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Neuronal diversity is essential for mammalian brain function but poses a challenge to molecular 

profiling. To address the need for tools that facilitate cell-type-specific epigenomic studies, we 

developed the first affinity purification approach to isolate nuclei from genetically defined cell 

types in a mammal. We combine this technique with next-generation sequencing to show that 

three subtypes of neocortical neurons have highly distinctive epigenomic landscapes. Over 

200,000 regions differ in chromatin accessibility and DNA methylation signatures characteristic of 

gene regulatory regions. By footprinting and motif analyses, these regions are predicted to bind 

distinct cohorts of neuron subtype-specific transcription factors. Neuronal epigenomes reflect both 

past and present gene expression, with DNA hyper-methylation at developmentally critical genes 

appearing as a novel epigenomic signature in mature neurons. Taken together, our findings link 

the functional and transcriptional complexity of neurons to their underlying epigenomic diversity.

INTRODUCTION

In the mammalian brain, distinct types of neurons interact in intricate networks to govern 

thought, emotion, and behavior. Neurons can differ in their morphologies, synaptic 

connections, electrophysiological properties, neurotransmitter identities, and developmental 

histories. The balance of signaling across heterogeneous neurons is critical for healthy brain 

function, and disruptions of genes that mediate this balance are implicated in neurological 

and psychiatric diseases (Sullivan et al., 2012).

Neuronal diversity arises partly through spatiotemporal regulation of gene expression by 

regulatory regions such as promoters and enhancers. These discrete regions of DNA can be 

identified using epigenomic signatures, which include accessible chromatin, active histone 

modifications, and low levels of DNA methylation (Bird, 2002; Heintzman et al., 2007; 

Stadler et al., 2011; Thurman et al., 2012). Neurons undergo extensive epigenomic changes 

during post-natal brain development, including de novo establishment of non-CG 

methylation (Lister et al., 2013; Xie et al., 2012). However, the genome-wide patterns of 

accessible chromatin and both CG and non-CG methylation in specific neuronal 

subpopulations are unknown. We reasoned that neuronal epigenomic landscapes should 

mirror neuronal diversity. Whereas gene expression analysis provides a snapshot of a 

neuron’s molecular activity at a single point in time, the complementary epigenomic 

information captures gene regulatory mechanisms, developmental origins, and potential 

future responses induced by neuronal activity.

Cellular diversity is important for brain function, but it also poses a technical challenge for 

epigenomic studies. Cell-type-specific molecular profiling requires the isolation of targeted 

cell populations from complex tissues (Maze et al., 2014). Manual sorting (Sugino et al., 

2006) and laser capture microdissection (Emmert-Buck et al., 1996) are useful for isolating 

small numbers of cells but do not provide enough material for epigenomic studies. 

Fluorescence-activated cell sorting (FACS) can isolate larger numbers of cells but may be 

challenging in tissues such as the adult brain, where cells are morphologically complex and 

densely interconnected. Although improvements have been made (Saxena et al., 2012), the 

neuronal dissociation process may also induce cellular stress responses and perturb 

subsequent molecular profiles. Genetically directed strategies that isolate RNA from specific 
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cell populations in mice (Doyle et al., 2008; Gay et al., 2013; Heiman et al., 2008; Sanz et 

al., 2009) have begun to chart transcriptional diversity across cell types but cannot profile 

epigenomic features unless combined with FACS (Mellén et al., 2012). Although nuclei can 

be isolated by FACS for epigenomic studies (Jiang et al., 2008), FACS-sorted nuclei are 

fragile and difficult to concentrate into the small volumes that are optimal for chromatin 

assays. An alternate approach is INTACT (isolation of nuclei tagged in specific cell types; 

Deal and Henikoff, 2010), which uses affinity purification to isolate tagged nuclei. Captured 

nuclei can be used for gene expression, epigenomic, and proteomic profiling (Amin et al., 

2014; Henry et al., 2012; Steiner et al., 2012).

Here, we present the first application of INTACT in a mammalian organism and use it to 

address the cell-type-specific neuronal epigenome. Our approach uses the Cre-loxP system 

in mice to express a tagged nuclear membrane protein, allowing affinity purification of 

labeled nuclei from genetically defined cell populations. In this study, we applied INTACT 

to examine the core transcriptional and epigenomic features of three major functional classes 

of neocortical neurons: excitatory pyramidal neurons, Parvalbumin (PV)-expressing fast-

spiking interneurons, and Vasoactive intestinal peptide (VIP)-expressing interneurons. 70%–

85% of cortical neurons are excitatory. The remaining 15%–30% are inhibitory neurons, 

with approximately 40% expressing PV and 12% expressing VIP (Gelman and Marín, 2010; 

Rudy et al., 2011). Together, these mutually exclusive cell types represent both 

glutamatergic (excitatory) and GABAergic (inhibitory) signaling. Neocortical pyramidal 

neurons provide the long-range excitatory output of the brain, and inhibitory neurons 

modulate the rate and temporal structure of this network output (Molyneaux et al., 2007; 

Rudy et al., 2011). PV and VIP neurons have distinct computational roles as a result of 

differences in their firing patterns and synaptic connections (Kepecs and Fishell, 2014).

Several studies have identified genome-wide differences in gene expression across neuronal 

subpopulations (Doyle et al., 2008; Molyneaux et al., 2015; Sugino et al., 2006). However, 

neuron subtype-specific epigenomes remain largely unexplored. We find that among 

excitatory, PV, and VIP neurons, global epigenomic landscapes of DNA methylation and 

chromatin accessibility show widespread differences. These differences reflect distinct 

mechanisms of gene regulation, with candidate regulators identified using transcription 

factor (TF) footprinting and motif analyses. Integrating epigenomes together with expression 

profiles, we find intragenic non-CG methylation to be particularly salient for inferring 

neuronal gene expression. At TF genes with cell-type-specific developmental roles, we 

further identify a unique pattern of DNA hyper-methylation in adult neurons that is a long-

lasting epigenomic signature of transient expression during brain development. Collectively, 

our results provide a comprehensive view of how distinct neuronal classes adopt unique 

epigenomic and gene regulatory configurations that reflect both mature neuronal function as 

well as developmental origin.

RESULTS

Mammalian INTACT Isolates Specific Populations of Neuronal Nuclei from the Brain

To generate a mouse line for affinity purification of labeled nuclei, we tagged the C 

terminus of mouse SUN1, a nuclear membrane protein, with two tandem copies of 
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superfolder GFP and six copies of the Myc epitope (SUN1-sfGFP-Myc). We targeted Sun1-

sfGFP-myc to the ubiquitously expressed Rosa26 locus preceded by a CAG promoter and a 

loxP-3x polyA-loxP transcriptional roadblock (R26-CAG-LSL-Sun1-sfGFP-myc) (Figure 

1A). Cells expressing Cre recombinase remove the roadblock and allow transcription of 

Sun1-sfGFP-myc. We first recombined R26-CAG-LSL-Sun1-sfGFP-myc in all cells using 

Sox2-Cre, a germline Cre driver (Figure S1A). Sox2-Cre; R26-CAG-LSL-Sun1-sfGFP-myc 

mice are healthy and fertile with no obvious phenotypic deficits, indicating that long-term 

expression of the fusion protein is well tolerated.

We expressed Sun1-sfGFP-myc in excitatory (Exc) neurons (Camk2a–Cre), PV interneurons 

(PV-Cre), and VIP interneurons (VIP-Cre) (Figure 1B and Table S1). 

Immunohistochemistry targeting GFP showed that the SUN1 fusion protein is localized to 

the nuclear periphery. Quantification of labeled nuclei together with neuronal markers 

(Figures 1B and S1B – S1G) indicated that each Cre driver predominantly recombines the 

targeted cell type. The pattern of labeling using anti-Myc is identical to anti-GFP (Figure 

S1H).

We next developed an affinity purification method to capture GFP+/Myc+ nuclei from fresh 

tissue homogenates (Figure 1C). Either anti-GFP or anti-Myc antibodies, together with 

Protein G-coated magnetic beads, can be used to isolate nuclei from both rare and common 

cell types with high yield and specificity. Examination of input versus affinity-purified (anti-

GFP) nuclei (Figure 1D) by fluorescence microscopy showed that INTACT achieves >98% 

purity with >50% yield, even for cell types that represent only 1 %–3% of the starting tissue 

(Figure 1E). Similar results were obtained using anti-Myc (95%–98% purity with 42%–65% 

yield, n = 3). To further assess the specificity of mouse INTACT, we performed flow 

cytometry on input and affinity purified (anti-Myc) nuclei from VIP-Cre; R26-CAG-LSL-

Sun1-sfGFP-myc mice (Figure S1I). Flow cytometry showed that more than 99% of input 

nuclei (after step 2 in Figure 1C) were singlets, corresponding to well-isolated nuclei, and 

1.5% of input nuclei were GFP+. In contrast, 98.9% of affinity purified nuclei were GFP+. 

