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Abstract
AIM: To investigate the therapeutic effects of lutein 
against non-alcoholic fatty liver disease (NAFLD) and 
the related underlying mechanism.

METHODS: After 9 d of acclimation to a constant 
temperature-controlled room (20 ℃-22 ℃) under 12 
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INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) is a pro-
gressive pathological change in chronic liver diseases 
caused by a disturbance in lipid metabolism[1]. It is 
the most common type of chronic liver disease in the 
majority of developed countries[2], possibly due to 
changes in dietary habits and the increase in sedentary 
lifestyles[3]. With the spread of the Western lifestyle 
in developing countries, NAFLD is beginning to affect 
more people[3]. In Shanghai, Guangdong, and Hong 
Kong (China), the prevalence of NAFLD has been 
reported to be 17%, 15%, and 16%, respectively[4]. 
Therefore, it is important to find effective measures for 
the control of NAFLD.

The protective effects of phytochemicals on chronic 
diseases have received much attention from the 
scientific community in recent decades. Lutein is one of 
hundreds of known naturally oxygenated carotenoids, 
and is abundantly present in vegetables, fruits, and 
egg yolks. Lutein consists of a carbon chain with nine 
conjugated dienes and a hydroxylated cyclic hexenyl 
structure at each side; owing to its special chemical 
structure, it has potential antioxidant properties. Over 
a long period of time, lutein, as one of the major 
pigments in the macula lutea on the retina, was found 
to play a key role in preserving visual performance 
because of its strong blue light filtering ability[5]. 
Recently, lutein has drawn increasing attention to its 
function in chronic diseases other than oculopathy. 

The disturbance of lipid metabolism and insulin 
resistance has an important role in the pathophysiology 
of NAFLD[1]. While exploring the relationship between 
serum lutein levels and lipid metabolism, some 
epidemiological studies found that serum high-
density lipoprotein-cholesterol (HDL-C) was positively-
associated with serum lutein levels[6]. Changes in 
oxidized low density lipoprotein (oxLDL) levels were 
inversely correlated with plasma lutein[7], and an 
increase in BMI among the population was significantly 
associated with low levels of serum lutein[8]. Insulin 
resistance was also found to be inversely related to 
serum lutein levels[9-11]. To date, there have been very 
few reports regarding the mechanism and effects of 
lutein on NAFLD, or on the risk factors of NAFLD. A 
limited number of researchers have suggested that 
lutein supplementation may resolve oxidative stress 
by reducing oxLDL, and that aortic malondialdehyde 
(MDA) levels were induced by a high-fat diet (HFD) 
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h light/dark cycles, male Sprague-Darley rats were 
randomly divided into two groups and fed a standard 
commercial diet (n  = 8) or a high-fat diet (HFD) (n  
= 32) for 10 d. Animals receiving HFD were then 
randomly divided into 4 groups and administered with 
0, 12.5, 25, or 50 mg/kg (body weight) per day of 
lutein for the next 45 d. At the end of the experiment, 
the perinephric and abdominal adipose tissues of the 
rats were isolated and weighed. Additionally, serum 
and liver lipid metabolic condition parameters were 
measured, and liver function and insulin resistance 
state indexes were assessed. Liver samples were 
collected and stained with hematoxylin eosin and Oil 
Red O, and the expression of the key factors related to 
insulin signaling and lipid metabolism in the liver were 
detected using Western blot and real-time polymerase 
chain reaction analyses.

RESULTS: Our data showed that after being fed a 
high-fat diet for 10 d, the rats showed a significant 
gain in body weight, energy efficiency, and serum total 
cholesterol (TC) and triglyceride (TG) levels. Lutein 
supplementation induced fat loss in rats fed a high-
fat diet, without influencing body weight or energy 
efficiency, and decreased serum TC and hepatic TC and 
TG levels. Moreover, lutein supplementation decreased 
hepatic levels of lipid accumulation and glutamic 
pyruvic transaminase content, and also improved insulin 
sensitivity. Lutein administration also increased the 
expression of key factors in hepatic insulin signaling, 
such as insulin receptor substrate-2, phosphatidylinositol 
3-kinase, and glucose transporter-2 at the gene and 
protein levels. Furthermore, high-dose lutein increased 
the expression of peroxisome proliferators activated 
receptor-α and sirtuin 1, which are associated with lipid 
metabolism and insulin signaling.

