increased the susceptibility of TOX3 expression to tu-
morigenic FOXA1 alterations (Figure 6B). This risk al-
lele increases the binding affinity of FOXA1 to the SNP-
containing DRE of TOX3 (49). In another example, the
risk allele (A) of rs6721996 increased the susceptibility of
IGFBP5 transcription to aberrant FOXA1 expression in tu-
mor (Figure 6C). This risk allele was in linkage disequilib-
rium with the T allele of rs4442975, which has been shown
to increase the binding affinity of FOXA1 to a DRE con-
nected to IGFBP5 (50).

Above, we provided examples in which the risk allele
directly disrupted the binding site of the driver regulator.
However, oncogenic driving changes may propagate down
the regulatory network through multiple downstream regu-
lators. Many risk factors might increase the transcriptional
susceptibility of their associated genes to oncogenic net-
work perturbation by altering the transcription of one of
the multiple upstream regulators. This demonstrates why a
global regulatory network is required to fully understand
the mechanisms underlying cancer development and sus-
ceptibility. We were not able to apply the same test for mu-
tations because no whole-genome mutation data accompa-
nied by tumor-normal gene expression profiles are available.
However, the findings with risk SNPs imply that the impact
of mutations may be well pronounced not independently
but in synergy with driver alteration.

DISCUSSION

Current approaches to regulatory network reconstruction
in humans heavily or solely depend on gene expression pat-
terns without a systematic modeling of physical and func-
tional regulator-target relationships, thereby limiting our
understanding of the mechanism of action of regulatory
variations at the systems level. Furthermore, global network
reconstruction has been required to understand how genetic
perturbation in regulatory elements can be translated into
systems perturbation via the propagation of the primary
transcriptional changes through the gene transcription net-
work.

In the present study, we constructed a global gene regu-
latory network at an unprecedented level of biological cov-
erage and accuracy based on an efficient computational al-
gorithm and precise modeling of genomic regulatory inter-
actions. In most cases, TF binding, especially in distal regu-
latory regions, was likely to play a causal role in target gene
regulation. However, to our surprise, causal relationships
inferred based on genetic association were not well sup-
ported by actual gene expression patterns. It is not clear at
present whether this phenomenon is specific to the expres-
sion and eQTL data sets used in this work or whether the
assumed causality between cis- and trans-associated genes
does not properly reflect the true biological causality.

The functional importance of the long-range actions of
enhancers stood out, thereby underscoring the need to in-
corporate the chromatin interactome into regulatory net-
works and to assess their functional validity on the ba-
sis of the expression patterns of the physical target genes.
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Figure 6. DNA variant-mediated transcriptional cooperation of cancer drivers with risk genes. (A) The patients the carry the previously reported risk
alleles present higher misregulation concordance between the associated risk genes and their upstream drivers than those carrying the non-risk alleles.
Shown are the cases in which the risk group exhibits significant concordance (P < 0.01). (B and C) Examples of the synergistic role of risk SNPs supported
by experimental evidence. A higher fraction of concordant cases (dark and light pink) and a lower fraction of discordant cases (dark and light green) are
observed with the risk allele than with the non-risk allele. (B) Higher concordance for the risk allele T than for the non-risk allele C at rs4784227 suggests
that in patients carrying the risk allele, FOXA1 binding affinity increases and TOX3 misregulation is more specifically associated with the expression
change of FOXA1 (49). (C) Higher concordance for the risk allele A at rs6721996 suggests that in patients carrying the risk allele, FOXA1 binding to the
functional site harboring rs4442975 increases and IGFBP expression is more responsive to FOXA1 expression changes (50).
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Intriguingly, a fraction of physical chromatin contacts be-
tween closely spaced DREs and PREs appeared to be non-
functional. This may reflect non-specific contacts between
a promoter and multiple adjacent DREs or may indicate
chromatin loopings poised for transient gene induction only
in specific conditions (51). It has been difficult to under-
stand the mechanism of action of drugs with only gene ex-
pression signatures. Our network approach proved success-
ful in identifying responsible regulators that govern tran-
scriptional changes in response to particular drugs. We were
also able to delineate gene expression programs underly-
ing different patient subtypes, and to demonstrate how this
can lead to novel personalized therapeutics when combined
with our network-based drug response analysis.

We performed a systematic identification of the genes
affected by non-coding regulatory variations. Distal reg-
ulatory regions were enriched for such variations, again
highlighting the functional importance of long-range chro-
matin interactions. Remarkably, our findings reveal func-
tional connectivity between genetic factors that increase
cancer susceptibility and somatic events that drive oncoge-
nesis. This link was unexpected because risk genes are usu-
ally thought to confer susceptibility to cancer rather than
to directly participate in tumorigenesis driven by somatic
events. Our results suggest that risk genes might contribute
to transformation and cancer progression via a molecu-
lar mechanism similar to that via which they increase can-
cer risk. Risk factors are polymorphic and thus can po-
tentially affect the whole body, suggesting that single risk
genes may not be able to exert individual phenotypic effects
strong enough to drive oncogenesis. However, tumorigenic
changes in the drivers may lead to concerted changes in
multiple risk genes. Therefore, a tumor can develop via the
combined effects of the misregulation of multiple risk genes,
while the selective misregulation of these genes can be en-
hanced by the synergistic action of DNA variation. Genetic
risk factors at cancer susceptibility loci may increase the risk
of cancer onset by rendering their target genes more suscep-
tible to oncogenic, coding or regulatory, somatic changes
in cancer-driving factors. These illustrate how the network-
based systematic elucidation of genetic perturbation can
contribute to a better understanding of regulatory mech-
anisms underlying a wide range of biological processes.
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