Similar results were obtained using anti-GFP (Figure S1J). Therefore, both manual 

quantification and flow cytometry indicate that mouse INTACT isolates highly pure 

preparations of tagged nuclei.

INTACT RNA-Seq Captures Neuronal Subtype Markers

To assess patterns of gene expression and DNA methylation in distinct neuronal subtypes, 

we used RNA-seq to profile transcript abundance from INTACT-purified nuclei in adult 

mice, and we used MethylC-seq to generate single-base resolution methylome maps (Lister 

et al., 2008) from the same cell types, with the caveat that bisulfite sequencing does not 

differentiate between methylcytosine (mC) and hydroxymethylcytosine (hmC) (Figure 2A). 

RNA-seq profiles are highly similar across replicates (r = 0.98) (Figures 2B, right panel, and 

S2A). A total of 4,095 genes show ≥2-fold differential transcript abundance across neuronal 

subtypes, with over 2,000 between each pair of neurons (Table S2). Established subtype 

markers are enriched in purified nuclei (e.g., Slc17a7 and Dkk3 in excitatory; Pvalb and 

Lhx6 in PV; Vip and Htr3a in VIP), whereas markers of other lineages are depleted (Figure 

2B, left three panels). The gene expression profile of INTACT-purified PV neurons is also 
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consistent with RNA microarray data from manually sorted PV neurons (Figure S2B). We 

further used double fluorescent in situ hybridization to examine ten genes with previously 

unknown specificity in neocortical excitatory or PV neurons. Probe labeling for nine out of 

ten genes co-localized with the neuron type as predicted by RNA-seq and was excluded 

from other classes (Figure S2C), indicating that INTACT RNA-seq profiles identify novel 

patterns of gene expression.

Non-CG Methylation Is a Common Feature of Both Excitatory and Inhibitory Neurons, but 
Shows Widespread Differences in Genomic Distribution

In our MethylC-seq data, we observed substantial levels of DNA methylation in the non-CG 

context for all three neuronal populations (Figures 2A, 2C, and 2D). In most differentiated 

mammalian cells, DNA methylation is largely confined to the CG dinucleotide context. On 

the other hand, non-CG methylation (mCH, where H = A, C, orT) is a special feature of 

adult neurons but accumulates at much lower levels in adult glia and non-neuronal tissues 

(Lister et al., 2013; Xie et al., 2012). We find that mCH is most abundant in PV neurons 

(Figure 2C), where it constitutes nearly half (46%–47%) of the total methylcytosines (Figure 

2D). Because mCH accumulates during the first weeks of post-natal development, 

coincident with the period of rapid synaptogene-sis and long after excitatory and inhibitory 

lineages have diverged (Guo et al., 2014; Lister et al., 2013), these data suggest that a high 

level of non-CG methylation is a shared distinction of mature cortical neurons. Furthermore, 

because all three neuron subtypes share similar motif preferences for mCH, with CAC 

showing the highest methylation level (Figure S2D), it is likely that a common enzymatic 

mechanism (Gabel et al., 2015; Guo et al., 2014) is responsible for mCH deposition and 

maintenance in these neurons.

Both promoter and intragenic DNA methylation in CG and CH contexts inversely correlate 

with gene expression in the mammalian brain (Lister et al., 2013; Xie et al., 2012). 

However, a lack of cell-type specificity in existing in vivo datasets can complicate the 

interpretation at individual genes. For example, Slc6a1 (GAT-1, primarily expressed in 

inhibitory neurons) and Lhx6 (a PV-specific TF) appear to be both actively transcribed and 

highly methylated in samples of whole cortical tissue and in mixed neurons (NeuN+) 

(Figure 2A). Our datasets from INTACT-purified nuclei resolve these conflicting signals by 

showing that active gene expression and DNA methylation do not occur in the same cells 

but rather in distinct subpopulations. Using a list of highly specific genes from our RNA-seq 

data, we find that both intragenic and promoter levels of CH (Figure 2E) and CG (Figure 

S2E) methylation are higher in the non-expressing cell type.

DNA methylation levels in gene bodies are highly variable across neuronal subtypes. As 

measured by pairwise Pearson correlations (Figures 2B, 2F, S2A, and S2F–S2H), gene body 

mCH levels are more divergent (r = 0.83–0.86) than both gene expression levels (r = 0.95–

0.96, p = 0.003, t test) and mCG levels (r = 0.93–0.94, p = 0.001), whereas biological 

replicate signals are nearly identical for all features (r ≥ 0.97). After normalization to adjust 

for the genome-wide average level of mCH, 8,662 genes (38%) show >50% difference in 

intragenic mCH in at least one pairwise comparison of cell types, versus 6.1 % between 

biological replicates (Figure S2I, top). Certain genes display notably higher differences. For 

Mo et al. Page 5

Neuron. Author manuscript; available in PMC 2015 July 12.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



example, the VIP-specific TF Proxl has 23-fold higher mCH in excitatory neurons and 32-

fold higher mCH in PV neurons compared to VIP neurons (Figure 2F). Variability in gene 

body CH methylation is paralleled by extensive differences at a global scale (Figure S2I, 

bottom). Genome-wide, 37% of all 5 kb bins show >50% difference in mCH between at 

least one pair of cell types, compared to only 3.8% between biological replicates.

Neuronal Regulatory DNA Is Predominantly Cell Type Specific

Localized regions of accessible chromatin and low levels of DNA methylation are well-

established signatures of cis-regulatory elements such as promoters and enhancers (Neph et 

al., 2012; Stadler et al., 2011; Thurman et al., 2012). Therefore, we mapped the locations of 

putative gene regulatory regions in specific neuronal subtypes by systematically identifying 

these two features (Figures 3A and S3A). In excitatory neurons, we also profiled histone 

modifications using chromatin immunoprecipitation (ChIP) followed by sequencing to 

identify potential promoters (marked by H3K4me3), enhancers (H3K4me1 and H3K27ac), 

and Polycomb-associated repressed regions (H3K27me3). A limitation of our analysis is that 

we generally did not factor in sequence variation across mouse strains, which could 

potentially affect mapping to the C57BL/6 reference genome as well as levels of chromatin 

accessibility and DNA methylation (but see Supplemental Experimental Procedures).

We identified 322,452 discrete peaks of chromatin accessibility (median length 501 bp) in 

excitatory, PV, and VIP neurons using sub-nucleosomal (<100 bp) reads resulting from in 

vitro transposition of native chromatin by Tn5 transposase (ATAC-seq, Buenrostro et al., 

2013) (Table S3). We find that most regulatory elements in neuronal cells are cell type 

specific, including the large majority of distal regulatory elements (Figure 3B). In total, only 

13.4% (43,354) of ATAC-seq peaks are shared across all three neuronal subtypes. 

Compared to DNasel-seq data from the whole cerebrum (Stamatoyannopoulos et al., 2012), 

nearly all (93%) shared ATAC-seq peaks are also detected as cerebrum DNasel-seq peaks 

(Figure 3C). In striking contrast, 62% of VIP-specific, 52% of PV-specific, and 31% of 

excitatory-specific ATAC-seq peaks are missed in the DNasel-seq data, highlighting the 

advantage of INTACT profiling over whole-tissue analysis for identifying regulatory 

regions, particularly those unique to sparse cell types.

We next determined regions that differ in their levels of CG methylation across five cell 

populations: INTACT-purified excitatory, PV, and VIP neurons, plus fetal embryonic day 

13 (E13) frontal cortex and adult S100b+ glia from Lister et al. (2013). We expected that 

including purified neurons would facilitate identification of differentially methylated regions 

(DMRs). Using a conservative statistical approach (Lister et al., 2013), we identified 

251,301 DMRs with a median length of 275 bp (Table S3). Masking sequence variants 

across mouse strains did not substantially alter the DMR calling (see Supplemental 

Experimental Procedures). 112,462 of these DMRs are hypo-methylated (hypo-DMRs) in 

excitatory neurons. In keeping with our expectation, substitution of a mixed neuronal sample 

(NeuN+) with comparable sequencing coverage for the excitatory neuron sample results in 

77,417 (68.8%) hypo-DMRs in NeuN+ neurons, despite the prevalence of excitatory 

neurons in this sample. The increased detection of DMRs using INTACT-purified excitatory 

neurons again demonstrates the power of cell-type-specific profiling for comprehensive 
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identification of regulatory regions. To identify hypo-methylated regions that may not be 

differentially methylated across cell types, we segmented each methylome into 

unmethylated regions (UMRs) and low-methylated regions (LMRs) (Burger et al., 2013) 

(Table S3).

As expected from previous studies (Stadler et al., 2011), the majority of UMRs are located 

at promoters (66.3%–74.2% within 2.5 kb of a TSS), whereas most LMRs are potential 

distal regulatory elements (4.9%–6.2% within 2.5 kb of a TSS). For DMRs, the vast 

majority (93.8%) are also located more than 2.5 kb away from a TSS. Across DMRs that 

show hypo-methylation in at least one INTACT sample (Figure 3D), between 36,643 and 

83,992 are hypo-methylated in a single neuron subtype. Recapitulating the division of 

ATAC-seq peaks (Figure 3B), excitatory neurons have the highest number of hypo-DMRs 

(Figure 3D), and remarkably, most are not shared with PV or VIP neurons. Taken together, 

these data extend previous profiling experiments in the brain, first by identifying hundreds 

of thousands of putative regulatory regions across three neuron subtypes, and then by 

classifying them into highly distinct sets in individual subtypes.