CONCLUSION: These results demonstrate that lutein 
has positive effects on NAFLD via  the modulation of 
hepatic lipid accumulation and insulin resistance.

Key words: Lutein; Non-alcoholic fatty liver disease; 
Insulin resistance; Sirtuin 1; Peroxisome proliferators 
activated receptor-α

© The Author(s) 2015. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Lutein has potential positive effects on chronic 
diseases. To date, no previous studies have reported 
the regulatory effects of lutein on non-alcoholic fatty 
liver disease (NAFLD). We observed that lutein has 
positive effects on hepatic lipid accumulation, liver 
function, and insulin resistance induced by a high-fat 
diet, possibly via  activation of the expression of sirtuin 
1 and, subsequently, peroxisome proliferators activated 
receptor-α, and other key factors in insulin signaling. 
These findings provide a new prospect for preventing 
NAFLD.



in guinea pigs[12], as well as decreased TG values in 
wild-type mice[13]. Therefore, it is critical to explore the 
mechanism of lutein in NAFLD. 

Sirtuin 1 (SIRT1) is reported to have therapeutic 
potential in NAFLD and play a key role in insulin 
sensitivity[14]. SIRT1 regulates the expression of 
peroxisome proliferators activated receptor (PPAR)-α, 
a key factor in the regulation of lipid metabolism[15,16]. 
However, to our knowledge, there are few studies 
regarding the effect of lutein supplements on SIRT1 
and PPAR-α.

Based on these findings, we established an NAFLD 
model in rats fed a HFD[17] and supplied them with 
different doses of lutein, with the aim to explore the 
effect of lutein supplementation on NAFLD and to 
investigate the involved mechanisms. 

MATERIALS AND METHODS
Animal treatment protocol
Forty male Sprague-Dawley rats (100 ± 20 g), 
obtained from Sino-British SIPPK/BK lab, Animal Co., 
Ltd (Shanghai, China), were maintained in a constant 
temperature-controlled room (20 ℃-22 ℃) with 
controlled lighting (12 h light/dark cycles). The animals 
were cared for according to the guiding principles in 
the Care and Use of Animals. All experiments were 
approved by the Tongji Medical College Council’s Animal 
Care Committee. Animals were randomly divided 
into two groups after acclimation for 9 d. Then, one 
group was fed a normal diet (ND) (n = 8), while the 
other group was fed a HFD (n = 32) for 10 d to induce 
lipid metabolism disturbance. The ND was prepared 
based on the American Institute of Nutrition-93G 

(AIN-93G) diet[18], while the HFD consisted of 52.5% 
standard diet, 20% sucrose, 15% lard, 9.5% casein, 
1.7% calcium hydrogen phosphate, 1.1% cholesterol, 
and 0.2% sodium cholate. The composition of each 
diet is presented in Table 1. On the 10th day, serum 
lipid levels were tested after an 8-h fast using blood 
samples collected via the tail tip. The rats fed the 
HFD were then divided into 4 groups based on total 
cholesterol and administered 0, 12.5, 25, or 50 mg/kg 
(body weight) per day lutein [gifted from InnoBio 
CO (Dalian, China)]. Lutein was suspended in double 
distilled water. All animals were administered lutein 
suspension or water daily via gavage for the next 45 d. 
Food intake was recorded every day and body weight 
was monitored every three days. Energy efficiency was 
calculated as weight gain (g) divided by energy intake 
(kcal) during the feeding period[19]. 

At the end of experiment, rats were sacrificed 
by decapitation. Perinephric and abdominal adipose 
tissues were isolated and weighed. Serum and liver 
samples were collected and stored at -80 ℃ for further 
use.

Assessment of lipid metabolic condition in liver and 
serum 
Liver samples were homogenized with 9 volumes 
of isopropanol. After incubation at 4 ℃ for 48 h and 
centrifugation at 3000 rpm for 15 min at 4 ℃, the 
supernatant was carefully collected for analysis. TC, 
TG, HDL-C, and LDL-C were measured using the 
appropriate kit (Biosino Bio-technology and Science 
Inc., Beijing, China) in an ELX800 microplate reader 
(Bio-Tek). All procedures were performed according to 
the manufacturer’s instructions. 

Measurement of serum biomarkers for liver function
Serum glutamic pyruvic transaminase (GPT) was 
measured using a kit (Mindray, Shenzhen, China) and 
read in a Mindray BS-200 automatic biochemistry 
analyzer (Shenzhen, China). The results are expressed 
as units per liter (U/L). 

Lipids deposition in liver
Fresh samples from the same location of the liver 
were divided into two parts. One part was frozen and 
stained with Oil Red O. The other part was fixed in 4% 
paraformaldehyde, embedded in paraffin, and stained 
with hematoxylin and eosin (H&E) and examined 
by microscopy. Quantification of lipid droplets (area 
fraction) measured by Oil Red O staining in every group 
was calculated using Image-Pro Plus 6.0 software.

Determination of fasting glucose and insulin
Fasting glucose was determined directly by glucometer 
(Abbott Diabetes Care Ltd) when the animals were 
sacrificed. Fasting insulin was measured using an 
insulin ELIZA kit (R&D system, United States), following 
the manufacturer’s instructions. HOMA-IR = FIN × 
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Table 1  Composition of the experimental diets used in this 
study (g/kg)

Experimental diet

Normal diet High-fat diet

Carbohydrate (% of energy)   69.86 48.45
Protein (% of energy)   21.76 17.91
Fat (% of energy)     8.38 33.64
Energy (kcal/100 g) 377.19 450.52
Ingredient (g/kg)
Cornstarch 397.5 208.7
Casein 200.0 200.0
Dextrose 132.0   69.3
Sucrose 100.0 252.5
Soybean oil   70.0   36.8
Fiber   50.0   26.2
Mineral mix1   35.0   18.4
Vitamin mix1   10.0     5.3
L-Cystine     3.0     1.6
Choline bitartrate     2.5     1.3
Lard     0.0 150.0
Cholesterol     0.0   11.0
Calcium hydrogen phosphate     0.0   17.0
Sodium cholate     0.0     2.0
Total 1000 1000

1Based on the AIN-93G vitamin and mineral mixes.
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Goettingen, Germany). β-actin served as an internal 
control protein.

Statistical analysis
All data are expressed as the mean ± SD. Statistical 
analyses of the data were performed using the SPSS 
12.0 software package (SN: 59245 46841 40655 
89389 09859 21671 21957 29589 12). The statistical 
significance of differences among groups was deter-
mined by one-way analysis of variance, followed by 
Student-Newman-Keuls multiple range test to deter-
mine the statistical significance between the two groups. 
The results were considered statistically significant at P 
< 0.05.

RESULTS
HFD increased body weight, energy efficiency, and 
serum TC and TG levels
After acclimation for 9 d, the weights of the ND and 
HFD rats increased to 201 g and 199 g (Table 2). The 
rats in the two groups were then fed a ND or HFD for 
10 d, and the weights increased to 254 g and 262 g, 
respectively (Table 2). The administration of the HFD 
for 10 d caused significant elevations in weight (P < 
0.01), energy efficiency (P < 0.05), and serum TC 
(P < 0.01) and TG (P < 0.01) levels compared to the 
control group (Figure 1). After dividing into 4 groups, 
there was no significant difference in TG (Figure 2).

Effect of lutein supplementation on body weight, energy 
efficiency, and adiposity in rats fed a HFD
After treating with lutein for 45 d, no significant 
difference was observed in body weight gain or energy 
efficiency compared with rats feed a HFD (Figure 3A 
and B), but perinephric fat did decrease notably in 
the HFD + Lut12.5 group (P < 0.05; Figure 3C) and 
abdominal fat was reduced significantly after treatment 
with any dose of lutein (P < 0.01 for 12.5 and 50 mg/
kg, P < 0.05 for 25 mg/kg; Figure 3D). 