Cell-Type Specificity at Activity-Induced Transcription Factor Binding Sites

Because regions bound by activity-dependent TFs, as a whole, show constitutive DNA 

hypo-methylation (Guo et al., 2011) and chromatin accessibility (Malik et al., 2014), DMRs 

and differential ATAC-seq peaks could point to regulatory regions with cell-type-specific 

responses to induced neuronal activity. Therefore, we addressed the relationship between 

DMRs, differential ATAC-seq peaks, and activity-dependent TF binding in excitatory 

neurons, reasoning that our overall findings would also be applicable to the two inhibitory 

subpopulations that are not easily obtainable in quantities required for TF ChIP-seq. We 

examined activity-dependent TF binding profiles using previously published ChIP-seq data 

from cortical cultures largely composed of immature excitatory neurons (Kim et al., 2010; 

Malik et al., 2014). The majority of activity-dependent binding sites for all TFs (58.2%–

83.9%) overlap with excitatory neuron UMRs+LMRs (Figure S3B, left). However, only 

1.4% of CREB and 10.8% of SRF binding sites overlap with excitatory neuron-specific 

hypo-DMRs, compared to 33.4%–40.3% of AP-1 (FOS, FOSB, JUNB) and NPAS4 binding 

sites (p < 2 × 10−38, Fisher’s exact test [FET]). In particular, activity-dependent binding sites 

for AP-1 factors and NPAS4 in cortical cultures are enriched in excitatory hypo-DMRs and 

depleted in PV-, VIP-, and glia-specific hypo-DMRs (Figures S3B and S3C). These results 

are largely recapitulated by the ATAC-seq data. Our analysis suggests that excitatory 

neuron-specific hypo-DMRs and ATAC-seq peaks overlapping AP-1 and NPAS4 binding 

sites are a set of candidate regions that coordinate activity-dependent responses unique to 

excitatory neurons. Likewise, hypo-DMRs and differential ATAC-seq peaks in PV and VIP 

neurons provide a resource for identifying AP-1 and NPAS4 targets that orchestrate distinct 

activity-dependent responses in inhibitory neurons (Spiegel et al., 2014).

Neuronal Subtypes Show Coordinated Epigenomic Differences

Epigenomic marks carry information about cell function, via their correlation with gene 

expression and gene regulatory regions, as well as cell development (Bird, 2002; Hon et al., 

2013; Stadler et al., 2011; Thurman et al., 2012). Therefore, we first assessed whether the 
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epigenomic marks were well correlated with each other and then quantified their 

relationships across cell types and developmental stages.

Cell-type-specific hypo-methylation in the CG context is coordinated with hypo-methylation 

in the CH context (Figures 3E, left two panels, and S3D) and increased chromatin 

accessibility (Figure 3E, third panel). Excitatory neuron hypo-DMRs are also enriched for 

histone modifications associated with active enhancers (H3K4me1 and H3K27ac) but not 

promoters (H3K4me3) (Figure 3E, right panel). Similarly, ATAC-seq levels in excitatory 

neurons are correlated with both H3K4me1 and H3K27ac at enhancers (Figure S3E) but 

demarcate TF binding sites with greater spatial resolution (Figure 3E, third panel versus 

right panel). Overlapping features derived from multiple assays (Figure S3F) provide 

convergent evidence for identifying candidate regulatory regions, and both raw and 

processed data can be explored via a web-based browser (http://neomorph.salk.edu/

mm_intact/).

We quantified the epigenomic relationships across cell types in several ways: by the 

similarity of DNA methylation patterns in 500 bp bins genome-wide (Figure S4A) and at 

ATAC-seq peaks (Figure 4A and S4B), and by the similarity of Tn5 insertion densities 

(Figure 4B) at ATAC-seq peaks. As expected, excitatory and NeuN+ neurons are strongly 

correlated using DNA methylation signal at both genomic bins and ATAC-seq peaks 

(Pearson r ~0.9), and hierarchical clustering groups excitatory neurons with NeuN+ neurons. 

PV and VIP neurons cluster together, in line with their functional roles as inhibitory 

neurons. In contrast, excitatory and VIP neurons show the lowest similarity across INTACT-

purified cell types. Unexpectedly, CG methylation levels in fetal brain and in glia correlate 

more strongly with VIP neurons than with excitatory or PV neurons. At ATAC-seq peaks 

(Figures 4A and S4B), this similarity among VIP, fetal, and glial samples could suggest that 

more gene regulatory characteristics of immature or progenitor cells are retained by VIP 

neurons than by excitatory or PV neurons. Collectively, our data demonstrates that DNA 

methylation and chromatin features reveal a coordinated, hierarchical organization of mature 

cortical cell types that is reflected across much of the genome.

Distinct Sets of DNA Binding Factors Act at Putative Neuron Subtype-Specific Regulatory 
Regions

We next sought to characterize the DNA binding TFs that are responsible for these unique 

neuronal regulatory landscapes. Our RNA-seq analysis identified 267 differentially 

expressed TFs (Table S2). These include TFs that play well-known regulatory roles in the 

development of each cell type (e.g., Lhx6 in PV inter-neurons and Proxl in VIP 

interneurons) (Kessaris et al., 2014) as well as many other TFs with unknown neuronal 

functions.

TF binding enhances chromatin accessibility, but the central region of binding is protected 

from the activity of enzymes such as Tn5 transposase, resulting in a notch, or footprint, in 

the ATAC-seq profile (Buenrostro et al., 2013). In agreement with previous footprinting 

studies (Neph et al., 2012), we observe a range of footprint shapes for different TFs (Figure 

5A). With the notable exceptions of CTCF and ZFP410, footprinted sites in a cell are 

generally associated with reduced regional DNA methylation levels (Figure S5A).
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We applied footprint analysis of ATAC-seq datasets to infer TF binding at cell-type-specific 

regulatory regions and combined it with complementary analysis of DNA binding sequence 

motifs enriched at hypo-DMRs. We focused on footprints and motifs of moderately to 

highly expressed TFs (TPM ≥ 30) and identified 68 TFs that may regulate cell-type-specific 

gene expression (Figure 5B and Table S4). Overall, both our footprint and motif predictions 

converge on similar sets of enriched and depleted TFs. These sets encompass both well-

established and novel TFs. In excitatory neurons, both footprint and motif predictions show 

overrepresentation of Egr, AP-1 family members, Neurod2, Rfx1/3/5, and Tbr1. Two TF 

groups potentially linked to PV neuron development, Mafb/g and Mef2a/c/d (Kessaris et al., 

2014), are among those enriched in PV-specific footprints and hypo-DMRs (Figure 5B) as 

well as PV hypo-DMRs shared with both excitatory and VIP neurons (Figure S5B). Studies 

of MEF2 have largely focused on its role in excitatory neurons (Rashid et al., 2014); here, 

both footprinting and motif analyses suggest a critical function for MEF2 in PV neurons at 

PV-specific regulatory regions. Interestingly, VIP neuron footprints and DMRs are enriched 

for TFs best known for their developmental roles (e.g., Dlx, Pou, and Sox family members; 

Arx and Vax2) (Kessaris et al., 2014), an extension of our previous observation that VIP 

methylomes share common patterns with fetal and glial methylomes. Motifs for these TFs 

are also enriched at fetal and glial hypo-DMRs, including those that are shared with VIP 

neurons (Figure S5B).

TFs control complex cellular processes by forming networks of mutual regulation, yet 

differences in TF regulatory networks between neuron types are largely unknown. We 

examined regulatory interactions among TFs by building networks of predicted cell-type-

specific TF regulation, as well as a pan-neuronal regulatory network (Figures 5C and 5D; 

Table S4). These networks recover a number of previously implicated TF-TF regulatory 

interactions and suggest novel interactions. For example, our prediction that MEF2D targets 

Dlx6 in PV neurons parallels the requirement of a homolog, MEF2C, for Dlx6 expression in 

branchial arches (Verzi et al., 2007).

To explore the potential contribution of ATAC-seq peaks and footprints to the regulation of 

nearby gene expression, we examined their coverages around the TSS of highly cell-type-

specific genes. Differentially expressed genes display an increased density of cell-type-

specific footprints centered around the TSS (Figure 5E) and are significantly enriched for 

cell-type-specific ATAC-seq peaks (Figure 5F). When we examined panneuronal genes 

(Hobert et al., 2010) such as Pclo, Rims1, Cdh2, and Grip1 (Figure S5C), we noted that they 

were also surrounded by an array of ATAC-seq peaks, many of which were present 

exclusively in one neuron class. Indeed, we find that cell-type-specific ATAC-seq peaks are 

moderately enriched around the TSS of pan-neuronal genes (Figure 5F), highlighting the 

potential for these regions to shape neuronal identity by regulating both cell-type-specific 

and pan-neuronal programs of gene expression.