Effect of lutein supplementation on lipid metabolism 
and liver function
To evaluate the beneficial effect of lutein on lipid 
metabolism and liver function, the related indices 
were assessed. The level of TC in the ND group was 
1.01 mmol/L and 1.88 mmol/L in the HFD group, 
which was significantly higher (P < 0.01; Table 3). 
However, in the HFD + Lut25 group, the level of TC 
only reached 1.53 mmol/L, which was a significant 
decrease from 1.88 mmol/L (P < 0.01; Table 3). Lutein 
supplementation had a similar effect on hepatic TG 
(Table 3). HFD feeding induced significant elevations 
in hepatic TC levels, but down-regulated serum HDL-C 
levels (P < 0.01; Table 3). These alterations were 
significantly ameliorated by lutein administration 
(serum HDL-C, P < 0.01 for 12.5 and 25 mg/kg; 

FPG/22.5, HOMA-β = 20 × FIN/(FPG-3.5).

Real-time polymerase chain reaction analysis
Total RNA was extracted from the liver using TRIzol® 
reagent (Invitrogen, Carlsbad, CA, United States). To 
quantify the expression of messenger RNA (mRNA), a 
SYBR green-based qRT-PCR kit (TaKaRa BIO Inc., Dalian) 
was used according to the manufacturer’s instructions 
in a 7900HT instrument (Applied Biosystems, Forster, 
CA, United States). The specificity of the product 
was assessed from melting curve analysis. Gene 
expression was determined using the 2-ΔΔCt method. 
Gene expression of insulin receptor substrate-2 (IRS2) 
(NM_001168633.1), phosphatidylinositol 3-kinase 
(PI3K, NM_013005.1), and glucose transporter-2 
(GLUT2) (NM_012879.2) was presented as fold change 
relative to the normal control and normalized to β-actin 
(NM_031144.3). The following forward and reverse 
primers were used: IRS2, 5’-GGA GCT CTG TTA GCA 
CCG TT-3’ and 5’-TCC AGT TCC GAG CTT GAG TG-3’, 
PI3K, 5’-AGG AGC GGT ACA GCA AAG AC-3’ and 5’-CTG 
CTG TCG ATG ATC TCG CT-3’, GLUT2, 5’-ACC AGC ACA 
TAC GAC ACC AG-3’ and 5’-ACC ATT CCG CCT ACT GCA 
AA-3’, and β-actin, 5’-CCC GCG AGT ACA ACC TTC TT-3’ 
and 5’-CGC AGC GAT ATC GTC ATC CA-3’.

Western blotting
The liver tissue was homogenized and lysed in RIPA 
Lysis Buffer (1% Triton X-100, 1% deoxycholate, 0.1% 
SDS). Lysates containing equal protein amounts were 
separated by 10% SDS-PAGE and transferred onto 
polyvinylidene difluoride membranes. After blocking, 
the membranes were incubated with one of the 
following primary antibodies overnight at 4 ℃: IRS2 
(Cell Signaling Technology; Cat. No. 3089), PI3K-P85 
(Cell Signaling Technology; Cat. No. 4257), GLUT2 
(Santa Cruz Biotechnology, Inc.; Cat. No. sc-9117), 
PPAR-α (abcam; Cat. No. ab8934), SIRT1 (Santa Cruz 
Biotechnology, Inc.; Cat. No. sc-15404), or β-actin 
(Sigma; Cat. No. A1978). The membranes were then 
incubated with secondary antibodies conjugated to 
horse-radish peroxidase. Immunoreactive bands 
were detected by means of an ECL plus Western 
Blotting Detection System (Amersham Biosciences, 
Little Chalford, United States), and the band densities 
were measured using Gel Pro 3.0 software (Biometra, 
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Table 2  Body weight of rats at different time points

Group Weight (g)

9 d 19 d

ND 201 ± 7.05 254 ± 8.90
HFD 199 ± 7.59   262 ± 15.09

Values represent the mean ± SD. After 9 d of acclimation, the rats were 
randomly divided into the normal diet (ND) (n = 8) and high-fat diet (HFD) 
(n = 32) groups. The rats in the HFD group were then fed a high-fat diet 
for 10 d.
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hepatic TC, P < 0.05 for 50 mg/kg; Table 3). Similarly, 
lutein supplementation effectively reversed the 
increased serum GPT levels caused by the HFD (P < 
0.01; Figure 4).

Finally, we used H&E and Oil Red O staining of 
the hepatic tissues to evaluate the extent of fat 
accumulation. As expected, HFD feeding resulted in 
severe hepatic lipid accumulation, characterized by 
an increase in the number and size of accumulated 
fat droplets in the hepatocytes, while lutein supple-

mentation mitigated hepatic steatosis, especially at 
medium and high doses (P < 0.01; Figure 5). 

Lutein improved insulin sensitivity in rats fed a HFD
To elucidate the regulatory effect of lutein on insulin 
sensitivity, we detected the levels of fasting blood 
glucose and fasting insulin. We found remarkable 
increases in fasting blood glucose (P < 0.01) and 
insulin (P < 0.05) in the HFD group compared to 
the ND group. These elevations were significantly 
ameliorated by lutein treatment (glucose, P < 0.05 for 
12.5 and 50 mg/kg, P < 0.01 for 25 mg/kg; insulin, P 
< 0.05 for 25 and 50 mg/kg, respectively). The HOMA 
indexes showed that the HFD caused remarkable up-
regulation of HOMA-IR (P < 0.01) and partly down-
regulated HOMA-β compared to the ND group, while 
lutein supplementation efficiently attenuated these 
changes (P < 0.01 for 12.5, 25, and 50 mg/kg in 
HOMA-IR; P < 0.05 for 25 mg/kg in HOMA-β; Figure 6). 

Effects of lutein on mRNA abundance and protein 
content of hepatic IRS2, PI3K, and GLUT2 in rats fed a 
HFD
Insulin regulates glucose homeostasis in the liver 
through binding with its receptor, resulting in tyrosine 
phosphorylation of IRS2 and activation of PI3K and 
GLUT2[20]. To explore the effect of lutein on insulin 
signaling, we detected the expressions of IRS2, PI3K, 
and GLUT2 in the rat liver. As shown in Figure 7, the 
mRNA and protein expression of the key factors in 
insulin signaling were down-regulated markedly by 
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Figure 2  Levels of total cholesterol in rats divided into 4 groups. Rats 
were fed with normal diet or a high fat diet for 10 d, and then the high fat 
diet (HFD)-fed rats were divided randomly into four groups based on total 
cholesterol. Data are expressed as the mean ± SD (n = 8). bP < 0.01 vs the 
normal diet (ND) group.

Figure 1  Changes in the basic physiological and biochemical responses of rats fed a high-fat diet. The normal diet (ND) group (n = 8) was fed a standard diet 
and the high fat diet (HFD) group (n = 32) was fed a HFD for 10 d. The basic indicators included changes in body weight gain (A), energy efficiency (B), serum total 
cholesterol (TC) (C), and triglyceride (TG) (D). aP < 0.05, bP < 0.01 vs ND group.
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HFD feeding (P < 0.05; Figure 7). After being supplied 
with lutein for 45 d, mRNA and protein expression 
were up-regulated, significantly so for PI3K and GLUT2 
(P < 0.05; Figure 7B and C), indicating increased 
insulin sensitivity.

Effects of lutein on protein content of hepatic PPAR-α  
and SIRT1 in rats fed a HFD
To further explore the underlying mechanisms of lutein 
in lipid metabolism, we detected the protein content of 
hepatic PPAR-α, a key factor in the regulation of lipid 
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Figure 3  Effects of lutein on rats fed a high-fat diet. After being stratified into 4 groups based on total cholesterol, the rats were fed a high fat diet (HFD) plus 0, 
12.5, 25, or 50 mg/kg body weight/d lutein for 45 d. Factors including body weight (A), energy efficiency (B), perinephric fat index (C), and abdominal fat index (D) 
were examined. Data are expressed as the mean ± SD (n = 8). aP < 0.05, bP < 0.01 vs normal diet (ND) group, cP < 0.05, dP < 0.01 vs HFD group.