Among DNA Methylation and Chromatin Accessibility Features, Non-CG Methylation Best 
Correlates with RNA Abundance

Genome-wide, we find a strong inverse correlation between RNA abundance and DNA 

methylation around the TSS, as well as a positive correlation between RNA abundance and 
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ATAC-seq signals (Figure 6A). For both mCG and mCH, the inverse correlation extends 

throughout the gene body, with a peak ~1–2 kb downstream of the TSS. At differentially 

expressed genes, mCH is significantly more correlated with expression (Spearman r = 

−0.50) than mCG (r = −0.34; p = 0.0063, t test using the three cell types as samples) or 

ATAC-seq insertion density (r = 0.25; p = 5.4 × 10−4). A generalized linear model with a 

sparseness-promoting regularization (LASSO) using mCG, mCH, and ATAC-seq features 

(Table S5) further identifies gene body mCH as the most informative feature for inferring 

RNA abundance (Figures S6A and S6B).

Our finding that the strongest correlation between RNA levels and mCG occurs ~1–2 kb 

downstream of the TSS agrees with recent findings in medulloblastoma cell lines (Hovestadt 

et al., 2014) and in human cardiomyocytes (Gilsbach et al., 2014). Our results extend this 

observation to mCH and show that mCH, an epigenetic modification abundant across 

diverse classes of neocortical neurons, is better correlated with gene abundances measured 

by RNA-seq. Future studies using more direct measures of gene transcription are warranted 

to complement these findings.

Gene Clusters Based on Intragenic Non-CG Methylation Share Gene Expression, 
Chromatin, and Functional Organization

As described above, non-CG methylation within the gene body is inversely correlated with 

gene expression. Yet, this epigenomic feature may display greater divergence across neuron 

types than their transcriptional configurations (Figures 2B and 2F), suggesting that it 

contains additional information related to cell-type-specific differences. To explore this idea, 

we used an unbiased clustering approach to group genes by their patterns of intragenic 

mCH, followed by an integrative analysis of gene expression, chromatin accessibility, and 

gene ontology. 23,023 genes were grouped into 25 clusters by their levels of intragenic 

mCH, normalized by the level in the flanking region (Figures 6B–6E and S6C). 

Approximately half of these genes share similar patterns of mCH across neurons, including 

hyper-methylated genes with low expression levels (clusters 2, 6; 13.5% of genes) and hypo-

methylated genes with moderate to high expression (clusters 3–5, 7, and 8; 40%). The latter 

category is not enriched for differentially expressed genes (Figure 6D) but is enriched for 

cell-type-specific ATAC-seq peaks (Figure 6E). By gene ontology (GO) analysis (Huang et 

al., 2009) (Table S5), genes in these clusters tend to be enriched for general cellular 

processes, for example, transcription (GO: 0006350) and RNA binding (GO: 0003723).

The remaining half of genes captures the spectrum of intragenic CH methylation across 

neuronal populations by clustering into groups showing neuron subtype-specific hyper-and 

hypo-mCH. Clusters 10–18 (23.6% of genes) are hyper-methylated at CH sites in one or 

more cell types and are expressed at relatively low levels. Clusters 19–25 (17.8% of genes) 

are hypo-methylated in specific cell types and are generally expressed at higher levels, with 

hypo-methylation occurring together with increased expression (e.g., Cluster 22 enriched for 

PV > Exc and VIP genes). These clusters are enriched for both differentially expressed 

genes and accessible chromatin. Although genes that are exclusively expressed in only one 

or two cell types are grouped in clusters 19–25, a subset of pan-neuronal genes that differ in 

their expression levels across neuronal subtypes are also grouped here (e.g., Cdh2, Grip1, 
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Bsn). These clusters also contain pan-neuronal genes that do not meet our threshold for 

differential expression (e.g., Anks1b), an example of the ability of intragenic mCH to parse 

the neuronal transcriptome into finer patterns.

Several clusters with cell-type-specific hypo-methylation are enriched for neuronal GO 

categories, for example, postsynaptic density (GO: 0014069:6.7-fold enrichment, q = 0.035, 

cluster 19) and synapse (GO: 0045202: 2.6-fold, q = 0.033, cluster 20; 2.9-fold, q = 2.8 × 

10~4, cluster 21). Neuron subtype-specific differences in intragenic mCH may be especially 

relevant in light of recent evidence that MeCP2 binding to mCA represses transcription of 

long neuronal genes (Gabel et al., 2015). The enrichment of neuronal GO categories at these 

clusters suggests that cell-type-specific expression levels of genes with neuronal functions 

may partly be a consequence of differences in levels of intragenic mCH.

Non-CG Methylation Is Lowest at the Nucleosome Center and Increases at Linker Regions

In addition to its variations with gene expression, we asked whether mCH levels also 

differed relative to chromatin features such as nucleosome positioning. We estimated 

nucleosome locations using ATAC-seq and found that coherently phased modulation of 

mCH is evident over approximately 1 kb (~5 nucleosomes), decreasing by up to 9.5% at the 

nucleosome center and increasing by 11.1 % in neighboring linkers (Figure 6F). mCG levels 

display a similar but weaker modulation (<2%) (Figure S6D). Our results support earlier 

studies in the CG context (Teif et al., 2014) and extend the link between nucleosome 

positioning and DNA methylation in mammalian cells to the non-CG context.

Identification of Distinct Classes of Large Hypo-methylated Regions

We further sought to identify multi-kilobase regions of low DNA methylation in our 

datasets. Hypo-DMRs are not randomly distributed in the genome but instead show a 

bimodal distribution of inter-DMR distances (Figure 7A). Closely spaced hypo-DMRs may 

represent fragments of larger hypo-methylated features. Therefore, we merged neuron 

subtype-specific hypo-DMRs located within 1 kb of each other and defined those exceeding 

2 kb in length as “large hypo-DMRs” (Figure 7B, left). We also observed another category 

of large hypo-methylated domains that are consistent with previously described DNA 

methylation valleys (DMVs) or canyons (Jeong et al., 2014; Xie et al., 2013) (Figure 7B; see 

Supplemental Experimental Procedures).

Although both are multi-kilobase hypo-methylated regions, large hypo-DMRs and DMVs 

occupy distinct genomic locations (Figure S7A). Compared to large hypo-DMRs, DMVs 

have higher overlap across cell types (Figure S7A) and more extreme lengths (Figure S7B), 

extending up to 104 kb compared to large hypo-DMRs, which extend to 32 kb. Consistent 

with their higher GC content (Figure S7C) and lower levels of CG methylation (Figure 

S7D), most DMVs (85%-94%) overlap CpG islands. In contrast, only 1 %-9% of large 

hypo-DMRs overlap CpG islands. Furthermore, DMVs straddle the TSS, whereas large 

hypo-DMRs are enriched downstream of the TSS (Figure S7E).

To better characterize different classes of hypo-methylated regions, we took advantage of 

our histone modification data in excitatory neurons. Large hypo-DMRs show higher levels 
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of histone modifications associated with active enhancers, H3K27Ac and H3K4me1, 

compared to DMRs <2 kb (Figure 7C, left). Excitatory DMVs display a bimodal distribution 

for H3K4me3 and H3K27me3 and can be divided as H3K4me3+ (Figure 7B, left) versus 

H3K27me3+ (Figure 7B, right). As expected, H3K27me3+ DMVs are depleted for ATAC-

seq reads and overlap genes with low expression (Figure 7C, middle and right). Large hypo-

DMRs and H3K4me3+, but not H3K27me3+, DMVs are enriched for differentially 

expressed genes (Figure 7D). In fact, the bimodal distribution of H3K4me3 and H3K27me3 

levels in DMVs suggests that these domains can be associated with either active or repressed 

genes, and the two histone modifications partition DMVs into functionally distinct 

categories (Figures S7F and S7G).

Hyper-methylation at Cell-Type-Specific Transcription Factor Genes Preserves a Trace of 
Early Developmental Expression

DMVs are highly overlapping across adult cell types and fetal cortex (Figure S7A), in line 

with previous evidence (Xie et al., 2013) suggesting they may be established early during 

development and subsequently maintained. To address whether these regions are 

dynamically modified during development, we compared the boundaries of fetal DMVs 

between fetal and adult cells. Genome-wide, 51%–67% of fetal DMVs remain as DMVs in 

adult neurons and glia but gain methylcytosines, resulting in a contraction of DMV length as 

the brain matures (median decrease = 747 bp; p < 2 × 10−18, Wilcoxon rank sum).

We further focused our analysis on fetal DMVs overlapping genes. Fetal DMVs are highly 

enriched for TF genes (Figures S7G), and 75 out of 77 fetal DMVs associated with a list of 

candidate developmental TFs (Visel et al., 2013) are shorter in at least one adult cell type 

(Figure S7H). To identify the DMVs that display the most significant developmental mCG 

gains, we compared mCG levels across fetal and adult cells in the interior of fetal DMVs; to 

avoid the possible confound of intragenic DNA methylation, we used the DMV interior 

upstream of the TSS (Figure 7E). This analysis identified 454 genes (66%; FET, q < 0.01) 

that exhibit significantly increased mCG in at least one adult cell type versus fetal cortex; 

210 genes (31%) have more than a 5-fold increase (Table S6).

When we examined these 210 genes, we noted that several code for critical TFs known to 

shape neuronal subtype identity and are predominantly expressed in neural progenitor cells 

and immature precursors; furthermore, the highest mCG fold change generally occurs in the 

cell type where the gene is active in development but downregulated in the adult (Table S6). 

For example, Neurog2 is highly expressed during embryonic development in the common 

progenitors of cortical excitatory neurons and many glial cells, but it is not expressed in 

these cells in the adult brain nor at any time during inhibitory neuron development (Sommer 

et al., 1996; Wang et al., 2013). Our DNA methylation data shows that Neurog2 lies within a 

DMV in all cells except excitatory neurons and glia, where the region is hyper-methylated 

(Figure 7F, left). In contrast, Nkx2-1 is specifically expressed in the medial ganglionic 

eminence (MGE), the birthplace of cortical PV neurons (DeFelipe et al., 2013). Immature 

cortical PV neurons switch off Nkx2-1 soon after leaving the MGE in order to direct their 

migration to the cortex; neurons that maintain Nkx2-1 expression instead travel to the 

striatum (Nóbrega-Pereira et al., 2008). An extended (>15 kb) DMV covers Nkx2-1 in fetal 
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cortex, excitatory neurons, VIP neurons, and glia, yet this DMV is only ~6.5 kb in PV 

neurons (Figure 7F, right). Similar findings are seen at DMVs overlapping Dlx2, Pax6, 

Vax1, and Gsx2 (Figure S7I and S7J).

At these TF loci, the methylomes of adult neurons contain a signature of past gene 

expression. In contrast to the rest of the genome, hyper-methylation, rather than hypo-

methylation, marks the relevant cell-type-specific genes. In contrast to vestigial enhancers 

(Hon et al., 2013), this epigenetic trace of the neuron’s development arises from the gain of 

cell-type-specific hyper-methylation rather than the retention of hypo-methylation. We 

further asked what fraction of this hyper-methylation is a result of hmC rather than mC. For 

DMVs at Neurog2 and Pax6, we find that adult frontal cortex hmCG levels from TAB-seq 

(Lister et al., 2013) are approximately 10% of excitatory neuron MethylC-seq signals at CG 

sites. Because we lack matched hmC data from purified excitatory neurons, the precise 

contribution of hmCG is difficult to assess, although we believe from this comparison that 

the majority of the hyper-methylation originates from mCG. Furthermore, at non-CG sites in 

these two DMVs, we find that essentially all of the observed hyper-methylation originates 

from mCH, consistent with evidence that hydroxymethylation occurs nearly exclusively in 

the CG context (Yu et al., 2012).

DISCUSSION

This study introduces the INTACT system in mice, the first method to affinity purify nuclei 

from genetically defined cell types in a mammal. INTACT efficiently isolates nuclei from 

both common and rare cell types, enabling us to examine the epigenomic organization of 

neocortical excitatory, PV, and VIP neurons with unprecedented cell-type-specific 

resolution. We find that the morphological and physiological diversity of neocortical 

neurons is paralleled by widespread differences in their underlying epigenomes. By using 

coordinated epigenomic marks to show that neocortical neurons adopt unique regulatory 

landscapes, our data add a new resource to existing catalogs of transcriptional diversity. We 

further identify candidate TFs acting at regulatory regions and demonstrate how epigenomic 

states of adult cells capture long-lasting attributes of neuronal identity, including patterns of 

past gene expression, current gene expression, and potential experience-dependent 

responses. In particular, we find a close relationship between intragenic non-CG methylation 

and differential gene expression. Furthermore, purified neuronal epigenomes reveal 

distinctive hyper-methylation patterns associated with developmentally transient expression 

of critical TFs that shape neuronal subtype identity.

Affinity Purification of Nuclei Facilitates Epigenomic Studies

INTACT is uniquely suited to investigating cell-type-specific epi-genomes, an application 

that can be challenging with other purification methods. Genome-wide epigenomic assays 

generally require tens of thousands to millions of cells, which limit the utility of manual 

sorting for this purpose. Methods that involve cellular dissociation in the adult brain may be 

inefficient and induce stress responses that alter the cellular state. In contrast, INTACT 

couples rapid tissue lysis with gentle isolation of sufficient numbers of cell-type-specific 

nuclei for epigenomic studies. Whereas FACS-sorted cells or nuclei may be fragile and 
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difficult to manipulate, the attachment of magnetic beads to nuclei in INTACT greatly 

simplifies buffer exchanges and volume reductions. Furthermore, unlike FACS or laser 

capture microdissection, INTACT requires no specialized instruments. INTACT is 

particularly well-suited for isolating rare cell types; cells constituting 1%–3% of the starting 

material can be enriched to >98% purity and subsequently used for MethylC-seq and 

ATAC-seq.

In this study, we have focused on cellular diversity in the healthy mammalian brain. 

INTACT can also be used to explore cell-type-specific epigenomics in mouse models of 

neurodegeneration, schizophrenia, autism, and other neuropsychiatric disorders or adapted 

for use in non-neuronal tissues. In addition to epigenomic studies, INTACT is an efficient 

method for isolating nuclear RNA from defined cell types that complements existing 

strategies for RNA profiling. We note that some degree of non-specific RNA contamination 

is intrinsic to affinity purification strategies, including INTACT. Nevertheless, we have 

shown that INTACT expression profiles recover known cell markers and can be used to 

discover novel markers.

Cell-Type-Specific Developmental Signatures Are Encoded in the Methylomes of Adult 
Cells

Mature neuronal diversity arises from a developmental odyssey. Whereas one class of large 

hypo-methylated regions (large hypo-DMRs) reflects the neuron’s current transcriptional 

state, a second class (DNA methylation valleys [DMVs]) reveals patterns of past gene 

expression. We find that a subset of genes coding for TFs that establish neuronal identity, 

including Neurog2, Nkx2-1, Dlx2, Pax6, Vax1, and Gsx2, overlap with DMVs showing cell-

type-specific hyper-methylation. At these genes, hyper-methylation at DMVs in the adult 

methylome provides a record of transient high TF expression during development, whereas 

the same genes are hypo-methylated in other cell types. We speculate that this pattern might 

arise if (1) these DMVs are initially marked by H3K27me3 in neural progenitors (Xie et al., 

2013), (2) H3K27me3 is removed in a particular neuronal lineage to allow TF expression at 

the appropriate developmental time point, and (3) this removal simultaneously increases the 

accessibility of the region to DNA methyltransferases, whereas other cell types maintain an 

inaccessible chromatin state throughout development and into adulthood. Measuring gene 

expression in defined populations of immature cells can be challenging as they are 

intermixed and often do not express the terminal markers of adult neuronal subtypes. Our 

data suggest that developmental TF expression could be predicted from DNA methylation 

patterns in adult cells, providing an alternate approach to investigating cell-type-specific 

developmental history. Our results highlight this finding at several of the most critical 

neuronal TFs; however, future studies using matched developmental and adult datasets are 

necessary to further explore the temporal relationships across DNA methylation, gene 

expression, and chromatin.

Genome-wide Analyses Parse Neuronal Diversity

Neuronal cell types have been defined based on morphology, electrophysiology, 

connectivity, and, more recently, patterns of gene expression and regulation. Traditional 

approaches for investigating these features produce datasets of modest size and with a 

Mo et al. Page 14

Neuron. Author manuscript; available in PMC 2015 July 12.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



relatively small number of independent parameters, which limit the distinctions that can be 

made among neuronal cell types. As demonstrated here, genome-wide approaches generate 

large and information-rich datasets that reveal complex neuron subtype-specific patterns of 

transcript abundances, DNA methylation, and chromatin accessibility. Genome-wide 

information derived from these datasets can be used to parse neuronal subtypes into even 

finer divisions based on patterns of both gene expression and gene regulation, which in turn 

can be combined with transgenic approaches to label new subpopulations of neurons and 

enable their purification. The synergy between genetic engineering of experimental 

organisms, cell-type-specific purification, and genome-scale data analysis promises a new 

and comprehensive view of neuronal diversity in the mammalian brain.

EXPERIMENTAL PROCEDURES

Further details can be found in the Supplemental Experimental Procedures.

Mouse INTACT

Animal procedures were conducted in accordance with the Institutional Animal Care and 

Use Committee guidelines of the Johns Hopkins Medical Institutions. The R26-CAG-LSL-

Sun1 -sfGFP-Myc knockin mouse was made according to standard procedures. GFP+/Myc+ 

nuclei from adult (8–11 weeks) mouse neocortex were isolated by affinity purification using 

anti-GFP or anti-Myc antibodies and protein G-coated magnetic beads.