Table 3  Effects of lutein on lipid metabolism in rats fed a high fat diet

Group Serum (mmol/L) Liver (μmol/g)

TC TG LDL-C HDL-C TC TG

ND 1.01 ± 0.15 0.55 ± 0.16 0.184 ± 0.134 0.80 ± 0.09 0.93 ± 0.06 2.14 ± 0.44
HFD  1.88 ± 0.25b 0.57 ± 0.17  0.566 ± 0.350a  0.59 ± 0.15b  1.65 ± 0.13b  8.28 ± 1.40b

HFD + Lut12.5 1.95 ± 0.25 0.45 ± 0.11 0.515 ± 0.487  0.88 ± 0.11d 1.74 ± 0.10  7.09 ± 1.00c

HFD + Lut25  1.53 ± 0.23d 0.51 ± 0.12 0.305 ± 0.224  0.80 ± 0.17d 1.66 ± 0.15  6.41 ± 0.97d

HFD + Lut50 1.98 ± 0.24 0.45 ± 0.11 0.712 ± 0.342 0.70 ± 0.11  1.53 ± 0.08c 7.27 ± 1.14

Values represent the mean ± SD of n = 8 rats/group. Rats in the normal diet (ND) group were supplied with a standard diet for 55 d. Rats in the high fat 
diet (HFD) group were fed a high fat diet for 10 d first, and then fed a high fat diet plus 0, 12.5, 25, or 50 mg/kg (body weight)/d lutein for 45 d. bP < 0.01 
vs ND group, cP < 0.05, dP < 0.01 vs HFD group. TC: Total cholesterol; TG: Triglyceride; LDL-C: Low density lipoprotein-cholesterol; HDL-C: High density 
lipoprotein-cholesterol.
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metabolism[15]. As shown in Figure 8A, HFD feeding 
inhibited PPAR-α protein accumulation, however lutein 
supplementation reversed this phenotype, especially in 
the high-dose group (P < 0.05). Meanwhile, the protein 
levels of SIRT1, the upstream regulator of PPAR-α[16], 
decreased notably in the HFD group compared with 
the ND group, and lutein supplementation ameliorated 
the expression significantly in a dose-dependent 
pattern in the high-dose group (P < 0.05; Figure 8B). 

DISCUSSION
In this study, we provided evidence that lutein 
supplementation could ameliorate insulin resistance 
and hepatic lipid accumulation. We also found that 
lutein supplementation augmented the mRNA and 
protein levels of key molecules related to insulin 
signaling which were suppressed by a HFD and the 
expression of PPAR-α, which is a key factor in the 
regulation of hepatic lipid metabolism. Furthermore, 
we found that lutein supplementation restored the 
expression of SIRT1, which regulates hepatic lipid 
metabolism and insulin signaling. All of these results 
suggest the beneficial effects of lutein on NAFLD.

According to the results of HOMA indexes, we 
found that lutein supplementation could improve 
insulin sensitivity. However, the process of insulin-
regulated glucose homeostasis depends on glucose 
binding, as well as activating transmembrane insulin 
receptors and downstream targets[20]. The liver is one 
of the major target organs for insulin signaling[21,22], 
and some studies suggest that IRS2 can compensate 
IRS1 deficiency more effectively in liver and β-cells 
than in muscle or adipose tissues[23]. The liver is the 
main storage organ for carotenoids and controls 

the distribution of carotenoids to other tissues[24]. 
Therefore, we measured the mRNA and protein levels 
of IRS2, PI3K-P85, and GLUT2 in hepatic insulin 
signaling. As expected, the expression of these genes 
was inhibited in rats fed a HFD, as described in other 
studies[25-27]. However, lutein supplementation restored 
the insulin signaling pathway.

A large body of evidence supports a complex 
interaction between NAFLD and insulin resistance[28,29]. 
Some studies have suggested that abdominal adipose 
tissue has an important role in the development of 
insulin resistance[30]. Furthermore, visceral adipose 
tissue (VAT), a harmful fat deposition, has been 
considered to induce liver insulin resistance and further 
induce systemic insulin resistance[21,31]. According to 
our study, lutein supplementation for 45 d decreased 
serum TC, HDL-C, and perinephric and abdominal 
fat, as well as improve visceral fat deposition, without 
significant effects on body weight or energy efficiency. 
Moreover, lutein supplementation recovered liver 
function by decreasing hepatic TG, TC, and serum GPT 
levels effectively and improving lipid accumulation. 
These results suggest that lutein supplementation plays 
a potential role in preventing hepatic dyslipidemia and 
insulin resistance. However, the underlying mechanism 
is still unknown.