RNA-Seq Library Generation

Nuclear RNA from INTACT-purified nuclei or whole neocortical nuclei was converted to 

cDNA and amplified with the Nugen Ovation RNA-seq System V2 (Nugen 7102). Libraries 

were sequenced using the Illumina HiSeq 2500.

MethylC-Seq Library Generation

Genomic DNA from INTACT-purified nuclei was fragmented, and MethylC-seq libraries 

were prepared. Libraries were sequenced using the Illumina HiSeq 2000.

ATAC-Seq Library Generation

50,000 bead-bound nuclei were transposed using Tn5 transposase (Illumina FC-121–1030) 

as previously described (Buenrostro et al., 2013). After 9–12 cycles of PCR amplification, 

libraries were sequenced on an Illumina HiSeq 2500.

ChlP-Seq Library Generation

INTACT-purified excitatory neuron nuclei were digested to mononucleosomes using 

micrococcal nuclease, followed by salt extraction of chromatin. After native ChIP and 

library construction, libraries were sequenced on an Illumina HiSeq 2500.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Mo et al. Page 15

Neuron. Author manuscript; available in PMC 2015 July 12.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



ACKNOWLEDGMENTS

This work was supported by the Howard Hughes Medical Institute (J.R.E., S.R.E., J.N., and T.J.S.), 1-U01-
MH105985 (J.R.E.), MSTP training grant (A.M.), and NIH/NINDS R00NS080911 (E.A.M.). J.N. and T.J.S. are 
Howard Hughes Medical Institute Investigators. J.R.E. is a Howard Hughes Medical Institute and Gordon and Betty 
Moore Investigator. We thank Hao Zhang at the Johns Hopkins School of Public Health for flow cytometry. We 
thank Yupeng He for comments and suggestions.

REFERENCES

Amin NM, Greco TM, Kuchenbrod LM, Rigney MM, Chung MI, Wallingford JB, Cristea IM, Conlon 
FL. Proteomic profiling of cardiac tissue by isolation of nuclei tagged in specific cell types 
(INTACT). Development. 2014; 141:962–973. [PubMed: 24496632] 

Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002; 76:6–21. [PubMed: 
11782440] 

Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for 
fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome 
position. Nat. Methods. 2013; 10:1213–1218. [PubMed: 24097267] 

Burger L, Gaidatzis D, Schübeler D, Stadler MB. Identification of active regulatory regions from DNA 
methylation data. Nucleic Acids Res. 2013; 41:e155. [PubMed: 23828043] 

Deal RB, Henikoff S. A simple method for gene expression and chromatin profiling of individual cell 
types within a tissue. Dev. Cell. 2010; 18:1030–1040. [PubMed: 20627084] 

DeFelipe J, López-Cruz PL, Benavides-Piccione R, Bielza O, Larrañaga P, Anderson S, Burkhalter A, 
Cauli B, Fairén A, Feldmeyer D, et al. New insights into the classification and nomenclature of 
cortical GABAergic interneurons. Nat. Rev. Neurosci. 2013; 14:202–216. [PubMed: 23385869] 

Doyle JP, Dougherty JD, Heiman M, Schmidt EF, Stevens TR, Ma G, Bupp S, Shrestha P, Shah RD, 
Doughty ML, et al. Application of a translational profiling approach for the comparative analysis of 
CNS cell types. Cell. 2008; 135:749–762. [PubMed: 19013282] 

Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, Liotta 
LA. Laser capture microdissection. Science. 1996; 274:998–1001. [PubMed: 8875945] 

Gabel HW, Kinde B, Stroud H, Gilbert OS, Harmin DA, Kastan NR, Hemberg M, Ebert DH, 
Greenberg ME. Disruption of DNA-methylation-dependent long gene repression in Rett syndrome. 
Nature. 2015 http://dx.doi.Org/10.1038/nature14319. 

Gay L, Miller MR, Ventura PB, Devasthali V, Vue Z, Thompson HL, Temple S, Zong H, Cleary MD, 
Stankunas K, Doe CQ. Mouse TU tagging: a chemical/genetic intersectional method for purifying 
cell type-specific nascent RNA. Genes Dev. 2013; 27:98–115. [PubMed: 23307870] 

Gelman DM, Marín O. Generation of interneuron diversity in the mouse cerebral cortex. Eur. J. 
Neurosci. 2010; 31:2136–2141. [PubMed: 20529125] 

Gilsbach R, Preissl S, Grüning BA, Schnick T, Burger L, Benes V, Wurch A, Bönisch U, Günther S, 
Backofen R, et al. Dynamic DNA methylation orchestrates cardiomyocyte development, 
maturation and disease. Nat. Commun. 2014; 5:5288. [PubMed: 25335909] 

Guo JU, Ma DK, Mo H, Ball MP, Jang MH, Bonaguidi MA, Balazer JA, Eaves HL, Xie B, Ford E, et 
al. Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat. Neurosci. 
2011; 14:1345–1351. [PubMed: 21874013] 

Guo JU, Su Y, Shin JH, Shin J, Li H, Xie B, Zhong O, Hu S, Le T, Fan G, et al. Distribution, 
recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat. Neurosci. 
2014; 17:215–222. [PubMed: 24362762] 

Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE, Suárez-Fariñas M, Schwarz O, 
Stephan DA, Surmeier DJ, et al. A translational profiling approach for the molecular 
characterization of CNS cell types. Cell. 2008; 135:738–748. [PubMed: 19013281] 

Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu O, 
Ching KA, et al. Distinct and predictive chromatin signatures of transcriptional promoters and 
enhancers in the human genome. Nat. Genet. 2007; 39:311–318. [PubMed: 17277777] 

Mo et al. Page 16

Neuron. Author manuscript; available in PMC 2015 July 12.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

http://dx.doi.Org/10.1038/nature14319


Henry GL, Davis FP, Picard S, Eddy SR. Cell type-specific genomics of Drosophila neurons. Nucleic 
Acids Res. 2012; 40:9691–9704. [PubMed: 22855560] 

Hobert O, Carrera I, Stefanakis N. The molecular and gene regulatory signature of a neuron. Trends 
Neurosci. 2010; 33:435–445. [PubMed: 20663572] 

Hon GC, Rajagopal N, Shen Y, McCleary DF, Yue F, Dang MD, Ren B. Epigenetic memory at 
embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat. Genet. 
2013; 45:1198–1206. [PubMed: 23995138] 

Hovestadt V, Jones DT, Picelli S, Wang W, Kool M, Northcott PA, Sultan M, Stachurski K, Ryzhova 
M, Warnatz HJ, et al. Decoding the regulatory landscape of medulloblastoma using DNA 
methylation sequencing. Nature. 2014; 510:537–541. [PubMed: 24847876] 

Huang W, Sherman BT, and Lempicki RA. Systematic and integrative analysis of large gene lists 
using DAVID bioinformatics resources. Nat. Protoc. 2009; 4:44–57. [PubMed: 19131956] 

Jeong M, Sun D, Luo M, Huang Y, Challen GA, Rodriguez B, Zhang X, Chavez L, Wang H, Hannah 
R, et al. Large conserved domains of low DNA methylation maintained by Dnmt3a. Nat. Genet. 
2014; 46:17–23. [PubMed: 24270360] 

Jiang Y, Matevossian A, Huang HS, Straubhaar J, Akbarian S. Isolation of neuronal chromatin from 
brain tissue. BMC Neurosci. 2008; 9:42. [PubMed: 18442397] 

Kepecs A, Fishell G. Interneuron cell types are fit to function. Nature. 2014; 505:318–326. [PubMed: 
24429630] 

Kessaris N, Magno L, Rubin AN, Oliveira MG. Genetic programs controlling cortical interneuron fate. 
Curr. Opin. Neurobiol. 2014; 26:79–87. [PubMed: 24440413] 

Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara-
Haley K, Kuersten S, et al. Widespread transcription at neuronal activity-regulated enhancers. 
Nature. 2010; 465:182–187. [PubMed: 20393465] 

Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR. Highly 
integrated single-base resolution maps of the epigenome in Arabidopsis. Cell. 2008; 133:523–536. 
[PubMed: 18423832] 

Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, Lucero J, Huang Y, Dwork 
AJ, Schultz MD, et al. Global epigenomic reconfiguration during mammalian brain development. 
Science. 2013; 341:1237905. [PubMed: 23828890] 

Malik AN, Vierbuchen T, Hemberg M, Rubin AA, Ling E, Couch CH, Stroud H, Spiegel I, Farh KK, 
Harmin DA, Greenberg ME. Genome-wide identification and characterization of functional 
neuronal activity-dependent enhancers. Nat. Neurosci. 2014; 17:1330–1339. [PubMed: 25195102] 

Maze I, Shen L, Zhang B, Garcia BA, Shao N, Mitchell A, Sun H, Akbarian S, Allis CD, Nestler EJ. 
Analytical tools and current challenges in the modern era of neuroepigenomics. Nat. Neurosci. 
2014; 17:1476–1490. [PubMed: 25349914] 