Some studies have demonstrated that PPAR-α 
plays an important role in the regulation of hepatic 
lipid metabolism[15,32] and that the inhibition of PPAR-α 
might induce hepatic steatosis[33]. Thus, we tested the 
protein level of PPAR-α and found that HFD feeding 
significantly inhibited the expression of PPAR-α, and 
that lutein supplementation reversed such inhibition 
effectively. Consistent with our results, some studies 
have also found that lutein may be an inducer of PPAR 
expression[34]. 

Meanwhile, SIRT1, a NAD+-dependent deacetylase, 
has been reported to be the upstream regulator of 
PPAR-α[15], regulating lipid metabolism by activating 
PPAR-α[35]. However, some studies have suggested 
that SIRT1 is involved in regulating hepatic insulin 
signaling[36] and preventing insulin resistance[37]. When 
we tested the protein content of hepatic SIRT1, as 
expected, HFD feeding decreased the expression of 
SIRT1, and lutein supplementation increased SIRT1 
expression in a dose-dependent manner.

In our study, the number of rats chosen for real-time 
polymerase chain reaction and Western blot analysis 
was somewhat limited, and so, in future studies, we 
would increase the sample size. In addition, the doses 
of lutein need more consideration in future studies.

In summary, our findings suggest that lutein supple-
mentation could ameliorate hepatic lipid accumulation 
and insulin resistance induced by a HFD, possibly 
via the activation of the expression of SIRT1 and, 
subsequently, PPAR-α and other key factors in insulin 
signaling. These findings provide a new prospect for 
preventing NAFLD.
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Figure 4  Lutein influences glutamic pyruvic transaminase in rats fed a 
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0.05 vs the ND group, cP < 0.05, compared to the HFD group. bP < 0.01 vs ND 
group, dP < 0.01 vs HFD group.
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Non-alcoholic fatty liver disease (NAFLD) is the most common type of chronic 
liver diseases in the majority of developed countries. With the spread of the 
Western lifestyle in developing countries, NAFLD is beginning to affect more 
people. Therefore, it is important to find effective measures for the control of 
NAFLD. Lutein has been reported to have positive effects on lipid metabolism 
and insulin resistance, which are two important roles in the pathophysiology of 
NAFLD. However, there is only limited mechanistic research available regarding 
the effects of lutein on NAFLD or its risk factors. 
Research frontiers
Lutein is one of the hundreds of known naturally oxygenated carotenoids and 
is abundantly present in vegetables, fruits, and egg yolks. Although, lutein has 
been found to play a key role in improving visual performance because of its 
strong blue light filtering ability, it has recently drawn increasing attention to its 
function in chronic diseases other than oculopathy. In NAFLD, the research 
hotspot is on ways to modulate lipid metabolism disturbance and insulin 
resistance. 
Innovations and breakthroughs
This study revealed that lutein has positive effects on NAFLD via the 
modulation of hepatic lipid accumulation and insulin resistance, possibly via the 
activation of the expression of sirtuin 1 (SIRT1) and, subsequently, peroxisome 
proliferator activated receptor-α (PPAR-α). This study provides a new prospect 
for preventing NAFLD.
Applications
NAFLD is beginning to affect more and more people around the world, possibly 
due to changes in dietary habits and the increasing prevalence of sedentary 
lifestyles. Therefore, it is important to develop good dietary habits to treat 
NAFLD. The results from the present study suggest that lutein, which is 
abundant in vegetables, fruits, and egg yolks, has potential positive effects on 
NAFLD. 
Terminology
NAFLD is a progressive pathological change in chronic liver disease caused 
by the disturbance of lipid metabolism together with insulin resistance. The 
major indexes of lipid metabolism are: total cholesterol, triglyceride, high 
density lipoprotein-cholesterol, and low density lipoprotein-cholesterol. Glutamic 
pyruvic transaminase plays an important role in liver function. The key factors 
in the hepatic insulin signaling pathway are insulin receptor substrate-2, 
phosphatidylinositol 3-kinase, and glucose transporter-2. PPAR-α is a key 
factor in the regulation of lipid metabolism. SIRT1 is the upstream regulator of 
PPAR-α.
Peer-review
The authors evaluated the role of lutein supplementation on hepatic fat content 
and insulin sensitivity in rats on a high fat diet. It is a well-designed and 
thorough study showing promising results.
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