Mellén M, Ayata P, Dewell S, Kriaucionis S, Heintz N. MeCP2 binds to 5hmC enriched within active 
genes and accessible chromatin in the nervous system. Cell. 2012; 151:1417–1430. [PubMed: 
23260135] 

Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD. Neuronal subtype specification in the cerebral 
cortex. Nat. Rev. Neurosci. 2007; 8:427–437. [PubMed: 17514196] 

Molyneaux BJ, Goff LA, Brettler AC, Chen HH, Brown JR, Hrvatin S, Rinn JL, Arlotta P. DeCoN: 
genome-wide analysis of in vivo transcriptional dynamics during pyramidal neuron fate selection 
in neocortex. Neuron. 2015; 85:275–288. [PubMed: 25556833] 

Neph S, Vierstra J, Stergachis AB, Reynolds AP, Haugen E, Vernot B, Thurman RE, John S, 
Sandstrom R, Johnson AK, et al. An expansive human regulatory lexicon encoded in transcription 
factor footprints. Nature. 2012; 489:83–90. [PubMed: 22955618] 

Nóbrega-Pereira S, Kessaris N, Du T, Kimura S, Anderson SA, Marín O. Postmitotic Nkx2-1 controls 
the migration of telencephalic interneurons by direct repression of guidance receptors. Neuron. 
2008; 59:733–745. [PubMed: 18786357] 

Rashid AJ, Cole CJ, Josselyn SA. Emerging roles for MEF2 transcription factors in memory. Genes 
Brain Behav. 2014; 13:118–125. [PubMed: 23790063] 

Rudy B, Fishell G, Lee S, Hjerling-Leffler J. Three groups of interneurons account for nearly 100% of 
neocortical GABAergic neurons. Dev. Neurobiol. 2011; 71:45–61. [PubMed: 21154909] 

Mo et al. Page 17

Neuron. Author manuscript; available in PMC 2015 July 12.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



Sanz E, Yang L, Su T, Morris DR, McKnight GS, Amieux PS. Cell-type-specific isolation of 
ribosome-associated mRNA from complex tissues. Proc. Natl. Acad. Sci. USA. 2009; 106:13939–
13944. [PubMed: 19666516] 

Saxena A, Wagatsuma A, Noro Y, Kuji T, Asaka-Oba A, Watahiki A, Gurnot C, Fagiolini M, Hensch 
TK, Carninci P. Trehalose-enhanced isolation of neuronal sub-types from adult mouse brain. 
Biotechniques. 2012; 52:381–385. [PubMed: 22668417] 

Sommer L, Ma Q, Anderson DJ. neurogenins, a novel family of atonal-related bHLH transcription 
factors, are putative mammalian neuronal determination genes that reveal progenitor cell 
heterogeneity in the developing CNS and PNS. Mol. Cell. Neurosci. 1996; 8:221–241. [PubMed: 
9000438] 

Spiegel I, Mardinly AR, Gabel HW, Bazinet JE, Couch CH, Tzeng CP, Harmin DA, Greenberg ME. 
Npas4 regulates excitatory-inhibitory balance within neural circuits through cell-type-specific 
gene programs. Cell. 2014; 157:1216–1229. [PubMed: 24855953] 

Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Schöler A, van Nimwegen E, Wirbelauer C, 
Oakeley EJ, Gaidatzis D, et al. DNA-binding factors shape the mouse methylome at distal 
regulatory regions. Nature. 2011; 480:490–495. [PubMed: 22170606] 

Stamatoyannopoulos JA, Snyder M, Hardison R, Ren B, Gingeras T, Gilbert DM, Groudine M, Bender 
M, Kaul R, Canfield T, et al. Mouse ENCODE Consortium. An encyclopedia of mouse DNA 
elements (Mouse ENCODE). Genome Biol. 2012; 13:418. [PubMed: 22889292] 

Steiner FA, Talbert PB, Kasinathan S, Deal RB, Henikoff S. Cell-type-specific nuclei purification 
from whole animals for genome-wide expression and chromatin profiling. Genome Res. 2012; 
22:766–777. [PubMed: 22219512] 

Sugino K, Hempel CM, Miller MN, Hattox AM, Shapiro P, Wu O, Huang ZJ, Nelson SB. Molecular 
taxonomy of major neuronal classes in the adult mouse forebrain. Nat. Neurosci. 2006; 9:99–107. 
[PubMed: 16369481] 

Sullivan PF, Daly MJ, O’Donovan M. Genetic architectures of psychiatric disorders: the emerging 
picture and its implications. Nat. Rev. Genet. 2012; 13:537–551. [PubMed: 22777127] 

Teif VB, Beshnova DA, Vainshtein Y, Marth C, Mallm JP, Hofer T, Rippe K. Nucleosome 
repositioning links DNA(de)methylation and differential CTCF binding during stem cell 
development. Genome Res. 2014; 24:1285–1295. [PubMed: 24812327] 

Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, Sheffield NC, Stergachis AB, 
Wang H, Vernot B, et al. The accessible chromatin landscape of the human genome. Nature. 2012; 
489:75–82. [PubMed: 22955617] 

Verzi MP, Agarwal P, Brown O, McCulley DJ, Schwarz JJ, Black BL. The transcription factor 
MEF2C is required for craniofacial development. Dev. Cell. 2007; 12:645–652. [PubMed: 
17420000] 

Visel A, Taher L, Girgis H, May D, Golonzhka O, Hoch RV, McKinsey GL, Pattabiraman K, 
Silberberg SN, Blow MJ, et al. A high-resoution enhancer atlas of the developing telencephalon. 
Cell. 2013; 152:895–908. [PubMed: 23375746] 

Wang B, Long JE, Flandin P, Pla R, Waclaw RR, Campbell K, Rubenstein JL. Loss of Gsx1 and Gsx2 
function rescues distinct phenotypes in Dlx1/2 mutants. J. Comp. Neurol. 2013; 521:1561–1584. 
[PubMed: 23042297] 

Xie W, Barr CL, Kim A, Yue F, Lee AY, Eubanks J, Dempster EL, Ren B. Base-resolution analyses of 
sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell. 2012; 
148:816–831. [PubMed: 22341451] 

Xie W, Schultz MD, Lister R, Hou Z, Rajagopal N, Ray P, Whitaker JW, Tian S, Hawkins RD, Leung 
D, et al. Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell. 
2013; 153:1134–1148. [PubMed: 23664764] 

Yu M, Hon GC, Szulwach KE, Song OX, Zhang L, Kim A, Li X, Dai Q, Shen Y, Park B, et al. Base-
resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell. 2012; 149:1368–
1380. [PubMed: 22608086] 

Mo et al. Page 18

Neuron. Author manuscript; available in PMC 2015 July 12.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



Figure 1. An Affinity Purification Method Isolates Cell-Type-Specific Nuclei in Mice
(A) Diagram of the INTACT knockin mouse construct. Cre-mediated excision of the 

transcription stop signals activates expression of the nuclear membrane tag (Sun1 -sfGFP-

myc) in the cell type of interest.

(B) Immunohistochemistry showing localization of SUN1-sfGFP-Myc in neocortical 

excitatory, PV, and VIP neurons in mice that carry R26-CAG-LSL-Sun1 sfGFP-myc together 

with a Cre driver. Scale bars, 50 µm.

(C) Steps in the affinity purification method (INTACT).
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(D) An example of a GFP+/Myc+ nucleus bound by Protein G-coated magnetic beads 

following INTACT purification and staining with DAPI. Scale bar, 10 µm.

(E) For each experiment, INTACT purifications were performed with anti-GFP using pooled 

neocortices of two mice. Specificity of mouse INTACT: after INTACT purification, bead-

bound nuclei were stained with DAPI, and the numbers of GFP+ versus GFP− nuclei were 

quantified by fluorescence microscopy (100–200 nuclei per experiment). Yield of mouse 

INTACT: the total number of input nuclei, the percentage of GFP+ nuclei in the input, and 

the total number of bead-bound nuclei after INTACT purification were quantified using 

fluorescence microscopy or a hemocytometer (100–200 nuclei per experiment). The yield 

was calculated based on the observed number of bead-bound nuclei versus the expected 

number from the input. For percentage of GFP+ nuclei in the input, the mean is shown. For 

quantities after INTACT purification, both the mean and ranges are shown.

See also Figure S1.
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Figure 2. Widespread Differences in Gene Expression and DNA Methylation among Neuron 
Subtypes
(A) Browser representation of RNA-seq read density and DNA methylation in CG and non-

CG contexts (mCG, mCH) at two genes. Slc6a1 (GAT-1, left) is expressed primarily in 

inhibitory neurons. Lhx6 (right) is PV neuron specific. Methylated CG (green) and CH(blue) 

positions are marked by upward (plus strand) and downward (minus strand) ticks. The 

height of each tick represents the percentage of methylation, ranging from 0% to 100%. 

NeuN+ and Ctx (cortex) adult mouse methylomes are from Lister et al. (2013). R1, replicate 

1; R2, replicate 2.
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(B) Pairwise comparisons of protein-coding gene expression measured by RNA-seq across 

cell types (left three panels) or between replicates (right panel). The most differentially 

expressed genes (>5-fold change) are shown as colored points, and selected cell-type-

specific genes are labeled, r, Pearson correlation of log(TPM+0.1); TPM, transcripts per 

million.

(C) Percentage of MethylC-seq calls supporting methylation in the CG and CH contexts for 

each cell type on autosomes.

(D) Percentage of all MethylC-seq calls supporting methylation. The number in each bar 

indicates the percentage of all methylated cytosines on autosomes that occur in the CH 

context.

(E) Median ± 1 SEM of percentage of mCH within and surrounding gene bodies, showing 

an inverse correlation between expression and DNA methylation at differentially expressed 

genes identified from our RNA-seq data (>5-fold change for one cell type relative to both of 

the other cell types). TSS, transcription start site; TES, transcription end site; SEM, standard 

error of the mean.

(F) Pairwise comparisons of gene body percentage of mCH across cell types (left three 

panels) or between replicates (right panel). Colored dots correspond to the same genes 

shown in (B).

See also Figure S2.
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Figure 3. Epigenomic Marks Are Coordinated and Highly Cell Type Specific
(A) Examples of intergenic regulatory elements marked by accessible chromatin (peaks in 

ATAC-seq read density, upper tracks) and low levels of DNA methylation (hypo-DMRs and 

UMRs+LMRs, lower tracks) at an intergenic region ~53 kb upstream of Snap25 (both the 

nearest gene and the nearest TSS). Locations of ATAC-seq peaks, hypo-DMRs, and UMRs

+LMRs are shown below the corresponding raw data. R1, replicate 1; R2, replicate 2.

(B) Area-proportional Venn diagram showing the numbers of all cell-type-specific and 

shared ATAC-seq peaks across excitatory, PV, and VIP neurons (top). Area-proportional 

Venn diagrams showing that a greater fraction of promoter-associated peaks (within 2.5 kb 
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of a TSS) are shared compared to distal peaks (>20 kb from a TSS), which are 

predominantly cell type specific (bottom).

(C) Browser representation of regulatory elements around trkC/Ntrk3 marked by histone 

modifications in excitatory neurons, DNasel hypersensitivity in whole cerebrum (from 

ENCODE), and peaks in ATAC-seq read density in excitatory, PV, and VIP neurons. For 

ATAC-seq, greater spatial resolution is achieved by using reads <100 bp in length (tracks 

labeled < 100).

(D) Area-proportional Venn diagram showing the numbers of DMRs identified to be hypo-

methylated in excitatory, PV, and/or VIP neurons in a statistical comparison of CG 

methylation levels across five cell types. Two of these cell types, fetal cortex and glia, are 

not shown in the diagram. Most DMRs are distal to the TSS rather than promoter associated.

(E) Heatmap showing percentage of mCG plotted in 3 kb windows centered at DMRs hypo-

methylated in one or two cell types (panel 1). At the same genomic regions, the following 

additional features were plotted: percentage of mCH (panel 2), chromatin accessibility 

(ATAC-seq reads) (panel 3), and histone modification ChlP-seq reads in excitatory neurons 

(panel 4). The number of DMRs in each category is shown in parentheses.

See also Figure S3.

Mo et al. Page 24

Neuron. Author manuscript; available in PMC 2015 July 12.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



Figure 4. Relationships across Cell Types and Development via Epigenomic Marks
Matrices showing pairwise Pearson correlations for percentage of mCG (A) and ATAC-seq 

read densities (B) at ATAC-seq peaks. Dendrograms show hierarchical clustering using 

complete linkage and 1-Pearson correlation as the metric.

See also Figure S4.
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Figure 5. Neuronal Subtypes Are Associated with Distinct Patterns of TF Binding
(A) The average density of ATAC-seq read endpoints (Tn5 transposase insertions) within 

±100 bp relative to the estimated locations of footprints for four example TFs, showing 

characteristic footprint structures. Each footprint profile is normalized by the maximum over 

the profiled region. Inset: position weight matrix showing sequence motifs at the footprint 

center.

(B) Heatmaps showing the enrichment (red) and depletion (blue) of footprints in cell-type-

specific ATAC-seq peaks (left) or motifs in hypo-DMRs (middle). The relative TF 
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expression level across excitatory, PV, and VIP neurons is also shown (right). Selected TFs 

are labeled; the full matrix can be found in Table S4.

(C) Schematic for assessing TF-TF interactions by detecting footprints of one TF (FP A) in a 

20 kb window around the TSS of a second TF (TF B); footprints located farther away (FP C) 

are not predicted to interact.

(D) Networks of TF interactions predicted by the method shown in (C) using cell-type-

specific and pan-neuronal footprints. Full networks can be found in Table S4.

(E) Heatmaps showing the average density of cell-type-specific and pan-neuronal footprints 

within a TSS ± 100 kb window for each category of genes.

(F) Barplot showing the average percentage of base pairs within a TSS ± 10 kb window that 

overlaps each ATAC-seq peak category, for each category of genes (left). Heatmap showing 

an enrichment of cell-type-specific peaks at both cell-type-specific and pan-neuronal genes 

(right). Pan-neuronal genes are from Hobert et al. (2010); q from one-sided Wilcoxon rank-

sum test with Benjamini-Hochberg FDR correction. See also Figure S5.
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Figure 6. Integrative Analysis of DNA Methylation, Gene Expression, and Chromatin Features
(A) Spearman correlations of three epigenomic features (CG DNA methylation, CH DNA 

methylation, and ATAC-seq read density) with RNA expression level around the TSS of 

autosomal expressed (TPM > 0.1) genes (left) and differentially expressed genes (right). The 

signs of the correlations for mCG and mCH are negative, as these features inversely 

correlate with gene expression.

(B–E) Protein-coding genes were clustered by k-means based on patterns of intragenic 

mCH. For each cluster (1–25), the following features are plotted: mCH level within each 
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gene body and flanking 100 kb (B); mRNA abundance (C); enrichment or depletion for 

differentially expressed (DE) genes (D), and enrichment or depletion for cell-type-specific 

and shared ATAC-seq peaks within ±10 kb of the TSS (E). mCH levels for each gene are 

normalized by the levels at distal flanking regions (50–100 kb upstream and downstream of 

the gene body). For clusters with cell-type-specific hypo-methylation, an example gene or 

gene set is listed. TPM, transcripts per million; N.S., not significant (FET, q < 0.01).

(F) mCH levels are higher in the nucleosomal linker region and lower in the nucleosome 

core. mCH levels are normalized by the level at flanking regions (1–2 kb upstream and 

downstream of the nucleosome center).

See also Figure S6.
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Figure 7. Large Domains of Low Methylation Link to Gene Expression, Including Unexpected 
Hyper-methylation at Developmental Genes
(A) Bimodal distribution of distances between hypo-DMRs in each cell type indicates that 

some hypo-DMRs are closely spaced (<1 kb separation) and form large blocks of 

differential methylation (“large hypo-DMRs”).

(B) Large hypo-DMRs and an H3K4me3+ DNA methylation valley (DMV) overlap Mef2c 

(left); an H3K27me3+ DMV overlaps Gbx2 (right). As diagrammed for the excitatory 
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neuron tracks, dark-colored bars indicate hypo-DMRs (top), boxes indicate hypo-DMRs that 

were grouped into large hypo-DMRs, and light-colored bars indicate DMVs (bottom).

(C) For excitatory neurons, violin plots show the distribution of histone modification 

enrichments (left), ATAC-seq read densities (middle), and gene expression levels (right) 

within large hypo-DMRs, hypo-DMRs < 2 kb, and DMVs. A.U., arbitrary units.

(D) Matrix showing the percentage of each row feature that overlaps with differentially 

expressed genes. Large hypo-DMRs and H3K4me3+ DMVs (in excitatory neurons) have 

higher enrichment for differentially expressed genes, compared to hypo-DMRs < 2 kb. 

H3K27me3+ DMVs (in excitatory neurons) are not enriched for differentially expressed 

genes at q < 1 × 10−5.

(E) Schematic for assessing the accumulation of CG methylation in each adult cell type 

(excitatory, PV, and VIP neurons, and glia) compared to fetal cortex, at fetal DMVs 

overlapping genes. See Table S6.

(F) DNA methylation levels for a region around Neurog2 (left), an active TF in excitatory 

and many glial progenitors, and Nkx2-1 (right), a transiently active TF in PV neuron 

development. See Table S6 for annotations and references. Barplots show percentage of 

mCG and percentage of mCH for each cell type in the region between dotted lines in (E). *q 

< 1 × 10−10 (mCG, adult cell type compared to fetal cortex, one-sided FET with Benjamini-

Hochberg correction). In the browser representation, light-colored bars indicate DMVs.

See also Figure S7.
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